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Abstract: Processing maps embody a supportive tool for the optimization of hot forming processes.
In the present work, based on the dynamic material model, the processing maps of 10CrMo9-10
low-alloy steel were assembled with the use of two flow curve datasets. The first one was obtained
on the basis of uniaxial hot compression tests in a temperature range of 1073–1523 K and a strain
rate range of 0.1–100 s−1. This experimental dataset was subsequently approximated by means of an
artificial neural network approach. Based on this approximation, the second dataset was calculated.
An important finding was that the additional dataset contributed significantly to improving the
informative ability of the assembled processing maps in terms of revealing potentially inappropriate
forming conditions.
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1. Introduction

Since the end of the 20th century, processing maps, i.e., power dissipation maps superimposed by
flow instability maps, have been extensively studied as a very convenient tool for the optimization of
hot forming processes, such as rolling, forging, etc. [1–18]. These maps simply display the combinations
of thermomechanical conditions, i.e., strain, strain rate, and deformation temperature, which are
suitable for the forming processes of an examined material. At the same time, they also define the
conditions that are less appropriate or even entirely inappropriate [3,13]. In the last two decades,
processing maps have been utilized for the study of various materials. For instance, Łyszkowski and
Bystrzycki [3] assembled processing maps of an Fe3Al intermetallic alloy. Quan et al. [4] utilized
processing maps to find the optimal working parameters of as-extruded 42CrMo high-strength steel.
Gao et al. [5] utilized processing maps to study the hot-working behavior of high-carbon/low-carbon
steel composites. Liu et al. [18] were able to create processing maps for an Fe-11Mn-10Al-0.9C duplex
low-density steel susceptible to κ-carbides. Saxena et al. [6] compiled power dissipation and flow
instability maps of a Zr-2.5Nb zirconium alloy, while Duan et al. [14] developed processing maps
for a Pb-Mg-10Al-0.5B alloy. Various other steels and alloys have also been studied on the basis of
processing maps, e.g., austenitic heat-resistant stainless steel (Zhou et al. [7]), Ni-based superalloy
(Zhang et al. [9]), Cu–Cr–Zr–Nd alloy (Zhang et al. [11]), NiTiNb shape memory alloy (Wang at al. [15]),
nanoalumina composite (Suresh et al. [8]), etc. Sonnek and Petruželka [2] created power dissipation
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and flow instability maps of R7 HSLA steel. They subsequently implemented these maps into a finite
element method (FEM) simulation of rail wheel forging.

In the case of materials intended for use in forming, processing maps are assembled on the basis
of flow curve datasets, where each flow curve embodies the flow stress development of the studied
material under specific thermomechanical conditions [19]. Such datasets are usually obtained by
means of torsion or uniaxial compression testing, which is performed in the supposed interval of
thermomechanical forming conditions. However, for the creation of processing maps of a TC21 titanium
alloy, Zhang et al. [17] were also able to utilize a tensile test dataset. Quan et al. [13] further suggested
that a limited number of tested combinations may be the reason for the inferior informative ability of
compiled processing maps as compilations are based on datapoint interpolation. For this reason, they
proposed to expand an experimental dataset with a set of flow curves predicted at nonexperimental
conditions. They utilized this approach in the case of as-extruded 7075 aluminum alloy.

Approximation and subsequent prediction of an experimental flow curve dataset can be performed
via derived flow stress models (an index of different models can be found in [20]). Nevertheless,
in recent times, this approximation issue has often been solved utilizing artificial neural networks
(ANNs), which allow a higher curve fit accuracy [13,19,21–24]. The ANN approach is part of a
wide family of biology-inspired mathematical techniques that are intended to solve complicated
scientific and engineering tasks, e.g., highly nonlinear approximation issues [25]. These mathematical
approaches have been found to be very useful in various applications (see e.g., [26–28]).

