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Abstract: Multivariate analytical models are quite successful in explaining one or more response
variables, based on one or more independent variables. However, they do not reflect the connections
of conditional dependence between the variables that explain the model. Otherwise, due to their
qualitative and quantitative nature, Bayesian networks allow us to easily visualize the probabilistic
relationships between variables of interest, as well as make inferences as a prediction of specific
evidence (partial or impartial), diagnosis and decision-making. The current work develops stochastic
modeling of the leaching phase in piles by generating a Bayesian network that describes the
ore recovery with independent variables, after analyzing the uncertainty of the response to the
sensitization of the input variables. These models allow us to recognize the relations of dependence
and causality between the sampled variables and can estimate the output against the lack of evidence.
The network setting shows that the variables that have the most significant impact on recovery are the
time, the heap height and the superficial velocity of the leaching flow, while the validation is given by
the low measurements of the error statistics and the normality test of residuals. Finally, probabilistic
networks are unique tools to determine and internalize the risk or uncertainty present in the input
variables, due to their ability to generate estimates of recovery based upon partial knowledge of the
operational variables.

Keywords: Bayesian networks; uncertainty analysis; stochastic process modelling; heap leaching

1. Introduction

Copper mining is a constantly growing industry [1], and in countries like Chile, this industry
represents 10% of the gross national product (GNP) [2], while approximately 19.7 million tons are
produced annually worldwide [3]. Among the copper ores on the planet, the vast majority correspond
to sulfured minerals, and a smaller amount to oxidized minerals [4], which is why flotation techniques
and smelting processes are used to process these minerals, and to a lesser extent hydrometallurgical
techniques [5]. However, flotation techniques generate a large amount of waste, resulting in tailings
and the generation of acid drainage by the oxidation of minerals with a high presence of pyrite [4,6].
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On the other hand, pyrometallurgical processes produce high emissions of sulfur dioxide (5O;),
which together with NOy and CO,, can cause major problems, such as acid rain and increased
local pollution [5]. So, hydrometallurgy is a good alternative to process both oxidized minerals and
sulfurized minerals, since it is more environmentally friendly [5,7,8].

During the last 50 years, heap leaching processes were a very attractive technological option
for the treatment of low grade minerals, allowing the economic exploitation of marginal deposits,
often in remote locations in many parts of the world [9]. They are applied to previously crushed
minerals in crushers, where the copper (Cu) present in the mineralized rock is extracted by the mixture
between water and leaching agents [10]. This process is performed in leaching piles, where its typical
height is between 4 to 10 m, although in some cases they can reach 18 m [11]. It can be applied for
oxidized copper ores of low to medium grades (0.3-0.7%) as well as secondary copper sulfides. In
heap leaching, larger sizes generally range between 10 and 40 mm, where sizes less than 6 mm are
unacceptable, because they affect the permeability of the pile, especially if there are clayey minerals
that result in a greater obstruction of heaps over time, due to swelling and gradual decrepitation.
The leaching solution is distributed on top of the heap by sprinklers or drip emitters and then flows
down through the heap under gravity. The volumetric flows of the typical solution vary between 4
and 20 L/(h x m2) [9]. Finally, cupric ions (Cu?*) are obtained together with other ions of elements
dissolved in the pregnant liquid solution (PLS), which ions all advance to the subsequent stage of
solvent extraction [12].

In the present investigation, the modeling of the copper heap leaching process is proposed
using a stochastic approach through bayesian networks (BN), which considers both the distributions
of the independent variables and the conditioned distributions of the response variable to the
independent variables, in addition to the conditional relationships between the independent variables.
The generation of this type of model allows investigation of the effects of the variables or input
factors on one or more output variables through intentional changes, which are used to identify the
conditions of the process and its components that affect the extraction behavior, in order to identify
the configuration of factors that have a greater conditional dependence on the response variable. On
the other hand, the modeling of this type of processes, in addition to being efficient in predicting the
response variable, is robust to the lack of evidence; that is, they have the capacity to estimate recovery
under conditions of lack of evidence or lack of knowledge, or more independent variables.

