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Abstract: Based on the Kirkaldy-Venugopalan model, a theoretical model for the phase transformation
of USIBOR® 1500 high strength steel was established, and a graph of the phase transformation kinetics
of ferrite, pearlite, and bainite were plotted using the software MATLAB. Meanwhile, with the use
of the software DYNAFORM, the thermal stamping process of an automobile collision avoidance
beam was simulated. The phase transformation law of USIBOR® 1500 high-strength steel during hot
stamping was studied through a simulation of the phase transformation during the pressure holding
quenching process. In combination with the continuous cooling transformation (CCT) curve, the
cooling rate of quenching must be greater than 27 ◦C/s to ensure maximum martensite content in the
final parts, and the final martensite content increases as the initial temperature of the sheet rises.
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1. Introduction

Advanced high-strength steel (AHSS) usually refers to automotive steel with a strength of more
than 500 MPa and good plasticity [1], such as dual-phase steel, transformation induced plasticity
steel, martensitic steel, hot-formed steel, and twinning induced plasticity steel. ASHH has excellent
mechanical properties in normalized or normalized and tempered conditions. The application of AHSS
is an effective way to achieve lightweight and high safety of automobiles. It has been widely used
in the automotive industry, mainly for automotive structural parts, safety parts, and reinforcements,
such as A/B/C columns, front and rear bumpers, door anti-collision beams, beams, stringers, seat
slides, etc. [2]. The tensile strength of USIBOR® 1500 high-strength steel after rolling annealing is
approximately 400–600 MPa. The uniform austenite structure is obtained by heating in a furnace to
about 900 ◦C and holding for several minutes. Then, the sheet is formed in a mold. After forming
and quenching in the mold, the complete martensite structure can be obtained, and the strength
of such martensitic microstructure steel can exceed 1500 MPa at room temperature [3,4]. The hot
stamping process of high-strength steel sheets is a thermal-force-phase transformation coupling process.
The change of temperature affects the mechanical properties of the material, and the deformation
and temperature affect the phase change simultaneously, thereby ultimately determining the quality
of the formed parts. Quenching at different cooling rates can induce different forms of phase
transformation, such as ferrite, retained austenite, bainite, and martensitic transformation. Therefore,
the mechanism of the phase transformation of martensite during hot stamping must be studied for
achieving ultra-high-strength materials.
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Finite element analysis is a common method of studying the phase change process and
mechanism [5]. Wang et al. [6] studied the effect of austenite’s holding time on phase transformation by
finite element analysis. Simulation results showed that the final martensite volume fraction changed
with an increase of the holding time in the austenite temperature range of 800–900 ◦C. On the basis of
phase change martensite theory, Zhu et al. [7] established a three-dimensional model for the study of
hot stamping simulation. The simulation results showed that the temperature distribution between
the mold gap and the mold considerably influenced the microstructure of the high-strength steel at the
end of the process. Tamas et al. [8] predicted microstructure transformation and mechanical properties
by establishing a dynamic model of the quenching process of low-alloy steels considering the effect of
austenite grain growth rate. Bok et al. [9] used finite element software to simulate the microstructure
transformation in hot stamping according to three phase transformation models and then predicted
sheet hardness under the different models.

For diffusion phase transformation, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation
accurately expresses the relationship between the amount of microstructure transformation and time
and temperature, but it does not describe well the degree and law of the influence of various influencing
factors on microstructure transformation. The Kirkaldy-Venugopalan model is a good descriptor
of the effects of major factors on microstructure transformation, but the accuracy is worse than the
JMAK equation. In order to study the phase transformation of USIBOR® 1500 high strength steel,
the Kirkaldy-Venugopalan model [10,11] is selected and modified to establish a theoretical model for
the phase transformation of USIBOR® 1500 high-strength steel, which is closer to the actual phase
transformation kinetic curve.

On the basis of establishing a theoretical model of the phase change of USIBOR® 1500 high-strength
steel, this work regards the thermal stamping process of an automobile collision-proof beam as an
example. Through the simulation of the phase change process in pressure retaining and quenching,
the phase change law in the hot stamping process of USIBOR® 1500 high-strength steel is studied.

