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Abstract: This research analyzes the mechanical properties and fracture behavior of two cold work
tool steels: AISI “D2” and “O1”. Tool steels are an economical and efficient solution for manufacturers
due to their superior mechanical properties. Demand for tool steels is increasing yearly due to the
growth in transportation production around the world. Nevertheless, AISI “D2” and “O1” (locally
made) tool steels behave differently due to the varying content of their alloying elements. There is also
a lack of information regarding their mechanical properties and behavior. Therefore, this study aimed
to investigate the plasticity and ductile fracture behavior of “D2” and “O1” via several experimental
tests. The tool steels’ behavior under monotonic quasi-static tensile and compression tests was
analyzed. The results of the experimental work showed different plasticity behavior and ductile
fracture among the two tool steels. Before fracture, clear necking appeared on “O1” tool steel,
whereas no signs of necking occurred on “D2” tool steel. In addition, the fracture surface of “O1”
tool steel showed cup–cone fracture mode, and “D2” tool steel showed a flat surface fracture mode.
The dimple-like structures in scanning electron microscope (SEM) images revealed that both tool
steels had a ductile fracture mode.
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1. Introduction

In the machining and forming industry, tool steels were invented to increase manufacturing
economic efficiency due to their enhanced mechanical properties, such as high strength, wear resistance,
hardness, and toughness. Metal machining and forming are essential for metal part production in
many industries. The automotive industry, for example, has experienced an increase in car production,
which has led to an increase in the demand for tool steels. The same increase in demand has also
been experienced in other industries, such as aerospace, transport, and precision industries. The vast
increase in production has resulted in substantial growth in the metal forming industry, at a rate of 3%
to the year 2019 [1]. Tool steels are categorized into six classes: cold work, hot work, shock resisting,
mold, high speed, and special-purpose tool steels [2]. The most important class of all is cold work tool
steels. This research investigated two types of cold work tool steel that have a high content of carbon:
“D2” and “O1”. These metals are used for many types of cutting and punching tools and dies and
many other applications. They have high hardness, high wear resistance, and are inexpensive [3–5].
Previous studies have tested the two metals to determine their wearing properties and resistance,
with “O1” tool steel being found to have excellent machinability, whereas “D2” had better wearing
resistance [6–8].
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The oil-hardening “O1” cold work steel (UNS# T31501) is a low-cost metal that has high hardness
and wear resistance due to the high carbon content along with moderate levels of different elements,
such as chromium (Cr) and silicon (Si). The high content of Si alloy element increases machinability
and die life. In addition, the existence of tungsten (W) alloy element attains high abrasion resistance
and highly sharp cutting edges. Thus, this tool steel is used in surface finishing tools and woodworking
knives [3,9–11]. The high-carbon, high-chromium AISI “D2” cold work steel (UNS# T30402) is
particularly poor in terms of machinability and toughness. In the fabrication process, “D2” is highly
resistant to softening and wearing, with minimal microstructure distortion and high resistance to
cracking during metal formation and fabrication [12]. Therefore, in long-duration fabrication processes,
“D2” is preferable for manufacturers. In addition, “D2” tool steel is heavily used in piercing punches
and dies, forging operations, and trimming tools due to its high wear resistance [9,13–15]. Moreover,
it is generally known that “D2” tool steel is difficult to weld (nonweldable), and it is particularly hard
to attain a high-quality welded joint by conventional welding methods due to its high carbon content
and significant amount of carbides. A recent study [16] proposed a novel thixowelding technology for
joining “D2” steels with different joining temperatures, holding time, and postweld heat treatment
to investigate the joints’ mechanical and microstructural properties. The results demonstrated a
significant improvement in its tensile strength for heat- vs. non-heat-treated joints. Another study [17]
investigated the effect of post-tempering cryogenic treatment on the mechanical properties of “D2”
tool steel. The results showed an improvement in fracture toughness, reduction in residual stresses,
and no change in hardness and modulus values.

In the present study, the characteristics of mechanical properties are reported. Tensile strength,
compression strength, hardness, elongation at fracture, and reduction area at fracture in addition to
the plasticity and ductile fracture behavior of two tool steel metals—AISI “D2” and “O1”—under
monotonic loading conditions were investigated. Furthermore, fracture surfaces, dimensional stability,
and microstructure features were studied. Optical measurements and optical microscopic investigations
were also conducted.