In the present work, the processing maps of 10CrMo9-10 low-alloy steel were assembled by
combining two flow curve datasets. The first one was obtained on the basis of uniaxial hot compression
tests, while the second one was the result of approximation and prediction via a well-adapted multilayer
feed-forward artificial neural network. The main aim of this research was to evaluate the influence of
the additional (predicted) flow curve dataset on improving the informative possibilities of the compiled
processing maps. The research was mainly aimed at the detection of potentially unstable regions,
which point to possibly aggravated forming conditions.

2. Materials and Methods

2.1. Experimental Procedure

Samples of the investigated 10CrMo9-10 low-alloy steel (Table 1) were taken from the columnar
crystal area of a continuously casted bloom (cross Section 205 mm) parallelly to the casting direction.
Cylindrical hot compression test samples with a diameter of 10 mm and a height of 15 mm were then
prepared by cutting and turning. The prepared samples were subsequently subjected to a uniaxial
hot compression testing on a HDS-20 hot deformation simulator (Dynamic Systems Inc., Poestenkill,
NY, USA) with the Hydrawedge II testing module (Gleeble system [29]). The tests were carried out
at deformation temperature levels of 1073, 1223, 1373, and 1523 K and strain rate levels of 0.1, 1, 10,
and 100 s−1 when the value of true (logarithmic) height strain was reaching up to 1.0. Each sample
was heated by means of direct electric resistance heating directly up to the deformation temperature
with a heating rate of 5 K·s−1, then followed a dwell time of 180 s. The temperature was controlled
by a pair of thermocouple wires of K-type, i.e., Ni–Cr (+) and Ni–Al (−), which were welded to the
surface of the tested samples in their middle length. The testing procedure was run under vacuum in
order to eliminate oxidation processes. This was achieved via a rotary and diffusion pump. Tantalum
foils and nickel-based grease were applied in order to reduce friction on the anvils–sample interface.
The described testing procedure resulted in a set of 16 experimental flow curves.

Table 1. Chemical composition of the investigated 10CrMo9-10 steel in wt %.

C Cr Mo Mn Si

0.092 2.1 0.93 0.5 0.24
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2.2. Approximation of the Experimental Flow Curve Dataset

The experimentally obtained flow curve datasets were approximated and subsequently extended
on the basis of prediction at three nonexperimentally tested temperature levels—1148, 1298, and
1448 K—for each tested strain rate (i.e., 12 additional curves were assembled).

The approximation procedure was performed utilizing an ANN approach [30–32]. The possibility
of approximating experimentally obtained flow curve datasets via AAN has been studied many times
as a suitable substitute for the commonly used flow stress models. Various ANN methodologies
have been proposed, and studies have been performed on different steels and alloys. All these works
have proven that ANN approaches have a positive influence on the accuracy of flow curve dataset
approximation, and it is therefore appropriate to use them [13,19,21–24].

In order to approximate the experimental flow curve dataset of the examined steel, a multilayer
feed-forward ANN was assembled, as shown in the general scheme in Figure 1. The vectors of the
independent variables were connected with the vector of the dependent variable via a multilayer
network of artificial neurons. Neurons of the hidden and output layers represented the main
computational units [32]. Each of these neurons was characterized by a weighted sum, Σ, which was
transferred into the neuron output, a, via a specific transfer function, f [33]. The neuron communication
was mediated via synaptic weights, w. The w-values and the bias values, b, simply represented the
material constants of the ANN model. A detailed mathematical description of the utilized ANN is
available in [32].
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Figure 1. General scheme of the utilized artificial neural network (ANN) architecture.