2. Material and Methods

USIBOR® 1500 high-strength steel has ferrite and pearlite microstructures during rolling and
annealing, and the tensile strength is approximately 550 MPa. The austenite structure is obtained by
heating of the sheet in a furnace to about 900 ◦C and holding for several minutes, and the sheet is
quickly formed in the mold. After forming, holding pressure and quenching are maintained in the
mold for eventually obtaining the martensite structure. The tensile strength of such martensitic steel at
room temperature can reach or exceed 1500 MPa. Table 1 shows the material composition of USIBOR®

1500 high-strength steel, and Figure 1 shows the microstructure of USIBOR® 1500 high-strength steel
after rolling and annealing. In the figure, α is ferrite, P is pearlite, the matrix is mainly ferrite, and the
volume ratio is about 70%. The fine pearlite is uniformly distributed in the grain boundary and the
crystal, and the grain size of the ferrite is less than 20 µm. The pearlite grain size is less than 2 µm.

Table 1. Material composition of USIBOR® 1500 high-strength steel.

Elements Percentage (wt %)

C 0.2220
Mn 1.2120
P 0.0200
S 0.0032
Si 0.2590
Al 0.0362
Ti 0.0386
B 0.0038
Cr 0.1912
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Figure 1. SEM microstructure of USIBOR®  1500 high-strength steel after rolling and annealing. 
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Figure 1. SEM microstructure of USIBOR® 1500 high-strength steel after rolling and annealing.

3. Results and Discussion

3.1. Phase Transformation Theory of USIBOR® 1500 High-Strength Steel

Phase transformation requires the driving force of phase change, and the resistance of phase
transformation and the driving force of phase change affect the general trend of phase transformation.
Through a study of the driving force of phase change, the phase equilibrium temperatures of different
materials can be determined, thus judging the trend of phase transformation under various temperature
conditions. When the driving force of phase transformation is zero, the corresponding temperature is
the equilibrium temperature of the phase transformation. The simplified formula of the equilibrium
temperature of the phase transformation is 1, 2, 3, and 4 [12]. The content of each element in the
formula is the mass percentage.

Ae3 = 1040− 453C + 33Si− 27Mn− 11Cr (1)

Ae1 = 730 + 9Si− 11Mn + 6Cr, (2)

Bs = 637− 58C− 34Mn− 34Cr, (3)

Ms = 539− 423C− 7.5Si− 30Mn− 12.1Cr, (4)

where Ae3 is the pre-eutectoid ferrite transformation equilibrium temperature (◦C), Ae1 is the pearlite
phase transformation equilibrium temperature (◦C), Bs is the bainite phase transformation equilibrium
temperature (◦C), and Ms is the martensitic phase change equilibrium temperature (◦C).

The percentage of each component in Table 1 is substituted into the calculation model of the
phase equilibrium transformation temperature, and the initial phase transformation temperature of
USIBOR® 1500 high-strength steel is obtained, as shown in Table 2.

Table 2. Initial phase transformation temperature of USIBOR® 1500 high-strength steel.

Phase Ae3 Ae1 Bs Ms

Phase change initial temperature (◦C) 824 722 575 412

Through the study of martensite transformation, the transformation amount of the martensitic
microstructure is only influenced by temperature but not by other factors. Therefore, the dynamic
expression of the martensitic transformation is as follows [13]:

X = 1− exp[−α(Ms − T)], (5)
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where X is change quantity, T is temperature (◦C), Ms is martensitic transformation temperature (◦C),
and α is a constant that reflects the rate of martensitic transformation. The α value is 0.02 because of
different organizational components.

Table 2 shows that the Ms value of USIBOR® 1500 high-strength steel is 412 ◦C. In order to study
the microstructure transformation of USIBOR® 1500 high-strength steel, the Kirkaldy-Venugopalan
model was chosen to be modified to make the model results closer to the dynamic curve of the actual
microstructure transformation. The mathematical expressions of the phase transformation model are
as follows [14]:

.
X = f (G) f (T) f (C) f (X), (6)

where f (G) is the influence factor of austenite grain size, f (T) is the influence factor of temperature,
and f (X) is the influence factor of the production transformation.

f (G) = 2AG, (7)

where G is austenite grain size, which can assume the value 8, and A is constant.
The austenite grain diameter D is proportional to 2G/2 and share corresponding relationships

with different nucleation sites; meanwhile, the influence of austenite grains on the transformation is a
mixed effect of these nucleation mechanisms in the process of continuous cold-phase transformation.
Therefore, different phase transformations may have varied values. The expression of the influence of
temperature is as follows:

f (T) = (TCR − T)n exp(−Q/RT), (8)

where TCR is equilibrium temperature of phase change (K), R is mole constant of gas (J/k ·mol), T is
real-time temperature (K), Q is diffusion activation energy (J/k ·mol), and n is constant. When the
boundary diffuses, the value is 3. When the volume diffuses, the value is 2.