2. Experimental Procedure

2.1. Sample Preparation

Two steel blocks of AISI “D2” and “O1” were purchased from an ASTM-certified local steel shop.
The specimens were cut from the two steel blocks and were subjected to hardening and tempering heat
treatment process. The tempering temperatures for “D2” and “O1” were 200 and 250 ◦C, respectively.
The fabrication and machining of the specimens were done in two different shapes: (a) smooth round
bar (Figure 1) and (b) cylindrical shape (Figure 2). The smooth round bar was designed for tensile tests,
whereas the cylindrical specimen was designed for compression tests. The shape and dimensions
of both specimens’ geometry are shown in mm in Figures 1 and 2. Note that the smooth round bar
and cylinder specimens of similar metals were machined from one steel block to ensure similarity in
properties. The number of repetitions of each test was two; hence, a total of two tensile tests and two
compression tests for each metal were carried out. The chemical compositions of AISI “D2” and “O1”
are shown in Table 1. In addition, the critical and austenization temperatures are listed in Table 2.

Table 1. Chemical composition of “D2” and “O1” tool steels in mass percent (%).

Metal Type C Mn Si Cr Mo W V Fe

“D2” 1.52 0.34 0.31 12.05 0.76 - 0.92 Balance.

“O1” 0.94 1.2 0.32 0.52 - 0.53 0.19 Balance.
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Table 2. Critical and austenization temperatures of “D2” and “O1” tool steels.

Metal Type Ac1 Ac3 Ar1 Ar3 Austenization Temperature

“D2” 788 ◦C 845 ◦C 769 ◦C 744 ◦C 1010–1024 ◦C

“O1” 732 ◦C 760 ◦C 703 ◦C 671 ◦C 802–816 ◦C
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2.2. Experiments

The load frame used was a servohydrolic testing machine manufactured by MTS systems
corporations®in Eden Prairie, MN, USA with a 100 kN loading cell of tension and compression force
limit. The tests were conducted at room temperature with a strain rate of 0.005 mm/s. The strain
reading was captured and recorded using an optical measurement system termed digital imaging
correlation (DIC) [18]. The DIC type was VIC-2D version 5 software made by Correlated Solutions
Inc®in Irmo, SC, USA. DIC requires specific preparation (painting the steel specimen) prior to testing
in order to provide sufficient contrast for the camera. The specimens were sprayed in white and
spackled in black to create a fine contrast for the DIC to capture the strain.

3. Results and Discussion

3.1. Tensile and Compression Tests

The engineering stress–strain flow performance (total elongation and tensile strength) of “D2”
and “O1” subjected to tensile tests at room temperature are shown in Figure 3. The yield strength of
“D2” and “O1” and other basic mechanical properties are listed in Table 3. The modulus of toughness
(tensile toughness), fracture strength, fracture length, fracture strain, and gauge length are all shown in
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Table 4. The differences in content of the alloying elements in “D2” and “O1” tool steels changed the
behavior of the stress–strain flow. For example, the higher ductility and toughness of “D2” over “O1”
tool steels were due to the high content of molybdenum (Mo), vanadium (V), and Cr. On the other
hand, the higher yield tensile strength and ultimate tensile strength (UTS) of “O1” compared to “D2”
tool steels were due to the increased content of tungsten and manganese (Mn). The “D2” steel behavior
under monotonic loading showed particularly high hardening and substantially low softening due
to the high content of Mo and Cr. The range of hardness for “O1” and “D2” steels was 56–58 and
60–62 HRC, respectively. Note that all data reported are the mean value of many testing points for
each specimen.Metals 2019, 9, x FOR PEER REVIEW 5 of 11 
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Table 3. Basic mechanical properties of "D2" and "O1" tool steels.

Specimen Modulus of Elasticity 0.2% Offset Yield Strength Yield Strength UTS

AISI “D2” 203 GPa 411 MPa 350 MPa 758 MPa

AISI “O1” 211 GPa 829 MPa 758 MPa 846 MPa

Table 4. Experimental tensile tests data summary of "D2" and "O1" tool steels.

