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Abstract: As an effective method for the fabrication of miniature metallic parts, the development
of micro-forming process (MFP) is still restricted by the existence of size effect. To improve the
micro-forming performance of metal material, ultrasonic vibration assisted MFP had been studied
extensively for its superiorities in improving materials flow stress and reducing interfacial friction.
However, from the literature available, the high frequency vibration was usually found to be
superimposed on the forming tool while seldom on the workpiece. Our group developed a special
porous sonotrode platform which can realize tool vibration and workpiece ultrasonic vibration
independently. In this work, ultrasonic micro-extrusion experiments for copper T2 material under
tool vibration and the workpiece vibration condition, respectively, were conducted for comparing the
micro-forming characteristic of different vibration modes. The micro-extrusion experiment results
of copper T2 show that the lower extrusion flow stress, the higher micro-extrusion formability and
surface micro-hardness, and more obvious grain refinement phenomenon can be obtained under the
workpiece vibration condition compared with that of tool vibration. These findings may enhance our
understanding on different ultrasonic forming mechanisms and energy transmission efficiency under
two different vibration modes.

Keywords: copper T2; ultrasonic vibration mode; micro-extrusion; tool vibration; workpiece vibration;
energy transmission

1. Introduction

Micro-forming process (MFP) has attracted extensive attention in the manufacturing of micro
metallic parts, which has been widely applied in aerospace, micro-electromechanical systems,
medical science and other fields [1,2]. However, the development micro-plastic forming technology
is still restricted by the existence of size effect which resulting the poor micro-forming performance.
In recent years, many researchers have found that the superposition of ultrasonic vibration on MFP
was an effective way to change the interfacial friction condition, reduce the forming force and surface
roughness during the micro-forming process.

Hu et al. studied the ultrasonic micro compression process of pure aluminum with a dynamic
impact effect [3]. Lou et al. investigated ultrasonic micro-extrusion formability of the ZK60 magnesium
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at room temperature [4]. Yao et al. studied the effects of superimposing high-frequency vibration on
the micro upsetting of aluminum [5]. Hung et al. applied ultrasonic vibration to the micro-upsetting
of brass alloy [6]. Bai and Yang introduced vibration-assisted micro-forging to improve the surface
finishing of metal foils [7]. From the literature available, we found that the ultrasonic vibration in MFP
was mostly superposed on the forming tool, which was usually integrated designed with the ultrasonic
system. On the other hand, it was shown that the ultrasonic vibration of workpiece could also change
the plastic forming properties of material and generate an ultrasonic softening effect on the whole
material during the plastic forming process [8]. Yusof Daud et al. studied ultrasonic compression tests
of aluminum with workpiece vibration by double slotted block horn and inverted ultrasonic system [9].
Cristina Bunget realized an ultrasonic micro-extrusion process with workpiece vibration by special
designed inverted ultrasonic supporting system [10]. Similar special designed inverted ultrasonic
supporting systems were also applied in ultrasonic tension [11] and ultrasonic compression [12,13]
processes with workpiece vibration. It could be found that the ultrasonic vibration was more difficult
to be superimposed on the workpiece vibration comparing with the tool vibration, which was usually
applied with special designed ultrasonic system and supporting system. This is mainly because the
vibration characteristics of ultrasonic system should be easily affected by the random weight and shape
of the workpiece, while the fixed structure of forming tool could be easily applied with ultrasonic
resonant vibration.

However, far little attention has been paid on the different ultrasonic forming mechanism between
tool vibration and workpiece vibration, which is important to give full play to the advantages of
ultrasonic vibration in MFP. In this paper, a self-developed porous block sonotrode system was
used to realize ultrasonic resonant vibration with tool or workpiece without any more modification
on extrusion equipment. Furthermore, the ultrasonic micro-extrusion process of copper T2 under
tool vibration and workpiece vibration were studied respectively to investigate the micro-forming
mechanism of different ultrasonic vibration modes. The micro-formability, micro-extrusion stress-strain
characteristics, micro-hardness and grain refinement property of material were analyzed to evaluate
the different ultrasonic forming performance.

