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Abstract: The elastic constants of temperature dependence, thermal expansion coefficient and
phonon dispersion relations of γ-TiAl doped with C/O have been investigated using first-principles
calculations in order to gain insight into the mechanical performance of γ-TiAl in cases of high
temperature. This study shows that γ-TiAl maintains stability at high temperatures introduced by C
or O atoms. Importantly, the hardness increases and retains excellent resistance to external pressure.
The results indicate that even if the TiAl alloy is doped with C or O atoms, it can also exhibit excellent
mechanical properties at a high temperature.
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1. Introduction

γ-TiAl alloys have received much attention for their broad application prospects in the aerospace,
automotive, chemical and marine industries because of their low density, high specific strength and
stiffness, high resistance to high temperature creep, oxidation and hydrogen embrittlement [1–5].

Duwez et al. [6] first reported the existence of a Ti-Al phase in titanium-aluminum binary systems
and determined it structure. This laid a foundation for subsequent research. In order to gain a deeper
understanding of the mechanical properties of γ-TiAl, more detailed research on basic properties
is required, such as structural features, elastic behavior, phase stability and so on. Hsieh et al. [7]
explored the structural characteristics of γ-TiAl. Erdely et al. [8] and Huang et al. [9] studied the
changes in microstructure of γ-TiAl at high temperature. Tanaka et al. [10,11] and He et al. [12]
measured the elastic constants of γ-TiAl at different temperatures and described the experimental
procedures. In theory, some studies [13–17] have qualitatively analyzed the phase stability, structural
deformation and effects of oxygen impurity of γ-TiAl by first-principles calculations. Fu et al. [18]
and Zhang et al. [19] explored the mechanical and thermodynamic properties of γ-TiAl under high
pressure. However, there is little theoretical research to evaluate the influence of temperature on
γ-TiAl, which cannot truly reflect the performance of γ-TiAl in practical applications. In addition,
the γ-TiAl phase provides many of the qualities required in innovative structural high temperature and
marine applications. The evolution of elastic properties upon temperature and resistance to microbial
corrosion (C, O, P, S, etc.) are similarly important [20–26]. Moreover, during the preparation of the alloy,
oxygen and carbon atoms are easily absorbed into γ-TiAl, which affects the use of γ-TiAl. Therefore,
this work is mainly to study the effect of oxygen and carbon impurities on the mechanical properties
of γ-TiAl alloy at high temperature.

In this work, we obtained the temperature dependent elastic modulus by the combination
of density functional perturbation theory (DFPT), quasi-harmonic approximation (QHA) method
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and continuum elasticity theory. Likewise, the thermal stability of γ-TiAl with oxygen and carbon
impurities were analyzed by calculating the phonon dispersion curves. We showed that the interaction
between individual orbital electrons of the impurity and the electrons of Ti and Al atoms by analyzing
the partial densities of their respective states. These data will be helpful to the practical application of
γ-TiAl alloy in the future.

2. Computational Details

According to the QHA method [27,28], the Helmholtz free energy can be expressed as:
E(V, T) = Estatic(V) + Ephon(V, T) + Eelec(V, T), where Estatic(V) is the total energy at 0 K, Ephon(V, T)
is the phonon free energy and Eelec(V, T) is the thermal electronic contribution to the free energy.
Estatic(V) and Eelec(V, T) can be calculated by first-principles calculations directly. Because γ-TiAl
belongs to the tetragonal crystal, the six independent elastic constant deformation models of C11, C12,
C13, C33, C44, C66 can be defined by the formula [29]: E(V, δ) = E(V0, 0) + V0[∑

i
τiδiξi +

1
2 ∑

i,j
Cijδiξiδjξ j],

where E(V, δ) is the total energy for the system with respect to a small strain δ on the equilibrium cell.
E(V0, 0) and V0 are the total energy and volume of the equilibrium cell without strains, respectively.
τi is an element in the stress tensor. ξi/j is a factor of the Voigt index [30] and δi/j is the small strain
applied on the equilibrium cell. The sets of distortions were selected as (δ; δ; 0; 0; 0; 0), (δ; −δ; 0; 0; 0; 0),
(0; 0; δ; 0; 0; 0), (0; 0; 0; δ; 0; 0), (δ; δ; δ; 0; 0; 0), (0; 0; 0; 0; 0; δ) on the equilibrium cell with a small strain
δ varying from −0.03 to 0.03 in steps of 0.006, which has used in our previous work [31]. The elastic
constants can be calculated by the equations: C11 + C12 = D1

2 , C11 − C12 = D2
2 , C33 = D3, C44 = D4

4 ,
2(C11 + C12 + 2C13) + C33 = D5 and C66 = D6, where Di(i = 1–6) represents the second-order strain
derivatives of the Helmholtz free energy under the above six kinds of deformation forms, respectively.