Specimen Modulus of
Toughness

Fracture
Strength

Displacement
at Fracture

Gauge
Length

Fracture
Strain

Area
Reduction

AISI “D2” 81 MPa 723 MPa 0.61 mm 30 mm 1.97% 1.3%

AISI “O1” 68 MPa 703 MPa 0.35 mm 30 mm 1.09% 19.7%

In contrast, the “O1” steel behavior under monotonic loading showed a highly narrow strain
range during hardening (before UTS) and a higher range of strain in softening (beyond UTS). The high
amount of metal softening during the tensile strength was seen during the experimental test in the
form of necking before fracture. The compression stress–strain flow is shown in Figure 4. The cylinder
specimens were compressed to approximately −90 kN (load cell maximum capacity is ±100 kN) at a
strain rate of 0.005 mm/s while the strain flow was captured. The modulus of elasticity and compression
yield of “O1” steel was higher than “D2” steel. The compression plasticity flow, shown in Figure 4,
increased as the stresses increased due to the geometry change in the cylinder specimen.
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Another observation is related to the necking behavior of both tool steels. The significant necking
before fracture (Figure 5) of “O1” steel was represented in the form of softening beyond the UTS.
The calculated area reduction at fracture was almost 20%. However, “D2” tool steel showed almost no
necking prior to fracture (Figure 6).
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3.2. Fracture of Specimens

The “D2” tool steel specimen subjected to tensile loadings is shown in Figure 6. The images depict
the sequential deformation process as a result of the tensile loading process. The testing specimen
setting was set initially as in Figure 6(1). This image can be used as a reference for comparison.
The maximum elongation is shown in Figure 6(2), where necking prior to fracture can hardly be
seen. Based on the stress–strain curve of “O1” tool steel, shown in Figure 3, this type showed almost
no softening behavior post UTS point, which explains the negligible necking behavior during the
experiment. The crack initiated and instantly propagated toward the outer radius, similar to the “O1”
tool steel specimen (Figure 6(3)). The strain measurements an instant before fracture are shown in
Figure 6(4) with the use of DIC. DIC can also predict the crack initiation location. The crack initiation
location and propagation path prediction by DIC have previously been investigated and proven in
many studies. [19–22]. In the case of “O1” tool steel, Figure 6(4) shows high strain concentrations (in
red) that resulted in metal cracks and fracture (Figure 6(3)). The fracture location prediction agreed
with the experimental results. Finally, the failure mode showed a flat fracture surface (Figure 7). It is
recommended that the reader refer to [23,24] in order to understand why the fracture surface shape
differs from one metal to another.

Similarly, the “O1” tool steel specimen subjected to tensile tests is shown in Figure 5. The collection
of images in Figure 5 shows the deformation sequence during the loading process. Figure 5(1) shows
the specimen prepared for testing before any loading was applied. This figure can be used for
comparison and reference reasons. Figure 5(2) shows the specimen at its highest elongation capacity
without fracturing. This moment records the maximum necking (localized area reduction) of the
specimen. The necking occurred just before the crack initiated and instantly propagated toward the
outer radius, causing full specimen fracture (Figure 5(3)). The color contour plot in Figure 5(4) shows
the highest accumulation strain by the DIC just before the fracture occurred. The location of the
highest accumulation strain is at the center of the necking area, colored in red. The crack initiation and
propagation that appear in Figure 5(3) coincide with the high strain’s measurement location developed
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due to tensile loading in Figure 5(4). In both metals, the crack location prediction by DIC was in good
agreement with the experiment results. Finally, the failure mode of the fracture surface on “O1” tool
steel under tensile loading showed a cup–cone-like fracture pattern (Figure 8).

Metals 2019, 9, x FOR PEER REVIEW 7 of 11 

 

 

Figure 6. “D2” specimen under tension test. (1) Specimen before testing, (2) no necking prior to 

fracture, (3) specimen post fracture, and (4) the contour plot showing the Lagrange strain localization 

before fracture in red (maximum stain) and purple (minimum strain). 