In order to determine a proper ANN architecture, i.e., appropriate number of hidden layers,
hidden neurons, and suitable transfer functions, the adaptation procedure was applied. During this
process, various network architectures were tested with regard to the approximation accuracy of the
experimental dataset and the response ability beyond the experimental conditions (i.e., prediction
capability). The tested architectures were always trained to obtain the optimal set of w and b values,
i.e., to minimize a mean squared error [34], MSE (MPa2) [13]:

min
w,b

MSE =
1
n
·

∑n

i=1
(ri)

2 (1)

where the value of ri (MPa) corresponds to the i-th residuum of the network output with i = [1, n]
⊂
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; n is the number of involved datapoints. Based on previous experiences [19], the minimization
procedure was performed via the Levenberg–Marquardt algorithm [35–37] in combination with
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Bayesian regularization [38,39] and the use of back-propagation of error signal to the neurons of the
hidden layers [40]. For the purpose of network training, the experimental dataset was divided into
three parts: training set (containing the datapoints subjected to minimization algorithm), validation
set (intended to verify the prediction capability during network training), and testing set (to test the
prediction accuracy after the training procedure). The validation set (1373 K/0.1 s−1, 1223 K/10 s−1, and
1073 K/1 s−1, i.e., 151 datapoints) and the testing set (1523 K/1 s−1, 1223 K/100 s−1, and 1073 K/10 s−1,
i.e., 150 datapoints) were utilized for the purpose of this research. The rest of the experimental dataset
(i.e., 500 datapoints) then served as the training set. Each input vector was normalized as follows [41]:

pi,norm =
pi − µ

s
(2)

where pi and pi,norm correspond to the i-th un-normalized and normalized value of the input vector,
respectively, with i = [1, n] ⊂
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; m is the number of vector elements corresponding to the training set. Note that
the vector of the network output was not normalized (it was not necessary since there is only one
vector in the output layer).

Figure 2 shows how the various architectural settings influenced the network performance
(Equation (1)). With respect to the number of hidden layers, the use of two and three layers provided
practical and meaningful results, as demonstrated in Figure 2. On the other hand, utilizing only
one layer resulted in high MSE values, log(MSE) > 4. In addition, these MSE values remained
practically unchanged (constant) despite the various number of neurons. It was obvious that the
number of neurons in the hidden layers played a substantial role with regard to network performance.
With respect to the training and validation set, similar trends were observed despite the number
of hidden layers and the types of transfer functions utilized (the MSE values practically decreased
with increasing number of neurons). A certain similarity could also be observed when studying the
behavior of the testing set. In the case of two hidden layers, the MSE values of the testing set increased
when the number of neurons exceeded the values of 6 and 5 with regard to the hyperbolic tangent
sigmoid (tansig) (Figure 2a) and logistic sigmoid (logsig) (Figure 2b) transfer functions, respectively.
This suggests that the network had become overtrained. With respect to the three hidden layers, the
MSE values of the testing set pointed to network overtraining, even at a lower number of hidden
neurons. In addition, these test MSE values are higher than in the case of two hidden layers.

Based on the training, cross-validation, and testing of various network settings (see Figure 2),
the optimal ANN architecture was chosen as follows: two hidden layers, both with six neurons;
hyperbolic tangent sigmoid transfer function in the case of each hidden neuron; and pure line function
for the neuron of the output layer.
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Figure 2. Influence of various architectures on the network performance. (a) Two hidden layers with
hyperbolic tangent sigmoid (tansig) transfer function, (b) two hidden layers with logistic sigmoid (logsig)
transfer function, (c) three hidden layers with tansig transfer function, and (d) three hidden layers with
logsig transfer function. Pure line transfer function was applied for all tested network architectures.

The artificial neural network was created and practically applied in the MATLAB® R2017b
environment [44] using embedded Neural Network ToolboxTM (see detailed user’s guide in [45]),
with the overall processing time taking approximately two working days.

2.3. Assembly of Processing Maps

In the present research, processing maps of the examined low-alloy steel were assembled on the
basis of a well-known dynamic material model (DMM) [46–48]. In accordance with DMM theory,
a hot-formed workpiece (i.e., a workpiece undergoing thermoplastic deformation) is considered as
the nonlinear power dissipator. An instantaneous power per unit volume, P (J), is then introduced to
represent a physical quantity of power dissipation. This quantity is the sum of two complementary
parts: a G content (J) and a J co-content (J) (see detailed analysis in [46]).