The structural optimization and mechanical properties were calculated using first principles
calculations based on density functional theory (DFT) [32,33] in the Vienna Ab initio Simulation
Package (VASP) code [34]. The ion-electron interaction was expressed by the projector augmented
wave (PAW) method [35]. The exchange correlation energy of the electrons is described by generalized
gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) [36,37] form. The energy
cutoff was set to 600 eV and the Brillouin-zone (BZ) sampling was performed for 7 × 7 × 7 k-point
Monkhorst-Pack mesh [38]. The self-consistent convergence of the total energy was set to 10−6 eV/atom
and the maximum force on the atom was below 10−5 eV/Å. In this work, we used the 2 × 2 × 2
supercell containing 16 Ti and 16 Al atoms, respectively. The concentrations of C and O are both set to
3.03 at%, which is below the solubility limit of C/O in TiAl lattice [16,17]. The kinetic stability was
discussed using the phonon spectra calculations in PHONOPY code [39].

3. Results and Discussion

In our previous work [31], especially for two equivalent types of the pentahedral (P1, P2) sites
and octahedral (O1, O2) sites, the ideal positions have been determined by comparing the formation
energy of the sites. The ideal positions of C and O atoms in the γ-TiAl alloy have been optimized and
shown in Figure 1. The solution sites of the C atoms are in the O position of the octahedral center,
and the O atoms are in the P position of the pentahedral center, respectively. The Helmholtz free
energy in different crystal volumes at finite temperature was calculated by using the QHA method
(see Figure 2). Equilibrium volume can be obtained by fitting the data to the Vinet equation of states for
each temperature. It can be found that the equilibrium volume increases with increasing temperature.
The relationship of volume and temperature is shown in Figure 3. As is seen, the volume of TiAlO is
larger than that of TiAlC at different temperatures. The constant volume thermal expansion is shown
in Figure 4. When the temperature is higher than 100 K, the two lines are separated and the thermal
expansion coefficient of TiAlO is gradually larger than that of TiAlC. At 850 K, the thermal expansion
coefficient for TiAlC is about 3.64× 10−5K−1 and for TiAlO is about 3.80× 10−5K−1. Both values
are larger than the 3.55× 10−5K−1 value of pure γ-TiAl [31], indicating that C and O atoms easily
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make γ-TiAl deform at high temperature. In order to analyze the stability of TiAlC and TiAlO at
different temperatures, we calculated the phonon dispersion curves at 0 K, 300 K, and 850 K as shown
in Figure 5. Obviously, there are no unstable branches with negative vibrational frequencies, indicating
that TiAlO and TiAlC are dynamically stable.
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Figure 5. Phonon dispersion relations of TiAlC (a) and TiAlO (b) along high-symmetry q points in
Brillouin zone at 0 K, 300 K, and 850 K, respectively.

The elastic constant can be thought of as the strain derivative of the Helmholtz free energy [40,41].
We derived the elastic constants from the second order coefficients by polynomial fitting the
Helmholtz free energy densities to strain. The relationship between Helmholtz free energy and
strain δ upon temperature for C11-C12 and C66 is shown in Figure 6. It shows that the energy
curve changes significantly with the increases of temperature and strain. The elastic constants at
different temperatures are listed in Table 1. For comparison, the temperature is chosen as same to
our previous work [31]. The mechanical stability criteria [42] for tetragonal crystal of C11 > |C12|,
2C2

13 < C33(C11 +C12), C44 > 0, C66 > 0 is applied for stability analysis. More importantly, γ-TiAl alloy
can maintain excellent mechanical properties doped with C/O atoms. Most of the elastic constants are
generally reduced with temperature. However, C11, C66 of TiAlC and C12 of TiAlO have a significant
increase at 620 K.
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Table 1. The calculated elastic constants of TiAlC and TiAlO at different temperatures.

Phase Temperature (K) C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa)

TiAl

0 a 171.6 89.7 91.3 172.2 114.5 65.4
0 b 164 85.5 81.04 178.57 109.6 72.6
0 c 167.4 87.7 86.1 164.2 111.1 73.7
0 d 187 74.8 74.8 182 109 81.2

298 d 183 74.1 74.4 178 105 78.4
300 e 186 72 74 176 101 77
300 a 161.2 88.2 91.3 157.8 109.6 65.7
410 a 157.7 87.2 91.4 149.3 108.4 65.3
500 a 158.8 81.0 93.2 145.4 107.2 65.1
620 a 152.9 80.8 95.9 144.1 104.7 68.9
740 a 151.1 79.0 96.1 137.0 103.3 63.0
850 a 148.0 82.4 95.4 133.3 101.7 62.5

