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Abstract: In this study, gas metal arc welding (GMAW) was used to construct a thin wall structure in
a layer-by-layer fashion using an AWS ER70S-6 electrode wire with the help of a robot. The Charpy
impact test was performed after extracting samples in directions both parallel and perpendicular
to the deposition direction. In this study, multiple factors related to the resulting absorbed energy
have been discussed. Despite being a layered structure, homogeneous behavior with acceptable
deviation was observed in the microstructure, hardness, and fracture toughness of the structure in
both directions. The fracture is extremely ductile with a dimpled fibrous surface and secondary
cracks. An estimate for fracture toughness based on Charpy impact absorbed energy is also given.

Keywords: Charpy impact test; GMAW; additive manufacturing; secondary cracks

1. Introduction

Additive manufacturing can be used to create a near-net shape for complex parts using the
layer-by-layer deposition method. Powder or wire is melted using different energy sources, including
electron beam, laser beam, or electric arc [1–3]. Integrated machinery, such as computer numerical
control gantries or robots, can be used to create parts using wire and arc additive manufacturing.
The mechanical properties of the manufactured materials generally depend on the welding parameters
selected—they have been shown to have better properties than casted materials [4,5]. Researchers have
studied different techniques for the process, including conventional gas tungsten arc welding (GTAW),
gas metal arc welding (GMAW), and cold metal transfer (CMT) [6,7]. This includes studies on topology,
build-up geometry, and material properties of structures made by these methods [8,9]. Comprehensive
studies have been conducted on defects in microstructure and methods to improve them by controlling
deposition strategies and incorporating ancillary processes for quality enhancement [10–12]. A lot
of research is being carried out to control problems related to GMAW-based additive manufacturing,
including dimension control at the start and end of the weld bead [13,14]. The height difference at
the extreme ends is significant for multi-layer single-pass manufacturing, where the height difference
is exaggerated with each layer being deposited, terminating the welding process [15]. Different
techniques have been used to control the welding parameters and attain a maximum effective area in
the resulting structure [13,16]. The resulting structure has different mechanical and material properties
owing to the heat cycles of multiple layer depositions [17].

While studies have been conducted on mechanical properties, including tensile strength and
hardness of materials created by additive manufacturing, little work can be found on the impact
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toughness of these materials. Toughness is an important characteristic that can help study the ability
to absorb energy as well as the ductile or brittle behavior of the structure [18]. Toughness may or
may not be anisotropic, based on the welding process, microstructure, and grain size [19,20]. Charpy
impact testing is one of the most common methods to measure impact toughness. According to a study,
the scatter might be lesser at room temperature, as compared to lower temperatures [21].

The results from the Charpy impact test should be studied in more depth, along with the
microstructure and fracture analysis of the test specimens, to validate the absorbed impact energy [22].
As the fractography recognizes the mechanism of material failure, the behavior of crack propagation
can identify the reasons for higher or lower energy absorbed by the ductile or brittle material. Ductile
fractures have a dimpled surface due to tearing of the material and plastic deformation, while brittle
fractures are evident from cleavage facets and almost no plastic deformation [23]. Moreover, in the
case of ductile fracture, secondary cracks depict the indication of crack deflection with the absorption
of more energy, resulting in better toughness [24].

This research focuses on the impact toughness of components made by GMAW and the possible
factors responsible for the absorbed energy. The microstructure of the specimens is discussed, along
with the fractography of the specimens, after impact testing. The deformation of the broken samples
and intrinsic toughening mechanism are discussed in relation to the absorbed energy. An estimate of
fracture toughness is also presented.

2. Method and Experiment

A thin wall was constructed by robot-assisted GMAW after controlling the welding parameters
at the onset and end of the weld bead. The onset of the weld bead will be referred to as arc-striking,
the end will be termed as arc-extinguishing, and the central part will be referred to as the steady stage;
a schematic diagram is given in Figure 1. Low carbon steel electrode wire ER70S-6 with a diameter of
1.2 mm has been used to carry out the experiments with the following composition (Table 1).

Table 1. Typical chemical composition for electrode wire ER70S-6 (weight percentage).

Elements C Mn Si S P Ni Cr Mo V Cu Fe

wt. % 0.1 1.56 0.88 0.012 0.011 0.01 0.02 <0.01 <0.01 0.24 Bal.