The G content is considered to correspond to the power dissipated as a consequence of plastic
deformation, which is linked to the temperature increase of the formed material. The J co-content
then represents the power associated with metallurgical processes, such as dynamic recovery (DRV),
dynamic recrystallization (DRX), etc. [2,5,10]. Variations in the J co-content with the process parameters
were applied in order to model the dynamic behavior of the formed material.

The J co-content for common hot-formed engineering materials ranges between two extremes
(zero and ideal (maximal) energy dissipation). The ratio between the real and ideal dissipation, known
as the efficiency of power dissipation, η, can therefore be utilized to help map the microstructural
characteristics of the formed material in a wide range of thermomechanical conditions [2,46]:

η =
J

Jmax
=

2 ·m
m + 1

. (5)
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The well-known strain rate sensitivity index, m, can be expressed as follows [46]:

m =
∂J
∂G

=
∂ ln σ
∂ ln

.
ε

∣∣∣∣∣
T,ε

. (6)

Relevant σ–
.
ε datapoints were extracted from the experimental and calculated flow curve datasets.

In order to perform the derivation, the ln σ vs. ln
.
ε datapoints were subsequently interpolated by a

cubic spline [4], as shown in Figure 3.
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Figure 3. Dependence of flow stress on strain rate (in ln scale) of the 10CrMo9-10 steel at the constant
deformation temperature of 1523 K and true strain of 0.8 (experimental dataset).

A graphical expression of the efficiency of power dissipation, i.e., Equation (5), in relation to
the temperature and strain rate at specific strains represented the first part of the processing maps,
known as power dissipation maps [2,5]. These maps disclose different areas associated with specific
metallurgical processes, where each process is linked to a specific η-range. For instance, the DRX
course is usually associated with the η-range of ca. 30–50%, while the lower values can be assigned
to the DRV development. Higher η-values (ca. above the 60%) are then commonly attributed to the
superplastic behavior [1,2,6].

The second part of the processing maps was given by flow instability maps. These maps have the
capability to reveal instability domains, i.e., the areas of less favored or inappropriate thermomechanical
conditions. These metallurgical instabilities can be associated with, for example, shear bands, Lüders’
bands, kink bands, or mechanical twinning [2]. The metallurgical instability was determined on the
basis of the following continuum criterion [49,50]:

ξ
( .
ε
)
=
∂ ln

(
m

m+1

)
∂ ln

.
ε

+ m ≤ 0 (7)

where the variable ξ(
.
ε) represents the flow instability parameter. A graphical expression of this

parameter with respect to the temperature and strain rate at specific strains embodied the mentioned
second part of the processing maps (flow instability maps).

The processing maps were created by superimposing both the abovementioned parts (i.e., flow
instability maps over the power dissipation maps) [4]. Processing maps of the investigated steel were
graphically expressed by means of the Gnuplot 5.0 Patchlevel 4 [51].
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3. Results and Discussion

3.1. Experimental Flow Curve Dataset

Figure 4 displays the experimental flow curve dataset, consisting of 16 curves, of the investigated
steel. As can be seen, higher temperature in combination with lower strain rate contributed to a
decrease in the flow stress level.
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(d) 100 s−1.

As can be seen, the flow curves had two courses. The first one involved a gradual flow stress
growth up to the peak point (global maximum) and subsequent steady-state flow (constant phase).
This is typical of lower temperatures and higher strain rates. The second one consisted of a decrease
in flow stress after the peak point with gradual transition to the steady-state flow. This second
course is typical of higher temperatures and lower strain rates. Nevertheless, in the current case,
an atypical behavior was also observed. The lowest temperature level (i.e., 1073 K) did not follow
the presumed trend. In contrast to other temperature levels, which were linked to the austenitic area,
the temperature level of 1073 K corresponded to the ferritic area. This ferritic matrix was probably
during the compression transformed to austenite matrix because of the recalescence in the middle part
of the tested samples. This might have been the reason for the observed atypical flow curve behavior.