2. Materials and Methods

2.1. Machine Learning

Machine Learning is related to the creation of computer programs or algorithms which
automatically improve and/or adapt their performance through experience. Machine learning has many
things in common with other domains, such as statistics and probability theory (understanding of the
phenomena that have generated the data), data mining (finding patterns in data that are understandable
to people) and cognitive sciences (human learning aims to understand the mechanisms that underlie
the various learning behaviors exhibited by people, such as concept learning, skill acquisition, strategy
change, etc.) [13]. The objective of machine learning is to devise learning algorithms that automatically
learn without human intervention or assistance, generating methods by which the computer creates its
own program based on the examples we provide [14].

As part of the exploration and understanding of a process, ways of quantifying the events
associated with its variables are sought. Depending on their complexity, these events could be
associated with a single variable or multiple of them, and often follow an orderly, sequential evolution
that could converge in one or more patterns that reflect, and sometimes determine, their behavior.



Metals 2019, 9, 1198 30f15

2.2. Data-Based Modeling in Mineral Processing

Machine learning and artificial intelligence techniques have a growing presence and impact in
a wide variety of research fields. McCoy and Auret [15] develop a review of the state of machine
learning applications in mineral processing. Data-based modeling methods in the mineral processing
literature are frequently applied as “soft sensors” for the prediction of variables measured infrequently
(or difficult to measure), based on variables measured frequently [16-18]. Some applications include
the prediction of indicators of the grinding phase, determining the chemical properties that have a
greater impact on the milling capacity indices by configuring an artificial neural network [19,20] or a
regression of support vectors [21], Martin et al. [22]. On the other hand, they apply Random Forest
(RF) for the prediction of the Hardgrove Grindability Index (HGI) based on a wide range of Kentucky
coal samples.

Modeling applications to predict mill performance indicators based on process measurements,
include the use of multivariate statistical methods such as partial least squares (PLS) and radial-based
neural networks (RBF), demonstrating that the density of mill pulp and ball loading volume can be
estimated reliably from different operational characteristics [23]. Ahmadzadeh and Lundberg [24], on
the other hand, developed a method that predicts the remaining lifespan of a mill’s lining without
stopping it, by modeling an artificial neural network capable of recognizing the complex relationships
between inputs and departures. The results obtained by Ahmadzadeh and Lundberg [24] show a
remarkably high degree of correlation between the input and output variables. The performance of the
neural network model is very consistent for the data used for training and testing.

Other studies show the application of machine learning techniques to the prediction of flotation
performance indicators based on process measurements. Jahedsaravani et al. [25] analyzed and
modeled the relationship between flotation process conditions and foam characteristics through
the use of neural networks. Similar to the study developed by Jahedsaravani et al., Massinaei
and Doostmohammadi [26] studied the relationship between gas dispersion in a flotation cell and
flotation speed using artificial neural network (ANN) techniques and statistics (nonlinear regression).
Nakhaei et al. [27], investigates the prognosis of metallurgical performance (grade and recovery) of the
flotation column of the pilot plant using artificial neural networks (ANN) and multivariable nonlinear
regression (MNLR).

However, most of these neural networks applied to the modeling of mineral processes have
to be relatively small, often with only a hidden layer due to computer or data limitations. Recent
developments in the design and training of deep and complex neural networks have not been
demonstrated in the literature on mineral processing. Comparisons between neural networks and
methods such as linear or nonlinear regression have not confirmed a significant benefit of neural
networks compared to simpler methods [26,27].

Wang et al. [28], developed another work that implements an interesting adaptive modeling
application, where multiple neural networks are used to predict foam properties based on the
measurements of input or feed parameters. As machine learning techniques become increasingly
accessible as part of software packages, data-based modeling applications are likely to become more
common and make use of more advanced techniques and analysis. In particular, techniques for
modeling the dynamics of complex processes may be of interest, since most applications currently
assume that observations are independent [15].