  

Figure 7. A flat fracture mode surface for “D2” tool steel under tension (left) and flattened shape of 

the cylindrical specimen (right) under compression. 

  

Figure 7. A flat fracture mode surface for “D2” tool steel under tension (left) and flattened shape of the
cylindrical specimen (right) under compression.

Metals 2019, 9, x FOR PEER REVIEW 7 of 11 

 

 

Figure 6. “D2” specimen under tension test. (1) Specimen before testing, (2) no necking prior to 

fracture, (3) specimen post fracture, and (4) the contour plot showing the Lagrange strain localization 

before fracture in red (maximum stain) and purple (minimum strain). 

  

Figure 7. A flat fracture mode surface for “D2” tool steel under tension (left) and flattened shape of 

the cylindrical specimen (right) under compression. 
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3.3. Microstructure

The microstructure on the fractured surfaces of the “O1” specimens with a cup–cone shape and the
“D2” specimens with a flat shape were analyzed with different magnifications using a scanning electron
microscope (SEM) type JSM-7610FPlus Schottky Field Emission made by JOEL ltd. (Tokyo, Japan).
SEM analysis assists in determining the fracture mode for both tool steels [25]. The existence of the
parabolic dimple-like structures in the SEM images revealed that both tool steels had a ductile fracture
mode (Figure 9). However, for better analysis to assess the fracture mode and failure mechanism,
in-situ X-ray tomography can be performed [26–28].

A careful inspection of both tool steels showed some small differences. The surface fracture
morphology was rougher on the “D2” fractured surface compared to the “O1” fractured surface.
However, the average size of microvoids in the “O1” specimens was smaller compared to the features
in the “D2” specimens (Figure 10). Note that the average microvoid size increased as the hardness
decreased for both steels, as can be seen on the “O1” and “D2” fractured surfaces in Figure 11.
The SEM micrographs showed different microstructures when the two steel metals were compared.
The microvoids were deeper on “O1” and sharper on “D2”. The fracture surfaces of “O1” had smaller
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dimples with fewer cleavage planes compared to “D2” (Figure 11). This observation reasonably
explains the higher elongation in “D2” tool steel specimens.

Metals 2019, 9, x FOR PEER REVIEW 8 of 11 

Figure 8. A cup–cone mode fracture surface and clear necking for “O1” tool steel under tension (left) 

and flattened shape of the cylindrical specimen (right) under compression. 

Figure 9. SEM morphologies of fracture surfaces of “D2” (left) and “O1” (right) with ×1500 

magnification. 

Figure 9. SEM morphologies of fracture surfaces of “D2” (left) and “O1” (right) with ×1500 magnification.

Metals 2019, 9, x FOR PEER REVIEW 8 of 11 

 

Figure 8. A cup–cone mode fracture surface and clear necking for “O1” tool steel under tension (left) 

and flattened shape of the cylindrical specimen (right) under compression. 

3.3. Microstructure 

The microstructure on the fractured surfaces of the “O1” specimens with a cup–cone shape and 

the “D2” specimens with a flat shape were analyzed with different magnifications using a scanning 

electron microscope (SEM) type JSM-7610FPlus Schottky Field Emission made by JOEL ltd. (Tokyo, 

Japan). SEM analysis assists in determining the fracture mode for both tool steels [25]. The existence 

of the parabolic dimple-like structures in the SEM images revealed that both tool steels had a ductile 

fracture mode (Figure 9). However, for better analysis to assess the fracture mode and failure 

mechanism, in-situ X-ray tomography can be performed [26–28]. 

A careful inspection of both tool steels showed some small differences. The surface fracture 

morphology was rougher on the “D2” fractured surface compared to the “O1” fractured surface. 

However, the average size of microvoids in the “O1” specimens was smaller compared to the 

features in the “D2” specimens (Figure 10). Note that the average microvoid size increased as the 

hardness decreased for both steels, as can be seen on the “O1” and “D2” fractured surfaces in Figure 

11. The SEM micrographs showed different microstructures when the two steel metals were 

compared. The microvoids were deeper on “O1” and sharper on “D2”. The fracture surfaces of “O1” 

had smaller dimples with fewer cleavage planes compared to “D2” (Figure 11). This observation 

reasonably explains the higher elongation in “D2” tool steel specimens. 