Mn and Cr in materials affect the diffusion rate of carbon atoms, and the addition of B will prolong
the incubation time of ferrite transformation and reduce the ferrite transformation rate [12]. Moreover,
the chemical composition of the material has different effects on different phase transformations.

Ferrite transformation:

f (C) = (59Mn + 67.7Cr + 1.9× 105B)
−1

, (9)

Transition to pearlite:

f (C) = (1.79 + 5.42Cr + 3.1× 103B)
−1

, (10)

Bainite transformation:

f (C) = ((2.34 + 10.1C + 3.8Cr) × 10−4)
−1

, (11)

According to the empirical formula, the influence of the transformation quantity is expressed
as follows:

f (X) = X0.40(1−X)(1−X)0.40X, (12)

According to Zener-Hillert’s model [15], the transformation time and the quantity of transformation
are as follows:

τ(X, T) =
1

f (G) f (T) f (C)

∫ X

0

dX
f (X)

, (13)

According to the transition temperature range of ferrite, pearlite and bainite, different temperature
conditions are selected. Then the parameters are brought into the kinetic model, formula (13), to
find the corresponding relationship of the time–transformation quantity under different temperature
conditions. The kinetic curves of ferrite, pearlite, and bainite transformation are plotted using MATLAB
(version R2016b, MathWorks, Natick, MA, USA).
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The above parameters are substituted into the kinetic model, and the kinetic curves of ferrite,
pearlite, and bainite transformation are plotted by MATLAB, as shown in Figure 2. The kinetic
transformation curves show that the transformation rates of ferrite, pearlite, and bainite are the fastest
at 580 ◦C, 565 ◦C, and 520 ◦C, respectively.
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Figure 2. Dynamic curves of USIBOR® 1500 high-strength steel; (a) ferrite, (b) pearlite, (c) bainite.

Figure 3 depicts the time-temperature transformation (TTT) curve of USIBOR® 1500 high-strength
steel; the curve is created via linear interpolation of the starting point of the dynamic curve phase
transformation and the end point of the phase transformation. This curve can be used for predicting
the phase transformation law of the quenching process.
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Figure 3. The time-temperature transformation (TTT) curve of USIBOR® 1500 high-strength steel.

Combined with the CCT curve drawn by Xing [16], in order to ensure the maximum
martensite content of the final part, the cooling rate must be kept over 27 ◦C/s during the
pressure-hardening quenching.

3.2. Finite Element Analysis

3.2.1. Finite Element Model and Process Scheme

Figure 4 shows the hot stamping geometry model of a vehicle anti-collision beam. The sheet
used is USIBOR® 1500 high-strength steel with a thickness of 1.5 mm. Each component is meshed by
DYNAFORM finite element software. The divided grids are mainly quadrilateral and account for 70%
of all the grids, and triangle grids account for 30% of the total proportion. The hot stamping process
scheme of USIBOR® 1500 high-strength steel is shown in Table 3.
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Table 3. Hot stamping process scheme.

Sheet Temperature (◦C) Mould Preheating Temperature (◦C) Process Sequence

750 100 Process 1
800 100 Process 2
850 100 Process 3

3.2.2. Parameter Design

Table 4 details the specific heat capacity parameter and heat conductivity of USIBOR® 1500
high-strength steel at 20–900 ◦C [17]. The two parameters mentioned in the Table 4 are the most
commonly used parameters in describing the thermodynamic properties of high-strength steel. The
parameters of the hot stamping process of high-strength steel vary with temperature; hence, simulation
must be conducted according to correct data for ensuring accuracy of the simulation results.

Table 4. Specific heat capacity and heat conductivity of USIBOR® 1500 at 20–900 ◦C.

Temperature (◦C) 20 100 200 300 400 500 700 900

Heat conductivity W/(m · K) 29.5 30.8 27.8 21.6 - 23.4 25.3 -
Specific heat capacity J/(kg · K) 4.3 4.9 5.1 5.5 5.6 5.7 5.8 5.85

In the simulation analysis of hot stamping forming using DYNAFORM (version 5.9, LSTC/ETA,
USA), in order to optimize the simulation effect, the appropriate material model should be selected to
characterize the material. Therefore, select *MAT_ELASTIC_VISCOPLASTIC_THREMAL (#106) as
the parameter setting model for the simulated material. Each parameter of the material is a variable
related to temperature. Table 5 details the different parameters of USIBOR® 1500 high-strength steel
with temperature at 20–900 ◦C [18].