2.3. Bayesian Networks

The Bayesian networks model is a phenomenon through a set of variables with dependency
relationships between them. In this model, Bayesian inference can estimate the subsequent probability
of the unknown variables based on the known variables. These models can have different applications
for classification, prediction, diagnosis, etc. In addition, they can give interesting information, as to
how the domain variables are related, which can sometimes be interpreted as cause-effect relationships.
A Bayesian network is therefore a device of representation destined to organize knowledge about a
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particular situation in a coherent whole. The Bayesian network is a graphical modeling tool to specify
probability distributions [29].

Bayesian networks provide a graphical representation for a set of random variables and for
the relationships between them. The structure of the network makes it possible to specify the joint
probability function of these variables as the product of conditional probability functions, usually
simpler ones. BN are probabilistic, multivariate models that relate a set of random variables through a
directed graph that explicitly indicates causal influence and this is thanks to its probability update
engine, Bayes’ Theorem [30]. Bayesian networks are an extremely useful tool in estimating probabilities
to new evidence. A Bayesian network is, therefore, a type of causal network.

Then, defining the fundamentals of Bayesian networks, given a vector of random variables
X : (x1,...,xn), ajoint probability measure is defined (Equation (1)):

Pr:dom(X) — [0,1] (1)

where dom(X) = dom(xq) X ... x dom(x,). If the joint probability is known, it is possible to calculate
any probability on the variables x1, ..., x,. Then the following propositions are defined: Rule of total
probability (Equation (2)) and rule of marginalization (Equation (3)).

Pr(X,Y
Pr(X|Y) = % @)
Pr(A) = Z Pr(A, B;), Bisjoint, | | B; = 3)
iel iel

Then the theorem shown in Equation (2) shows a simple but powerful relationship between
conditional probabilities, which will be the basis of Bayesian network theory.

Pr(X = x‘C =¢)xPr(C=c¢)

Pr(C=(X=x)= Pr(X =) 4)
where,
Pr(C = C‘X =x): Later (5)
Pr(X = x|C =) : verisimilitude 6)
Pr(C=c): Prior @)
Pr(X = x) : Evidence (8)

Now, considering the independence between the factors, the two random variables are independent
if and only if the conditions of Equation (9) are met, or the condition of Equation (10) is met if the
existence of evidence is considered.

Vx,yPr(X=xY =y) =Pr(X=x)xPr(Y =y) )

Pr(X,Y|E) = Pr(X|E) x Pr(Y|E) (10)

If, on the contrary, X and Y are independent, Pr(X|Y) = Pr(X) o Pr(X|Y,E) = Pr(X|E). The
independence between variables allows a reduction in the complexity of the joint probability function,

and instead of modeling a single function, we separate them into simpler parts.

Then, assuming that you have the data of the form (Xj, ..., X, C), where C is the class variable,
and you are looking to predict the value of the class (xy,...,x7), a probabilistic approach will assign
the most probable class (Equation (11)), which is:

¢ = arg max Pr(C = c|X; = x1,..., Xy = xp) (11)
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Then, if Bayes’ Theorem is applied, the following is obtained (Equation (12)):

Pr(Xy =x1,..., Xy = xn|C =) xPr(C=c¢)
Pr(Xy =x1,..., X0 = xp)

¢ = arg max, (12)

However, for the purpose of estimating the output, the expected value of mineral recovery
through the product between the outputs and their conditional probabilities is considered, as shown in
Equation (13).

E[Y(DIX] = Y yi(t) X P(yi(H)IX), Vt (13)
i=1

where X represents the set of independent variables influencing the response variable in different
degrees, and y; corresponds to a possible state of recovery in a given time ¢.

If the existence of certain independent variables is unknown, the expected value of the probability
of each value of the response variable is considered conditional on the evidence of the n -k independent
variables known and the conditional distributions of the k independent variables unknown, as shown
in Equation (14).

n
EIY(O|Xuakd = Y i (8) X P(yil X A Ly, %2, -, ), VE (14)
i=1
It should be noted that the expected value of the k variables whose evidence is unknown may
or may not be conditioned on the other n — 1 independent variables, which is the 1 variables whose
evidence is known and the conditional distributions of the k — 1 variables whose evidence is unknown.