2. Materials and Methods

2.1. Experimental Set-Up

To analyze the ultrasonic micro-forming characteristics of different ultrasonic vibration modes,
the ultrasonic vibration of micro-forming tool or workpiece would better be superimposed with the
same ultrasonic system. To fit for this special requirement, a self-developed 19.5 kHz ultrasonic
vibration system was designed to excite the tool or workpiece respectively [14,15]. The ultrasonic
vibration system included a TJS-3000 ultrasonic generator, two YP5020-4D ultrasonic transducers,
two step ultrasonic horns (which were all from Hangzhou Successful Ultrasonic Equipment Co. Ltd,
Hangzhou, China), and a special self-developed porous sonotrode. The porous sonotrode could
transfer the horizontal input vibration of ultrasonic transducers to vertical output vibrations, and the
tool or workpiece could make vertical ultrasonic resonant vibration with the porous sonotrode (shown
in Figure 1).

Based on the 19.5 kHz ultrasonic vibration system, a 10 kN ultrasonic-assisted plastic forming
press machine had also been developed to match the flexible realization of ultrasonic tool vibration or
workpiece vibration, as shown in Figure 2 [16]. When the micro-forming tool was fixed on the central
of porous sonotrode, the ultrasonic vibration system could be set up on the top board of the machine
and the ultrasonic MFP with tool vibration could be realized (shown in Figure 2a). On the other
hand, when the workpiece and micro-forming mold were fixed on the central of porous sonotrode,
the ultrasonic vibration system could be set up on the lower platen of the machine and the ultrasonic
MFP with workpiece vibration could also be realized (shown in Figure 2b).
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Figure 2. The scheme diagram of ultrasonic plastic forming press machine with different
vibration modes.

2.2. Specimens and Mold

T2 copper specimens were used in micro-extrusion experiments. The T2 copper wire with 1.5 mm
diameter was firstly prepared by heat treatment processes under different temperatures to obtain
different initial grain sizes L (L represents the grain size), such as L = 21, 147 and 230 µm, as shown
in Figure 3. Then the copper wire was polished and sectioned into φ 1.2 mm × 1.2 mm cylindrical
specimens. Furthermore, the split micro-extrusion molds were designed and manufactured with φ
0.5 mm V-shaped cone extrusion section to reflect micro-extrusion characteristic of whole extrusion
process, as shown in Figure 4a,b. In addition, the simulated ultrasonic vibration modals (mold or
tool supported by the ultrasonic vibration system) are shown in Figure 4c,d. It is clear that resonant
frequency of the ultrasonic vibration system fluctuated from 19,091 Hz to 19,345 Hz with different
loadings of tool and mold, which is within the working range of ultrasonic generation and without
any adjustment of ultrasonic system.
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modals(c,d).

2.3. Experimental Procedure

During the experiments, the vertical ultrasonic resonant vibration of tools or workpieces was
realized by screwing the micro-extrusion tool or the mold together with the center of the porous
sonotrode respectively. The copper specimen was placed in the mold and pre-compressed between the
tool and mold under 200 N to ensure the contact between tool and workpiece and finally reach a stable
ultrasonic vibration state before the ultrasonic generator was turned on. Then the micro-extrusion
tool continued to press down for another 1 mm distance and complete the ultrasonic micro-extrusion
process. The ultrasonic power outputs of ultrasonic generator were set from 0, 35%, 65% to 95%,
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while the corresponding ultrasonic vibration amplitudes of the forming tool were 0, 3.5 µm, 5.5 µm
and 9.2 µm, and the corresponding ultrasonic vibration amplitudes of mold were 0, 2.5 µm, 5.0 µm
and 8 µm respectively. Ultrasonic vibration amplitudes of tool and mold were measured by LK-H020
laser measuring instrument of Keyence, Japan. A series of static and ultrasonic micro-extrusion
experiments under different ultrasonic vibration modes were performed with a constant extrusion
speed of 0.2 mm/min under dry surface condition. The influence of vibration modes, ultrasonic
power output and grain size of copper T2 was studied in the micro-extrusion processes. After the
experiment, the copper specimens were observed by OLYMPUS-BX61 (OLYMPUS, Beijing, China)
electron microscopy and tested by using HV-1000A micro-hardness tester of Laizhou Huayin Test
Instrument Co. LTD, Laizhou, China.