  

Figure 9. SEM morphologies of fracture surfaces of “D2” (left) and “O1” (right) with ×1500 

magnification. 

  

Figure 10. SEM morphologies of fracture surfaces of “D2” (left) and “O1” (right) with×3500 magnification.

Metals 2019, 9, x FOR PEER REVIEW 9 of 11 

 

Figure 10. SEM morphologies of fracture surfaces of “D2” (left) and “O1” (right) with ×3500 

magnification. 

  

Figure 11. SEM morphologies of fracture surfaces of “D2” (left) and “O1” (right) with ×7500 

magnification. 

4. Conclusions 

In this research study, the plasticity and fracture behavior of two tool steels—AISI “D2” and 

“O1”—were investigated. The tool steels were purchased and fabricated locally, and the specimens 

were designed for two mechanical tests: tensile and compression. The results demonstrate that AISI 

“D2” is recommended for applications that require moderate toughness and dimensional stability. 

In contrast, AISI “O1” is more suitable for applications that require better machinability 

performance and an excellent combination of high hardness and toughness. The following points 

conclude the results of the research: 

1. The tensile yield strength of “O1” tool steel was higher than “D2” tool steel. 

2. The specimens of “O1” tool steel showed vivid necking prior to fracture with 19.7% area 

reduction, whereas the specimens of “D2” tool steel demonstrated no necking throughout the 

loading process (1.3% area reduction). 

3. The compression yield strength was higher for “O1” than for “D2” tool steel.  

4. The surface fracture for “O1” was cup–cone, whereas it was flat for “D2” tool steel. 

5. DIC was used to measure surface strains and predict cracks initiation location. The high 

localized strains identified in the DIC images pointed out where the cracks initiated. The crack 

initiation prediction was in good agreement with the results of the experiments for both tool 

steel types. 

6. The parabolic dimple-like structures in the SEM images revealed that both tool steels had a 

ductile fracture mode. 

7. The SEM images showed deeper microvoids on “O1” and sharper ones on “D2”. The fracture 

surfaces of “O1” had smaller dimples with less cleavage planes compared to “D2”. 

Funding: This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, 

Jeddah, under grant No. (DF-309-829-1441). The author, therefore, gratefully acknowledges the DSR technical 

and financial support. 

Conflicts of Interest: The authors declare no conflict of interest. 

Reference 

1. Toboła, D.; Brostow, W.; Czechowski, K.; Rusek, P. Improvement of wear resistance of some cold working 

tool steels. Wear 2017, 382, 29–39. 

Figure 11. SEM morphologies of fracture surfaces of “D2” (left) and “O1” (right) with×7500 magnification.
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4. Conclusions

In this research study, the plasticity and fracture behavior of two tool steels—AISI “D2” and
“O1”—were investigated. The tool steels were purchased and fabricated locally, and the specimens
were designed for two mechanical tests: tensile and compression. The results demonstrate that AISI
“D2” is recommended for applications that require moderate toughness and dimensional stability.
In contrast, AISI “O1” is more suitable for applications that require better machinability performance
and an excellent combination of high hardness and toughness. The following points conclude the
results of the research:

1. The tensile yield strength of “O1” tool steel was higher than “D2” tool steel.
2. The specimens of “O1” tool steel showed vivid necking prior to fracture with 19.7% area reduction,

whereas the specimens of “D2” tool steel demonstrated no necking throughout the loading
process (1.3% area reduction).

3. The compression yield strength was higher for “O1” than for “D2” tool steel.
4. The surface fracture for “O1” was cup–cone, whereas it was flat for “D2” tool steel.
5. DIC was used to measure surface strains and predict cracks initiation location. The high localized

strains identified in the DIC images pointed out where the cracks initiated. The crack initiation
prediction was in good agreement with the results of the experiments for both tool steel types.

6. The parabolic dimple-like structures in the SEM images revealed that both tool steels had a ductile
fracture mode.

7. The SEM images showed deeper microvoids on “O1” and sharper ones on “D2”. The fracture
surfaces of “O1” had smaller dimples with less cleavage planes compared to “D2”.
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