2.4. Uncertainty Analysis

The uncertainty analysis (UA) corresponds to determine the uncertainty in the output variables
as a result of the uncertainty in the input variables [31]. The UA is generally performed using the
probability theory [32], where uncertainty is represented by the probability distribution functions
(PDFs), and which can be done in four steps. First, the type of PDF and the magnitude of the uncertainty
for each input variable is determined. In other words, the uncertainty of entry is characterized. Then,
for each input variable, a sample of the PDF is generated. Third, the values of the output variables are
determined for each element of the sample. Finally, the results are analyzed using graphs, descriptive
statistics and statistical tests to characterize the behavior of the output variables.

When the input variables have epistemic uncertainties, the uncertainty can be represented by a
uniform distribution. Design and operation variables present this type of uncertainty. When the input
variables have stochastic uncertainties, the normal distribution is generally used to represent this type
of uncertainty [33].

3. Results and Discussion

The results are ordered into three subsections: The results of the UA, which address the UA in the
response variable at 30, 60 and 90 days of leaching; the modeling results of the copper recovery from
the heap leaching process through the Bayesian networks, in addition to the conditional relationships
between the independent variables and the recovery, and the conditional dependence between the
independent variables, together with the degree of strength of the dependencies (reflected in the arcs
that connect the nodes of the network). Finally, the effectiveness of the Bayesian network is studied as
a tool to model the productive process of heap leaching, by calculating the indicators of goodness of
adjustment mean absolute deviation (MAD), mean squared error (MSE) and mean absolute percentage
error (MAPE), together with tests of the normality of the residues when evaluating the value expected
response to changes in input variables and ignorance of one or more independent variables.
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3.1. Analysis of Uncertainty

Equation (14) indicates that copper recovery depends on the operational variables” sampled
time, particle radius, pile height, particle porosity, surface velocity of the leaching flow and effective
diffusivity of the solute through the pores of the particle.

A good distribution function to represent epistemic uncertainties is the uniform PDF, taking the
values of x1,x2, ..., X, as the central tendency values of the parameters p1,py, ..., pn, respectively. The
sensitivity analysis was analyzed three times for the occasions of 30, 60 and 90 days of leaching. The
results are shown in Figures 1-3, respectively.

Figures 1-3 show that the leaching time affects the kinetic uncertainty of the battery leaching phase.
Histograms show that uncertainty in the input variables produces greater uncertainty in recovery
after 30 days compared to uncertainty after 60 days, in addition to greater uncertainty after 60 days
compared to sampling after 90 days leaching.

The normal probability plot (Figure 1b) indicates that when the leaching time is equal to 30
days, the recovery presents a normal PDF with a standard deviation of 1.75 and an average of 54.89%
recovery, while when the leaching time is 60 days (Figure 2b), the recovery presents a normal PDF with
an average of 57.53% and a deviation of 1.03.

Probability Plot
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v
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Figure 1. Uncertainly analysis at 30 days of leaching, copper recovery distribution (a) and normal

probability plot (b).
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Figure 2. Uncertainly analysis at 60 days of leaching, copper recovery distribution (a) and normal
probability plot (b).
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Figure 3. Uncertainly analysis at 90 days of leaching, copper recovery distribution (a) and normal

probability plot (b).

On the other hand, the normal probability plot indicates that when the leaching time is equal to
90 days, the recovery has a tail that moves away from normal behavior. These results show that the
Bayesian network can estimate the expected recovery of copper from heap leaching, considering a
wide range of the uncertainties of independent variables. The change in the recovery behavior as a
function of the time factor is because the recovery tends to present asymptotic behavior at high values
of the time factor. It is evident that regardless of the value of the other independent variables, the
deviation of the long-term recovery is less than at lower levels of the time factor.