3. Results

3.1. Effect of Ultrasonic Power Output and Vibration Modes

The results of true stress and true strain of different ultrasonic power outputs and different
vibration modes are shown in Figure 5; Figure 6. Take the specimen with 21 µm grain for example,
the true stress of micro-extrusion decreased with the increase of ultrasonic power output on the whole.
When the output of ultrasonic power increased to 95%, a maximum reduction of 42.63% and 48.05%
was reached, respectively, under tool vibration and workpiece vibration (as shown in Figure 5a,b).
Furthermore, the maximum true stress of workpiece vibration was 9.46% lower than that of tool
vibration when the ultrasonic power output reached 95% (shown in Figure 6a). Similar trends can be
also found in other specimens with grain sizes of 147 µm and 230 µm (as shown in Figures 5c–f and 6b,c)

On the other hand, the results of micro extrusion length under different ultrasonic power outputs
and different vibration modes are shown in Figures 7 and 8. It appears that the micro-extrusion lengths
increased with the increasing ultrasonic power output (shown in Figure 8a,b), where in ∆H (Increment
of extrusion length basing on the static extrusion length, as shown in Figure 7) of 21 µm specimen is
1.74 mm under tool vibration and 2.48 mm under workpiece vibration respectively when the ultrasonic
power output is increased to 95% (as shown in Figure 7a,b). It also means that the micro-extrusion
length of workpiece vibration is 42.53% longer than that of tool vibration with the 95% ultrasonic
power output (shown in Figure 8c). Figures 7c–f and 8d,e also show the similar trends about 147 µm
and 230 µm specimen.
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3.2. Effect of Copper Grain Size

The results of true stress and true strain and the micro-extrusion lengths of specimen with different
grain sizes are shown in Figures 9 and 10. From the figures, we can find that there are marked
rise-fall trends both for true stress and micro-extrusion length with grain size increasing under all
extrusion conditions including tool vibration, workpiece vibration and static extrusion. For example,
the maximum true stress of static extrusion increases from 1367.77 MPa to 1500.71 MPa and then
reduced to 1467.98 MPa when the initial copper specimen grain size increases from 21 µm to 147 µm
and 230 µm (as shown in Figure 9g). Meanwhile, the micro-extrusion lengths appears with an obvious
shape of V in Figure 10d,e, wherein the extrusion length of 95% workpiece vibration reduces from
2.48 mm to 2.31 mm and then increases to 2.73 mm when the initial copper specimen grain size increases
from 21 µm to 147 µm and 230 µm. Therefore, the copper specimen with grain size L = 147 µm can take
a maximum true stress and take a minimum extrusion length under all extrusion conditions including
tool vibration, workpiece vibration and static extrusion. The significant size effect phenomena of
different grain sizes are appeared to affect the micro-extrusion ability of copper T2.
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3.3. Microstructure Properties of Different Vibration Modes

Microscopic microstructure and micro-hardness on the cross section of extruded copper specimen
with different grain sizes are shown in Figures 11 and 12. According to the results, there are many
broken fine-grains appeared near grain boundaries with 95% tool vibration and 95% workpiece
vibration, where the grain size of broken crystals was smaller than that of static extrusion for all three
initial grain sizes. In addition, there are more broken crystals appearing with workpiece vibration
mode than that with tool vibration mode (shown in the areas with red circles in Figure 11a–i). On the
other hand, the micro-hardness of the copper specimen cross section also increased with the increasing
of ultrasonic power output with both tool and workpiece vibration modes, wherein the micro-hardness
with workpiece vibration is small lightly higher than that of tool vibration (shown in Figure 12a–c).
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3.4. Discussions