Table 5. Material properties of USIBOR® 1500 high-strength steel at 20–900 ◦C.

Temperature (◦C) 20 100 200 300 400 500 600 700 800 900

E/GPa 211 208 195 192 164 155 151 141 135 125
Poisson’s ratio 0.27 0.27 0.27 0.28 0.28 0.31 0.32 0.32 0.33 0.33

Viscous parameters C 4.27 4.22 4.11 3.88 3.84 3.71 3.62 3.45 3.32 3.12
Viscous parameters P 6.2 × 109 8.4 × 105 1.4 × 104 1.3 × 103 257 80.2 41.5 30.3 21.3 31.1

According to the working conditions of hot stamping, high temperature and oxidation resistant
materials must be selected. Therefore, 5CrMnMo steel is chosen as the die material. Table 6 shows the
thermomechanical properties of the dye material. Table 7 depicts the specific heat capacity and heat
conductivity of the dye material under 20–900 ◦C [19].
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Table 6. Thermomechanical properties of the dye materials.

Material Density kg/m3 E/GPa Poisson’s Ratio Specific Heat Capacity J/(kg·K)

5CrMnMo 7800 210 0.286 382

Table 7. Specific heat capacity and heat conductivity of dye material under 20–900 ◦C.

Temperature (◦C) 20 100 200 300 400 500 600 700 800 900

Specific heat capacity
J/(kg · K)

380 388 417 448.6 481.8 528.6 540.2 542.2 540 540

Heat conductivity
W/(m · K)

62.6 83.3 84.2 74 67.13 - 57.68 - 48.21 -

In the parameter design of hot stamping simulation, the initial heating temperature of the sheet
and the preheating temperature of the dye should be set when the boundary condition parameters of
thermal analysis are defined. The preheating temperature of dye is 100 ◦C, and the initial temperatures
of the sheet are 750 ◦C, 800 ◦C, and 850 ◦C, respectively.

The friction coefficient between the sheet and the mold during the hot stamping is set to 0.15.
When the dye moves down, touches the sheet, and finally reaches the bottom dead center of the mold,
contact and heat transfer must occur between the mold and the sheet. When the initial temperature of
the sheet is different, the thermal contact parameters between the sheet and the mold must vary, and the
contact parameters at different temperatures can be determined according to known thermodynamic
conditions. Table 8 shows the thermal contact parameters at various temperatures.

Table 8. Thermal contact parameters at different temperatures.

Temperatures (◦C) 400 600 700 800 900

Thermal emissivity SBC 0.092 0.098 0.101 0.102 0.113
Heat conductivity W/(m · K) 72.32 70.23 71.45 71.70 72.21

3.2.3. Temperature Field Distribution

Figure 5a–c show that when the forming is completed, the areas with higher temperature are
mainly distributed at both ends of the part and that with lower temperature are distributed on the
sidewall. Meanwhile, the highest temperature is not substantially varied, and the difference in the
lowest temperature is apparent. The lowest temperatures of the formed parts at the end of processes 1,
2, and 3 are 385.3 ◦C, 444.1 ◦C, and 456.9 ◦C, respectively.
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3.2.4. Thickness Distribution

As shown in Figure 6a–c, the smallest thickness of the formed anti-collision beam is at the two
sides of the end, whereas the other parts have a more uniform thickness distribution. However, the
high temperature causes the material to be softened and the formability weakened. The maximum
thinning rates of the sheet at the end of processes 1, 2, and 3 are 18.7%, 26.7%, and 27.3%, respectively.
These findings show that the initial temperature of the sheet has a great influence on the thickness of
the final formed parts. The higher the initial temperature of the sheet, the greater the effect on the
material during the forming process, thus making the thinning of the sheet increasingly evident.
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4. Conclusions

(1) A theoretical model for the phase transformation of USIBOR® 1500 high-strength steel was
established. The initial phase transformation temperature of the high-strength steel phase was
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calculated, and the ferrite, pearlite, and bainite transformation kinetic curves and TTT curves
were plotted. An analysis of the curves showed that to ensure the martensite content of the final
part, the cooling rate of quenching must be kept over 27 ◦C/s.

(2) The law of phase transformation of USIBOR® 1500 high-strength steel during hot stamping was
studied by a simulation of the phase transformation process of the formed parts. For ensuring
enhanced martensite content at the end of the final quenching, the best choice for the initial
temperature of the sheet should be 850 ◦C.
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