3.2. Bayesian Network Modeling

The analysis of the behavior or dynamics of battery leaching involves a complex and
multidimensional system in an environment, in which there is regularly uncertainty and the lack
or absence of certain risk factors involved in the problem. The modeling made possible through
probability distributions amid uncertainties, provided by the BN-based models, becomes appropriate
to model the recovery of copper, considering that it allows one to deduce hypotheses and establish the
relationships between the explanatory factors of the response variable. However, risk is a changing
fact when it comes to time (among other aspects), and modeling through BNs satisfies this logic, since
it stimulates stochastic processes [34].

The parameters’ leaching time, pile height, particle size, surface velocity of the leaching flow
through the bed, effective diffusivity of the solute within the pores of the particle and the porosity
of particle, were considered for the generation of the Bayesian network, information obtained from
operational data from a mine in the Antofagasta region, Chile (data provided by the national mining
company, Antofagasta, Chile, ENAMI, by its acronym in Spanish). The minimum, maximum and
average values of the variables considered are presented in Table 1.

Table 1. Summary of minimum, average and maximum values of the operational data.

Variable/Value Minimum Average Maximum

Leaching time (days) 30 - 90

Pile height (cm) 300 600 900

Particle size (mm) 14 20 34

Surface velocity of the leaching flow 10 30 50

through the bed (cm3/cm?-d)
Effective diffusivity of the solute within

the pores of the particle (cm?/cm-d) 0.05 0-10 0-15
Porosity of the particle (%) 1.0 35 6.0

Developing the Bayesian network in GeNle software (version 2.3) [35], the a priori structure of the
network is given by Figure 4, where it is possible to appreciate that copper recovery is conditionally
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dependent upon all the variables considered in the sampling. Looking at the arches of the Bayesian
network of Figure 4, they have a different thickness, indicating the force of influence between the nodes
of the network. Strength of influence is always calculated from the total conditional probability (TCP)
of the child node, and essentially expresses some form of distance between the various conditional
probability distributions over the child node conditional on the states of the parent node; that is,
the greater the thickness of the arc, the greater the conditional dependence between the nodes. The
distance function that is used for the generation of the Bayesian network is the Euclidean function.

Effective diffusivity
of the solute within
the particle pores

Superficial
velocity of

lixiviant flow,
[]

Particle
porosity

Copper recovery

Radius
particle

Figure 4. Bayesian network for copper heap leaching process.

Once the network structure is identified, the probabilistic and computational calculations make
the inference of the quantitative parameters of the model, with a possible interaction of the theoretical
knowledge of the experts on the risk scenario that involves a specific problem, with the establishment
of relationships that theoretically influence the response variable. Therefore, for the construction of
analytical models using BN, prior subjective knowledge is required, which is also associated with
the fact that the algebra of Bayesian analysis is more complex than classical analysis, especially in
multidimensional problems.

Analyzing the network of Figure 4, it is necessary that the class variable “Copper recovery” is
conditionally dependent on the independent variables considered in the sampling. However, for the
set of sampled values, there is no conditional dependence between the variables that explains the
answer. Then, incorporating a priori knowledge of the dynamics of the process handled by the authors
(dependence relationships), the expected recovery following a stochastic approach should be modeled
as shown in Figure 5.

Developing an analysis of influences of the nodes that show conditional dependence, prior to
the establishment of relationships generated based on a priori knowledge managed by the system,
the arcs that have a greater conditional dependence are time-copper recovery, heap height-recovery
and superficial velocity of the leaching flow-recovery. Analyzing the Bayesian network outputs, the
increase in the height and size of the typical commercial heap has not occurred simply as a result of
economic efficiency but is also a function of the available surface area [9]. One of the factors that most
influences the kinetics of the process is the percolation rate, which is directly related to the height of
the pile and the permeability of the pile [12]. While time is a factor that greatly influences in copper
recovery percentage from conventional leaching stacks, the current laws have made other technologies
not profitable, since they require greater comminution or temperature [12].