3.4.1. Ultrasonic Softening Effect

It is clear from the above experimental results that the ultrasonic workpiece vibration mode
can get more improvement to the micro-extrusion properties of T2 copper specimen than the tool
vibration mode with the increasing ultrasonic power output, whether on reducing micro-extrusion
stress, extending micro-extrusion length, refining the grain size of crystals and enhancing the
micro-hardness. These phenomena could be explained with ultrasonic softening effect and ultrasonic
energy transmission capacity.

Referring to the researches on ultrasonic micro plastic forming process with tool vibration
mode [17,18], the effect of ultrasonic tool vibration on metal plastic deformation can be explained by
stress superposition, acoustic softening and friction decrease. Furthermore, the model for predicting
reduction of yield stress under the excitation of ultrasonic tool vibration can be supposed as follows:

∆σs = ∆σt + ∆σp + ∆σ f (1)

where ∆σs is the total reduction of yield stress, ∆σt is the yield reduction due to acoustic softening,
∆σp is the yield reduction due to stress superposition, ∆σf is the yield reduction due to friction decrease.

The stress reduction due to acoustic softening ∆σt can be expressed as [18]:

∆σt = −βMτ̂(E/τ̂)m (2)

where β and m are parameters to be determined in experiments, M is the Taylor factor, τ̂ is the
mechanical threshold of material, E is the acoustic energy density, can be expressed as follows [18]:

E = αtξt
2ωt

2ρt = ξw
2ωw

2ρw (3)

αt = 4ρtctρwcw/(ρtct + ρwcw)
2 (4)

where ρt and ρw are the material density of tool and workpiece, ct and cw are the wave speed for tool
and workpiece, αt is the energy transmission coefficient between different materials, ξt, ξw and ωt, ωw

are vibration amplitude and angular frequency of too and workpiece respectively.
According to the Equations (2)–(4), it is clear that the energy transmission coefficientαt of ultrasonic

tool vibration mode is usually less than one, in which the ultrasonic energy transmitted and absorbed
by workpiece should be less than the ultrasonic energy output of tool. Some energy must be lost during
the transmission process. In this paper, the copper specimen was excited by different modes (tool
vibration mode and workpiece vibration mode). In the tool vibration mode, the end face of extrusion
tool touched the upper surface of cylindrical copper specimen by high-frequency tapping, the energy
transmission process of which is similar to the condition of Equations (2)–(4). On the other hand,
in the workpiece vibration mode, the workpiece vibrates as a whole with the extrusion mold under
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the pre-pressure action and make active high-frequency impact with the extrusion tool. So it can be
concluded that the energy transmission coefficient αw between extrusion mold and copper specimen
should be infinitely close to one and obvious greater than the energy transmission coefficient αt of
ultrasonic tool vibration mode. Therefore, the ultrasonic energy absorbed by specimen in workpiece
vibration mode should be higher than that in tool vibration mode, which means the workpiece vibration
mode can get stronger ultrasonic softening effect than the tool vibration mode by higher ultrasonic
energy transmission capacity. As for the ∆σp and ∆σf, the stress superposition and friction decrease
effect in the micro-extrusion process between tool and specimen are at the same condition whether in
tool vibration mode or in workpiece vibration mode. Therefore, the different total reduction of yield
stress ∆σs between tool vibration mode and workpiece vibration mode mainly come from the different
yield reduction of acoustic softening.