The welding parameters have been controlled on the basis of welding energy profile optimization
for uniform height throughout the weld bead. The travel speed is reduced as the weld bead approaches
a steady stage to control the bulging shape at the arc-striking region. The decreasing slope at the
arc-extinguishing area is controlled by reducing all of the parameters, including current, voltage, and
travel speed. In the current study, the samples were extracted from the steady stage with constant
welding energy of 660 J/mm and a two-minute delay before deposition of subsequent layers to prevent
the process from terminating due to pool flow. This part of the deposition offers equilibrium in
terms of height of the deposition and heat dissipation. The details of the same can be found in
published literature mentioned in [16]. Deposition parameters for the steady stage part of the layer
after equilibrium are provided in Table 2.

Table 2. Deposition parameters for the steady stage part of the layer.

Parameters Current Voltage Welding Energy Travel Speed

Value (units) 120 (A) 19 (V) 660 (J/mm) 3.5 (mm/s)

Absorbed energy was obtained at room temperature using an automatic impact testing machine
JBS-300 (Jinan Kehui Testing Instrument Co., Ltd., Jinan, China) with a maximum capacity of 300 J,
as shown in Figure 2. The pre-lift angle was 150◦, while the impact velocity was 5.2 m/s. The Brinell
hardness test was performed using Huayin 320HBS-3000 (Laizhou Huayin Testing Company Limited,
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Laizhou, China) to check the macro hardness of the specimens. Optical microscopy was carried out
using OLYMPUS GX-71 (Olympus Corporation, Tokyo, Japan), while scanning electron microscopy and
fractography was conducted using TESCAN VEGA (Oxford Instruments Technology, Beijing, China).
X-ray diffraction (XRD) was performed using X’Pert PRO (PANalytical, Eindhoven, Netherlands) with
a copper anode and generator settings of 40 mA and 40 KV.
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The samples were obtained in directions both parallel to the deposition (hereafter referred to as
horizontal) and perpendicular to the deposition (hereafter referred to as vertical). Due to the limitation
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of the available thickness of the thin wall structure, sub-size samples were extracted with dimensions of
55 × 10 × 5 mm3 in accordance with the specifications mentioned in standard test methods for notched
bar impact testing of metallic materials [25]. Eight samples were extracted in both horizontal and
vertical directions. The extracted sample, along with the impact direction used, is shown in Figure 3.
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3. Results and Discussion