For this reason, it works with long operating times, which may vary depending on the material to
be worked and the recovery standards that the mining company is looking for.
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Effective diffusivity
of the solute within
the particle pores

Superficial
velocity of

lixiviant ﬂow

Particle
porosity

Radius
particle

Figure 5. Bayesian network for copper heap leaching process incorporating a priori knowledge.

On the other hand, the factors that have a marginal effect are the effective diffusivity of the solute
within the pores of the particle and the size and porosity of particle. The influence force is always
calculated from the total conditional probability (TCP) of the secondary node and essentially expresses
some form of distance between the various distributions of conditional probability over the secondary
node, conditioned on the states of the primary node.

The total probability distributions identified by the Bayesian network are presented in Figure 6,
where it can be seen that the stack height and particle size factors tend to be distributed normally
(Figure 6a,b), while the surface velocity of the leaching flow (Figure 6c¢), the effective diffusivity of the
solute through the pores of the particle (Figure 6d) and the porosity of the particle (Figure 6e) can be
adjusted to a uniform continuous distribution. It is assumed that the time factor, as it is an operational
sampling data, is uniform discrete, with a priori known values.

200

150

100

85 90 0.85 090 095 100 105 110 115 120
High Pile (m) Particle Size (cm)

(a) (b)
100
80
60
40
20

20 Pl 30 33 40 45 50 0.06 0.08 010 012 014
Surface velocity of the leaching flow through the bed (cm¥cm?-d) Effective diffusivity of the solute within the pores of the particle (cm?*/cm-d)
(9 (d)

Figure 6. Cont.
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100

1 2 3 4 5 6
Porosity of the particle (%)

(e)

Figure 6. Distributions of independent variables high pile (a), particle size (b), surface velocity of the
leaching flow through the bed (c), effective diffusivity of the solute within the pores of the particle (d) y
porosity of the particle (e).

Then, the effectiveness of the Bayesian network is evaluated to estimate copper recovery
considering a priori knowledge of the sampled parameters. The ability to predict the recovery
is based on the knowledge of the n variables of interest, or the expected value of the response variable
is calculated based on the underlying distributions of the independent variables unknown, while the
dynamics of the recovery based on each of the independent variables is presented in Figure 7.
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Figure 7. Cont.
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(e) ()

Figure 7. Copper recovery based on leaching time (a), particle size (b), pile high (c), superficial velocity
of lixiviant flow (d), effective diffusivity of the solute within particle pores (e) and porosity of particle (f).

3.3. Bayesian Network Validation

Finally, the effectiveness of the Bayesian network is evaluated to estimate copper recovery
considering a priori knowledge of the parameters considered in its generation. The ability to predict
recovery is based upon the knowledge of the n variables of interest, otherwise the expected value of
the response variable is calculated conditioned on the underlying distributions of the independent
variables, which in turn are conditioned on the evidence of the other independent variables already
known. Then, the independent variables are sensitized, in order to estimate the expected recovery of
ore, according to the stochastic model shown in Equation (14).

Estimating the recovery of copper through the Bayesian network adjusted with operational data
from a copper mine considering as evidence the n independent variables, and analyzing the contrast
between the outputs of the network and the operational results, as shown in Figure 8a, The Bayesian
network presents a good fit to the operational data, and the goodness of fit statistics shown in Table 2
validate it.

1 —— Operational Fit Curve
BN Fit Curve el
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o
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Figure 8. Operational fit curve versus Bayesian networks outputs (a) and Normal Probability Graph
E[Y()|X,] (b).

Table 2. Statistics of the analytical model of leaching of marine nodules.

Model/Statistic MAD MSE MAPE
BN 1.32%x 1073 294x107° 249x 1074
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On the other hand, Figure 8b shows that the assumption of the normality of the residues obtained
from the contrast between the expected value of the network output and the operational data is reached,
making the p-value of the test greater than the level of significance (p > 0.05), which indicates that the
mathematical model is relatively accurate in representing the experimental design, although some
points away from the line imply a distribution with outliers.