TiAlC

0 191.0 92.4 87.6 181.9 109.5 66.0
300 181.9 85.9 85.8 169.9 102.7 62.3
410 178.8 84.2 85.4 166.1 100.7 61.2
500 175.1 81.9 84.5 161.4 98.2 59.7
620 178.1 78.9 83.1 155.3 98.3 62.2
740 175.4 76.8 80.7 160.6 95.5 61.2
850 171.9 74.8 79.7 156.1 93.0 59.2

TiAlO

0 181.4 91.5 92.3 172.4 109.7 68.2
300 173.8 84.4 88.2 164.9 103.0 66.3
410 171.2 82.5 87.1 162.8 101.1 65.3
500 164.4 71.6 94.4 161.8 106.9 69.3
620 162.5 78.2 86.0 156.0 96.6 60.4
740 161.4 76.8 83.9 157.2 95.9 61.8
850 158.9 74.4 84.3 150.9 94.3 60.7

a [31]; b [18]; c [19]; d [11]; e [12].
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The bulk modulus (B), shear modulus (G), Young’s modulus (E) and Poisson’s ratio (ν) can be
calculated by using the following equations [43]: B = 1

2 (BV + BR), G = 1
2 (GV + GR), E = 9GB

(3B+G)
and

v = (3B−2G)
[2(3B+G)]

, where subscript V denotes the Voigt bound and R denotes the Reuss bound [43–45].
The data are listed in Table 2 and are shown in Figure 7. There are some fluctuations in these data,
which may be caused by the limitations of the QHA method. The same phenomenon can be found
in some thermodynamic calculations of metals [27,46–48]. In addition, only a small part of the range
causes fluctuations, which will not affect the entire trend. From Table 2, as the temperature increases
from 0 K to 850 K, B, G and E of TiAlC decrease by 12%, 13%, 12%, while they decrease by 12%, 13%,
13% for TiAlO, respectively. The B, G and E of pure γ-TiAl decrease by 8%, 22%, 20% respectively and
ν increase from 0.258 to 0.290 [31]. Although the incorporation of C or O atoms deteriorates the decline
of B for γ-TiAl, it is excellent to improve G and E of γ-TiAl. In addition, the B of TiAlC and TiAlO
are 107.51 GPa and 106.09 GPa at 850 K, respectively, which is similar to the B of γ-TiAl (108.4 GPa).
This indicates that γ-TiAl doped with C/O atoms also keep strong resistance to external pressure at
high temperature. However, the Poisson’s ratio decreases significantly for TiAlC and TiAlO compared
with pure γ-TiAl.

Table 2. The calculated elastic modulus, including the bulk modulus (B), shear modulus (G), Young’ s
modulus (E), Poisson’ s ratio (ν), and G/B of TiAlC and TiAlO at different temperatures (K).

Phase Temperature (K) B (GPa) G (GPa) E (GPa) ν G/B

TiAl

0 a 117.8 67.9 171.1 0.258 0.576
0 b 110.69 68.57 170.50 0.26 0.619
0 c 113.1 68.1 170.2 0.249 0.602
0 d 111.64 78.36 190.51 0.216 0.702

298 d 109.97 75.68 184.67 0.220 0.688
300 e 109.76 74.83 182.92 0.222 0.682
300 a 113.5 62.9 159.4 0.266 0.554
410 a 111.6 60.8 154.3 0.269 0.545
500 a 110.9 60.1 152.5 0.271 0.541
620 a 110.5 57.6 147.2 0.278 0.521
740 a 109.1 54.7 140.5 0.285 0.501
850 a 108.4 52.9 136.6 0.290 0.488

TiAlC

0 122.0 72.2 180.9 0.253 0.592
300 116.5 67.6 169.9 0.257 0.580
410 114.8 66.1 166.3 0.259 0.576
500 112.5 64.3 162.0 0.260 0.571
620 111.1 65.2 163.6 0.253 0.587
740 109.7 65.0 162.8 0.253 0.593
850 107.5 63.1 158.4 0.254 0.587

TiAlO

0 120.8 68.9 173.7 0.260 0.571
300 114.9 66.0 166.1 0.259 0.574
410 113.1 64.9 163.5 0.259 0.574
500 112.1 64.5 162.3 0.259 0.575
620 109.0 60.9 154.1 0.265 0.559
740 107.7 61.5 155.0 0.260 0.571
850 106.1 59.7 150.8 0.263 0.563

a [31]; b [18]; c [19]; d [11]; e [12].
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As is shown in Figure 7a–c, all the modulus of the TiAlC and TiAlO phases are decreasing along
with the increase of temperature in the range of 0 K to 500 K. In addition, the modulus of TiAlC and
TiAlO is higher than that of γ-TiAl alloy before 500 K. The phenomenon indicates that the resisting
compression and shear deformation of γ-TiAl can be improved by appropriately adding O atoms
below 500 K. Up to 500 K, the bulk modulus of the TiAlC and TiAlO phase continues to decrease,
while the other modulus have significant variations. The bulk modulus of TiAlO is significantly lower
than that of γ-TiAl, while the other modulus of TiAlC and TiAlO remain higher than that of γ-TiAl,
indicating that O has a greater effect on γ-TiAl to resist external pressure above 500 K. In Figure 7d,
the ν of TiAlO gradually decreases, while the ν of TiAlC gradually increases below 500 K and they
have rebound trends above 500 K.