3.2. Calculated Flow Curve Dataset

Figure 5 shows a graphical comparison of the experimental (boxes) and the ANN-approximated
(lines) flow curves of the investigated steel. The gray lines represent the curves predicted beyond the
experimental temperature levels. As can be seen, the approximation accuracy was high, and even the
predicted curves fit into the presumed flow stress levels.
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rates of (a) 0.1, (b) 1, (c) 10, and (d) 100 s−1. Boxes—experiment, color lines—ANN approximation,
gray lines—ANN prediction.

The approximation accuracy was further statistically confirmed by the favorable value of Pearson’s
correlation coefficient [52], R (Equation (8) [13]), and also by the average absolute relative error, AARE
(%) (Equation (9) [13]), as graphically demonstrated in Figure 6.
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In Equations (8) and (9), Ei (MPa) and Ai (MPa) correspond to the experimental and approximated
flow stress values, where i = [1, n] ⊂
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The µ(E) (MPa) and µ(A) (MPa) then represent the mean value of vectors E and A, respectively.

3.3. Processing Maps

Figure 7 shows the processing maps of the investigated 10CrMo9-10 steel assembled on the basis
of the abovementioned methodology. Note that the experimental and ANN data were combined to
assemble these maps. In the figure, the black-labeled contours reflect the power dissipation efficiency
(η, Equation (5)) in percentage. The instability areas (i.e., ξ-values ≤ 0, Equation (7)), which were
calculated on the basis of the experimental dataset, are bounded by the blue (dash–dot–dot) lines.
The instability areas of the ANN-based dataset are given by the red (dash) lines.
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Figure 7. Processing maps of the 10CrMo9-10 steel at strains of (a) 0.2, (b) 0.4, (c) 0.6, and (d) 0.8. Contours
with labels—efficiency of power dissipation (experimental + ANN dataset), blue (dash–dot–dot)
lines—instability regions revealed on the basis of the experimental dataset, red (dash) lines—instability
regions revealed on the basis of the ANN dataset.

3.3.1. Instability Areas

Two perspicuous experimental-based instability areas were clearly visible at the strain of 0.2,
as shown in Figure 7a:

• The first one (I) was revealed at higher strain rates and lower temperatures. This instability
domain, however, gradually vanished with increasing strain. Nevertheless, the ANN dataset
enabled instability in this area to be detected at the strain of 0.4, as shown in Figure 7b, and even
at higher strain.

• The second one (II) was situated at the lowest strain rates and slightly higher temperature levels.
This second region was also visible at the strain of 0.4. In both cases (strains of 0.2 and 0.4),
the experimentally revealed low strain rate instability area (II) was significantly enlarged by the
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ANN-based data. This enlargement was observed towards to lower and higher temperatures and
even to higher strain rates. It is evident from Figure 7c,d that the experimentally determined
second region occupied a much larger area at the strains of 0.6 and 0.8. Enlargement of this area
with ANN-based data is less significant than in the case of lower strains (i.e., 0.2 and 0.4).

Other instability areas could also be observed:

• A small oval instability area (III) was revealed on the basis of the experimental data at the strain
of 0.4. This separated region was situated just below the temperature of 1373 K and around the
strain rate of 1 s−1. Area III then grew with increasing strain and became a part of area II at the
strain of 0.8. However, area III that was detected by the ANN dataset still remained separated
from the ANN area II.

• Another new, small instability region (IV) was observed at the strains of 0.6 and 0.8 (1448–1523 K
and 10–100 s−1 in Figure 7c,d).