Absorbed energy results for both horizontal and vertical samples are given in Figure 4, along with
a comparison of absorbed energy of steel with similar carbon content (i.e., 0.11% C) [26]. The values
for the absorbed energy have been normalized for the full-size sample. The explanation for the
normalizing is provided later in the article. The average value for horizontal specimens (X1 to X8) is
approximately 189 J, while it is approximately 202 J for the vertical specimens (Y1 to Y8).
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Various methods can be adopted to increase the strength of materials, including cold work
hardening, precipitate or dispersion hardening, and grain refinement [27]. Strengthening is identified
by obstruction in lattice dislocations in all the cases. However, cold working and precipitation hardening
increase the brittleness of the material, while grain refinement has a different effect that enhances
ductility in terms of percentage elongation [28]. The pre- and post-heat effect of each layer being
welded results in the refinement of the grains, causing a higher percentage elongation. The amount
of energy absorbed is comparable to the upper shelf absorbed energy of ferritic structure from the
reference [26], portraying the material’s ability to undergo a large amount of plastic deformation, hence
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good ductility. Grain structure is depicted in Figure 5 for different directions and magnification levels.
Although the structure of the grains is similar within the layer and between the two successive layers,
a difference in size can be observed, as shown in Figure 5a. Higher magnification images are presented
in Figure 5b,c for the intralayer and interlayer microstructures, respectively. The same difference is also
visible in SEM images in Figure 6a,b. Histogram for a part of each SEM image is given in Figure 6c,d
for intralayer and interlayer grain diameter, respectively. As the samples have been taken from the
steady stage area where equilibrium has been achieved, the grain structure is mostly ferritic equiaxed,
as shown in Figure 5. The average grain size number was found to be 10.5, calculated following ASTM
standard E112 [29].
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Although hardness varies in direct proportion to the carbon content, fine grain size results in
higher values of hardness [30]. The average hardness value of horizontal samples is approximately
149 BHN with a standard deviation of 1.35, while it is approximately 148.7 BHN with a standard
deviation of 0.71 for vertical samples, as shown in Figure 7. Values are comparable to steel with similar
carbon content.
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Low carbon steel with a uniform microstructure is considered to have better toughness because of
its ferritic structure. High carbon steel with a martensitic structure has more brittle sites, providing
lesser resistance to crack propagation [31,32]. However, in this case, a uniform microstructure with a
mostly ferritic structure proves to be a hindrance to dislocations in all directions, resulting in a slanted
fracture in each plane, as shown in Figure 8. This slanted plane was identical in both the horizontal and
vertical specimens, proving that the structure is uniform in both directions with decent penetration of
each layer into the subsequent one.
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The energy absorbed by the material in the plastic region is of importance, especially for structural
steel; thus, maximum strength can be estimated by observing deformation ability before the final
fracture in the inelastic region. Figure 9 shows the amount of deformation that each sample has
undergone before the final fracture. Regardless of deposition direction, each sample has been deformed
in a similar fashion with quite a large deformation before failure. This t includes lateral expansion of
the specimen, which has been normalized for the sub-size sample (Figure 10). Average values for the
horizontal and vertical specimens are approximately 46% and 51%, respectively.
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The deformation behavior with an almost 45◦ fracture plane depicts shear stress that exceeds
the shear strength of the structure, resulting in plastic yielding. The fibrous appearance and large
deformation before fracture, along with the shear plane fracture, point towards the pure ductile fracture.
The specimens had to be separated after being closed once at the hinges, according to instructions
set by standard test methods for notched bar impact testing of metallic materials ASTM E23-07a [25].
There was no cleavage in the broken specimen; thus, it is considered a pure shear fracture, according to
the mentioned standard. The coalescence of voids results in the development of a shear lip, which
is responsible for a higher upper shelf energy fracture. Fractography of the specimens displays a
dimpled surface with a fibrous fracture, as shown in Figure 11. Generally, brittle fracture in carbon
steel is initiated by martensitic sites; however, the microstructure shown in Figure 5 shows that the
structure obtained in this case is equiaxed and mostly ferritic. The fractography depicts pure ductile
behavior, the reason why the results have been normalized by a factor of two, as presented in Figure 4.
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The X-ray diffraction analysis supports the presence of a ferritic structure with mostly pure iron
in the central part of the constructed wall, as shown in Figure 12. The trace elements were mostly
evaporated or dragged to the extreme ends of the wall. In this kind of fully ferritic structure, microvoid
nucleations generate at the grain boundary and deep equiaxed dimples are formed [33].
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Figure 12. XRD pattern.

Another important factor responsible for the high absorbed energy is the formation of secondary
cracks. The creation and motion of dislocations in the crystal lattice are responsible for the plastic
deformation. The material dissipates energy during the dislocation movements and crack tip dislocation
nucleation leads to intrinsic ductility [34]. The secondary cracks might also have been generated
due to the stacked layers, which act as a crack divider, as depicted in Figure 13. This delamination
phenomenon can occur even without a substantial difference between the interlayer and intralayer
microstructures [35].
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As the fracture was purely in the upper shelf region and was ductile in nature, fracture toughness
can be estimated using the relation [36,37]:

KIC = 0.804 σys (CVN/σys − 0.0098)0.5 (1)

where KIC is the fracture toughness in MPa·m1/2, σys is the yield strength in MPa, and CVN is the
Charpy impact absorbed energy in J. Using the average yield strength (330 MPa) of the structure
from [16], the fracture toughness was found to be approximately 199 MPa·m1/2 and 206 MPa·m1/2 for
the horizontal and vertical specimens, respectively.

4. Conclusion

This study presents an analysis to explain the different factors related to the Charpy impact energy
absorbed by a structure made by GMAW additive manufacturing. The average absorbed energy in
the horizontal and vertical direction was found to be 189 J and 202 J, respectively. The difference in
the amount of energy in both directions is not substantial, which is also in conformance with the
observed microstructure. The microstructure was found to be mostly equiaxed with a grain size
number of about 10.5. The broken samples exhibit a large amount of deformation in all directions,
thus absorbing a high amount of energy. Fractography of the broken samples reveals a highly fibrous
fracture with dimples, suggesting a pure ductile fracture. The generation of secondary cracks is also
indicative of high absorbed energy. As the fracture is in the upper shelf region, the estimated value for
fracture toughness was calculated to be 199 MPa·m1/2 and 206 MPa·m1/2 for the horizontal and vertical
specimens, respectively.
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