It is known that the bulk modulus or shear modulus can measure hardness in an indirect way
and Young’s modulus is generally used to provide a measure of solid stiffness [49–52]. Poisson’s
ratio can provide more information about the binding characteristics than other elastic constants [50].
The smaller the Poisson’s ratio, the better the crystal’s shear stability. From Table 2, it can be found that
the incorporation of C and O atoms can increase the shear stability of γ-TiAl alloy. In addition, the
high (low) G/B value is related to the brittleness (ductility) of the material and the critical value of the
separation ductility, and brittle material is about 0.57 [52]. In Table 2, the values of G/B of TiAlC are all
greater than 0.57. Therefore, the toughness can be decreased and the brittleness can be increased for
γ-TiAl doped with C. For TiAlO, it is less than 0.57 at temperatures ranging from 620–850 K. The other
is around 0.57, showing that the ductility can be weakened and the brittleness can be increased for
the γ-TiAl doped with O. In general, the ductility of the γ-TiAl alloy doped with C/O atoms can be
impaired, but its hardness can be enhanced.

Previous studies [53,54] have proven that the mechanical properties of TiAl alloys are related to
chemical bonds. The Ti(3d)-Al(3p) covalent bonds can present a large barrier to the plastic deformation
and weaken the ductility of the TiAl alloy, due to the strong bonding directionality [53,54]. The partial
density of states is plotted in Figure 8. As is seen in Figure 8a, the 3d orbital electrons of Ti play a
dominant role. The 3d orbital electrons of the Ti atoms and the 3p orbital electrons of Al atoms show
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obvious hybridization at the Fermi energy level. From Figure 8b, we can see that the γ-TiAl alloy
exhibits an electronic state at −11.39 eV, and the 3d-Ti orbitals and the 3p- and 3s-Al orbitals hybridize
with the 2s-C orbitals, indicating that there is a new energy state (bonding state) and strengthen
Ti(3d)-Al(3p) covalent bonds. In addition, the number of 3p-Al orbital electrons increase slightly and
the number of 3d-Ti orbital electrons still maintain a high value at the Fermi energy level. In Figure 8c,
the electronic density of states occurs at −8.64 eV. However, the 3s-Al orbitals and the 2p-O orbitals
have a significant hybridization and the energy range of hybridization is −9 to −5 eV, which indicates
that a new energy state (bonding state) is formed here. Further, the number of 3p-Al orbital electrons
and 3d-Ti orbital electrons have similar changes to TiAlC at the Fermi energy level, indicating that
Ti(3d)-Al(3p) covalent bonds can be enhanced at the Fermi energy level because of the incorporation
of C and O atoms. In summary, since the hybridization strength of TiAlC is higher than that of TiAlO,
the increase in hardness of γ-TiAl alloy by the C atom is more obvious. Although the hybridization
of TiAlO is weak, the hybridization range is relatively wide. Therefore, the hardness of the γ-TiAl
alloy is also improved. In addition, the incorporation of the C or O atoms lead to an increase in
the hybridization strength of 3d-Ti orbital electrons and 3p-Al orbital electrons, which results in an
enhancement in the Ti(3d)-Al(3p) covalent bonds. Therefore, there is an increase in brittleness and a
decrease in ductility of the γ-TiAl alloy.Metals 2019, 9, x FOR PEER REVIEW 10 of 12 
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4. Conclusions

We have studied the effects of C and O atoms on the mechanical properties of γ-TiAl at high
temperature by combining first-principles calculations, QHA methods and continuous elastic theory.
The phonon dispersion curves show that TiAlC and TiAlO are dynamically stable. The B, E, G and ν of
TiAlC and TiAlO show that the incorporation of C and O atoms can increase the hardness of the γ-TiAl
alloy and maintain excellent resistance to external pressure at high temperature. However, the ductility
of the γ-TiAl alloy is gradually weakened and the brittleness is gradually increased. By analyzing
the hybridization between the orbital electrons of each atom in PDOS, the hybridization strength of
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TiAlC is higher than that of TiAlO, which results in a greater improvement of hardness. Meanwhile,
C and O atoms lead to an enhancement in the Ti(3d)-Al(3p) covalent bonds so that the ductility of
the γ-TiAl alloy is reduced. Although C and O atoms weaken the ductility of the γ-TiAl, it can still
maintain excellent mechanical properties at high temperature.
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