It is understandable that the best forming conditions was at the highest temperatures in combination
with the lowest strain rates. No instability was detected at these conditions (see bottom right corner
of each map). This fact has been demonstrated in many previously published papers on various
materials, e.g.,

• intermetallic alloy [3],
• high-carbon/low-carbon steel composite [5],
• zirconium alloy [6],
• aluminum alloy [13],
• Pb-based alloy [14],
• titanium alloy [17], and
• duplex low-density steel susceptible to κ-carbides [18].

Processing maps in these papers contained various number of instability domains with different
sizes and shapes under various thermomechanical conditions. However, the common feature was that
no instability region was detected at the highest temperatures and lowest strain rates.

Based on the presented results, it can be said that the additional (ANN) flow curve dataset had
a considerable influence in revealing the instability regions (mainly at the strains of 0.2 and 0.4),
which can positively contribute to the proper settings of forming conditions. For example, increased
awareness about instability occurrence can be utilized for identifying thermomechanical conditions
that should be further checked by other methods (e.g., metallographic analyses).

3.3.2. Power Dissipation Efficiency

As can be seen, the η-values exceeded the 30% threshold. This fact indicates that, in the case of the
studied steel, DRX took place as a softening mechanism [1,2]:

• The η-values gradually increased with increasing temperature and decreasing strain rate, i.e.,
the increase in the η-values was closely linked to the softening progress.

• The η-values above 30% were mainly linked to the highest temperatures and lowest strain rates.
Of course, the area of η-values higher than 30% also expanded with the increase in strain level
into the areas of lower temperatures and higher strain rates, but this expansion was quite limited.
The fact is that larger parts of the processing maps remained under the 30% level, which suggests
that, for the studied steel, the DRX process needed higher strain levels to be initialized.

The above-described observations can be confirmed by the flow curve courses (see Figure 5).
In some cases, the flow stress increased up to the maximum very slowly and only started to visibly fall
at the highest strain levels. For example, in Figure 5a, it can be seen that the beginning of the flow
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stress decrease corresponds to the strain of 0.8 for the flow curve of 1223 K at 0.1 s−1. The softening
process in this case was underdeveloped, which was reflected by the low η-values of approximately
20% (see Figure 7d at 1223 K and 0.1 s−1).

The more developed softening process (i.e., η-values above 30%) corresponded to the flow curves
that showed quicker initialization of flow stress decrease. This can be seen, for example, in the curves
for 1523, 1448, and 1373 K at 0.1 s−1 in Figure 5a and the corresponding η-values, e.g., at the strain of
0.6 (Figure 7c):

• It can be seen that, even when the flow stress decrease was under the conditions initialized at
lower strains, the corresponding peak points were quite indistinct, i.e., flow stress decrease was
not intensive.

• In fact, flow curves under some other conditions showed rather dynamic recovery behavior
(i.e., constant phase after the maximum stress), which was linked to the lower η-values.

• Nevertheless, an exception existed at the temperature level of 1073 K. These curves corresponded
to the intensive softening course but without any reflection on the processing maps. In fact,
the η-values were even lower at this temperature. This can be attributed to the above-discussed
issue (see Section 3.1) dealing with the transformation of ferritic matrix to austenite due to
deformation heating. The lower η-values can then be attributed to the aggravated forming
conditions that were revealed by the presented instability areas.

4. Conclusions

Processing maps, i.e., power dissipation maps superimposed by the corresponding maps of flow
instability, of the 10CrMo9-10 low-alloy steel were assembled on the basis of Prasad’s dynamic material
model with the use of two hot flow curve datasets.

An experimental dataset was obtained via a series of 16 uniaxial hot compression tests that were
performed at four temperatures (1073, 1223, 1373, and 1523 K) and four strain rates (0.1, 1, 10, and
100 s−1).

An artificial neural network dataset was additionally employed in order to improve the informative
ability of the processing maps. This dataset contained approximated experimental curves and curves
that were predicted at three additional temperature levels (1148, 1298, and 1448 K) in combination
with the abovementioned strain rates. The approximation and subsequent prediction were performed
utilizing a multilayer feed-forward ANN. A network-adaptation procedure was realized via the
back-propagation of error signal and the Levenberg–Marquardt optimization algorithm together with
Bayesian regularization.