Analyzing the outputs of Bayesian networks over time and the variables defined by the nodes
that represent the other independent variables, the expected value of the response is based on the
evidence and the conditional distribution of the variable whose evidence is unknown. The expected
recovery value obtained by the network is adjusted to the operational data, which is validated with the
statistic p (p > 0.05), as shown in Figure 9.
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Figure 9. Normal Probability Graph E [Y(t)|Xn_1 N\ E[x]], x: particle porosity (a), velocity of lixiviant
flow (b), particle size (c), effective diffusivity of solute within particle pores (d) and porosity of
particle (e).

The analysis of the residues between the experimental values and the expected recovery values
generated by the network that excludes the knowledge of the porosity variables (Figure 9a) and the
superficial velocity of the leaching flow (Figure 9b) do not present a normal adjustment, which together
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with high values of the goodness of fit indicators presented in Table 3 ratify the importance of both
variables in the response.

Table 3. Statistics of the analytical model of leaching of marine nodules.

Model/Statistic MAD MSE MAPE

E[Y (t)[Xa-1 A E[x : Pile high]] 0.237 0.073 0.234

E[Y(t)[Xn-1 A E[x : Velocity of lixiviant flow]] 0.241 0.092 0.252

E[Y(t)|Xn_1 N E[x : particle size]] 1.32x1073 8.64x1073 0.109
E[Y(t)[Xn_1 A E[x : effective diffusivity]] 3.92 x 1072 9.85x 1074 419%x1073
E[Y(t)[Xa-1 A E[x : porosity]] 431%x1072 3.78 x 107> 2.93x 1073

In the opposite case, the residuals of the variables particle size (Figure 9c¢), effective diffusivity of
the solute within the pores of the particle (Figure 9d) and porosity of the particle (Figure 9e) tend to
have a normal adjustment (p = 0.05), indicating that these variables do not have a significant impact
on recovery.

Following the example of Saldafia et al. [10], the generated stochastic model can be incorporated into
a simulation framework that can quantify the benefits derived from the incorporation of probabilistic
models in estimating the expected value of mineral recovery, or it could have the potential to include it
in a system of support for decision making in the mining industry, as presented in Saldafa et al. [36].

4. Conclusions and Future Works

4.1. Conclusions

Probabilistic networks have become unique tools to determine and internalize the risk or
uncertainty present in the input variables, and the importance of these is due to the ability to provide
data for monitoring, as new information is added or removed from its structure, and also, for incorporate
various hypotheses. Therefore, one of the main benefits of the Bayesian approach is the ability to
incorporate prior information to quantify uncertainties and verify the legitimacy of the propositions.

Based on the above, it can be concluded that the behavior of the classification algorithms based
on Bayesian networks presents satisfactory results in general terms, since the error obtained in the
classification is minimal, which is validated by the normalization statistics of adjustment and the
normality of the residuals distribution.

The construction of the Bayesian network model to analyze the dynamics of the leaching process
has the potential to contribute to:

1.  Identifying the dependency relationships between independent variables and the response
variable, in addition to dependency relationships between independent variables.

2. Determining the variables that contribute most to explain the variability of the response.

3.  Assimilating quantitative knowledge in terms of the frequency of the occurrence of a given event
(or level of recovery), using the parameters obtained by the BN, which will allow the identification
of recurrent scenarios.

4. The generation of copper recovery estimates based on partial knowledge of the operational
variables considered in the study.

Finally, the variables that have a greater conditional dependence on the response variable are
the time (mainly), the height of the stack and the superficial velocity of the leaching flow, while the
variables that have a less significant impact are particle size, the porosity of the particle and the effective
diffusivity of the solute within the pores of the particle.
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4.2. Future Works

To further advance the operational investigation of leaching processes through a stochastic
approach, sensitization of the variables of interest through a global sensitivity analysis are being
considered. In addition, there is the incorporation into the stochastic model of the variability of the
teeding of the productive process, and this will be through the generation of geostatistical models that
relate the mineralogical content of the mine with the planning of extraction.
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