The stronger ultrasonic softening effect can explain the phenomenon of the lower micro-extrusion
stress and larger micro-extrusion length of workpiece vibration mode comparing with tool vibration
mode. On the other hand, with the increasing of ultrasonic power output, the tool or workpiece
vibration amplitude will be increased at the same time under different ultrasonic vibration modes,
which also means higher ultrasonic energy. Therefore, the higher ultrasonic softening effect can be
generated with high ultrasonic power output, which can also explain the phenomena of maximum
reduction of stress and longest extrusion length with 95% ultrasonic power output in Figures 6–8.
As for grain refining and micro-hardness improvement, it can also be explained with the higher
percentage absorption of ultrasonic energy in workpiece vibration mode, the higher ultrasonic energy
can enhance the grain refining process and get higher micro-hardness.

3.4.2. Grain Size Effect

Experiment results also show that both the micro-extrusion true stress and the micro-extrusion
length (EL) tend to increase first and then decrease with the increasing of grain sizes, which can be
explained by the V type hole micro extrusion forming model in Figure 13. The diameter of V type hole
is varying from 0.5 mm to 0.4 mm. The extrusion forming factor D/L (D is the extrusion diameter and L
is the grain size) is designed to represent the number of grains in deformation zone. When L = 21 µm,
the value of D/L is 19.0–23.8. When S increases to 147 µm and 230 µm, the value of D/L reduces to
2.72–3.40 and 1.74–2.17.
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Figure 13. Schematic diagram of V type hole micro extrusion forming models with different
extruded grains.

According to the Hall-Petch equation: σy = σ0 + kL − 1/2 (σy is yield stress, k is material constant
and L is everage grain size), the deformation resistance should be greater with the grain size is smaller.
In this paper, when L is 21 µm and D/L is 19.0–23.8, the micro-extrusion process can be regarded
as a multi-grain homogeneous deformation process (shown in Figure 13a). When L is increased to
147 µm and D/L is 2.72–3.40, the number of grains in deformation zone is only about 3 (shown in
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Figure 13b). The micro-inhomogeneity of copper sample will bring the inhomogeneous deformation
increment of grain interior and grain boundary. Therefore, the grains in soft orientation decrease and
the deformation coordination among grains becomes much more difficult, the stress concentration
and the resistance of micro-extrusion deformation increase greatly. When L is 230 µm and D/L is
1.74–2.17, the micro-extrusion process is close to single crystal deformation (shown in Figure 13c).
Very small number of grains will increase the proportion of surface grains and the constraint and grain
boundary strengthening effect of which are smaller than that of inner grains. In this case, the blocking
effect of grain boundary and dislocation is greatly reduced, while the deformation resistance of grains
can also decrease, and the additional ultrasonic energy is enough to make copper material get better
micro-extrusion characteristic [19]. In a word, when the number of forming grains in deformation
zone reduces to about three, the ultrasonic micro-extrusion process becomes difficult with the grain
size effect of micro-forming. When the number of forming grains in deformation zone is about two,
the micro-forming size effect of T2 copper material can be improved with assisted ultrasonic vibration,
while the higher ultrasonic energy of workpiece vibration mode can get greater micro-forming ability
than the tool vibration mode.

4. Conclusions

In this paper, the ultrasonic vibration of tool and workpiece was applied by a self-developed
ultrasonic vibration system and press machine and the micro-extrusion characteristic of copper T2 was
studied with different ultrasonic vibration modes. The conclusions are as follows:

1. The ultrasonic vibration system and plastic forming press machine with porous sonotrode realized
micro-extrusion process with ultrasonic vibration of tool or workpiece, respectively.

2. The ultrasonic micro extrusion process with the workpiece vibration mode had better ultrasonic
energy transmission and absorption capacity, which made the micro forming characteristics of
copper T2 better than that of tool vibration mode.

3. The ultrasonic vibration assisted energy helped to improve the grain size effect on double crystal
scale micro-extrusion process of copper T2, in which the workpiece vibration mode usually
obtained better micro-forming ability than that of tool vibration mode.
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