The processing maps revealed several instability domains, i.e., areas of less-appropriate forming
conditions. It was found that the additional ANN flow curve dataset significantly contributed to the
completeness of the processing maps in terms of revealing potentially unstable regions. In other words,
the experimental dataset itself does not have to be sufficient for revealing all possibly aggravated
forming conditions. The enhanced informative ability of processing maps can be helpful, such as
when using other tools to determine proper forming settings, for instance, during the selection of
thermomechanical conditions that should be checked by metallographic analyses.
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19. Opěla, P.; Schindler, I.; Kawulok, P.; Kawulok, R.; Rusz, S.; Rodak, K. Hot Flow Curve Description of CuFe2
Alloy via Different Artificial Neural Network Approaches. J. Mater. Eng. Perform. 2019, 28, 4863–4870.
[CrossRef]

20. Gronostajski, Z. The constitutive equations for FEM analysis. J. Mater. Process. Technol. 2000, 106, 40–44.
[CrossRef]

http://dx.doi.org/10.1007/BF02658992
http://dx.doi.org/10.1016/j.intermet.2005.12.014
http://dx.doi.org/10.1016/j.msea.2012.01.062
http://dx.doi.org/10.4028/www.scientific.net/KEM.622-623.330
http://dx.doi.org/10.1016/j.mspro.2014.07.035
http://dx.doi.org/10.1557/jmr.2015.168
http://dx.doi.org/10.1080/10426914.2015.1025966
http://dx.doi.org/10.1016/j.matdes.2014.09.062
http://dx.doi.org/10.1186/s40064-016-2317-z
http://dx.doi.org/10.1016/j.matdes.2015.11.036
http://dx.doi.org/10.1515/htmp-2015-0108
http://dx.doi.org/10.1016/j.matchar.2017.05.026
http://dx.doi.org/10.3390/met7090328
http://dx.doi.org/10.2355/isijinternational.ISIJINT-2016-306
http://dx.doi.org/10.1007/s11665-019-03901-x
http://dx.doi.org/10.1007/s11665-019-04200-1
http://dx.doi.org/10.1007/s11665-019-04199-5
http://dx.doi.org/10.1016/S0924-0136(00)00635-X


Metals 2019, 9, 1218 13 of 14

21. Wu, S.W.; Zhou, X.G.; Cao, G.M.; Liu, Z.Y.; Wang, G.D. The Improvement on Constitutive Modeling of Nb-Ti
Micro Alloyed Steel by Using Intelligent Algorithms. Mater. Des. 2017, 116, 676–685. [CrossRef]

22. Lv, J.; Ren, H.; Gao, K. Artificial Neural Network-Based Constitutive Relationship of Inconel 718 Superalloy
Construction and its Application in Accuracy Improvement of Numerical Simulation. Appl. Sci. 2017, 7, 124.
[CrossRef]

23. Yan, J.; Pan, Q.L.; Li, A.D.; Song, W.B. Flow Behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17Zr Alloy During Hot
Compressive Deformation Based on Arrhenius and ANN Models. Trans. Nonferr. Met. Soc. China 2017, 27,
638–647. [CrossRef]

24. Lin, Y.C.; Liang, Y.J.; Chen, M.S.; Chen, X.M. A Comparative Study on Phenomenon and Deep Belief Network
Models for Hot Deformation Behavior of an Al–Zn–Mg–Cu Alloy. Appl. Phys. A Mater. Sci. Process. 2017,
123, 68. [CrossRef]

25. Darwish, A. Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications. Future
Comput. Inf. J. 2018, 3, 231–246. [CrossRef]

26. Winiczenko, R.; Górnicki, K.; Kaleta, A.; Janaszek-Mańkowska, M. Optimisation of ANN topology for
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