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Abstract: Friction stir welding (FSW) has enjoyed great success in joining aluminum alloys.
As lightweight structures are designed in higher numbers, it is only natural that FSW is being explored
to join dissimilar aluminum alloys. The use of different aluminum alloy combinations in applications
offers the combined benefit of cost and performance in the same component. This review focuses on
the application of FSW in dissimilar aluminum alloy combinations in order to disseminate research
this topic. The review details published works on FSWed dissimilar aluminum alloys. The detailed
summary of literature lists welding parameters for the different aluminum alloy combinations.
Furthermore, auxiliary welding parameters such as positioning of the alloy, tool rotation speed,
welding speed and tool geometry are discussed. Microstructural features together with joint
mechanical properties, like hardness and tensile strength measurements, are presented. At the
end, new directions for the joining of dissimilar aluminum alloy combinations should guide further
research to extend as well as to improve the process, which is expected to raise further interest on
the topic.
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1. Introduction

Friction stir welding (FSW) is a solid state welding process which was invented at The Welding
Institute (TWI) in UK in 1991 [1]. FSW is regarded as an environmentally friendly and energy efficient
joining technique providing one of the best alternatives to fusion welding in order to produce a good
combination of microstructure and properties in the joints. FSW has already proved its superiority in
joining aluminum (Al) alloys as well as magnesium (Mg) alloys over fusion welding processes because
of its solid-state nature. FSW uses a non-consumable rotating tool which has a shoulder and a pin
(or more formally probe) at its end which plunges into the base material (BM) and advances in the
welding direction [2], as shown in Figure 1. During the process, the shoulder touches the top surface
of the BM and the pin moves yielded material around it. As a result of this action, heat is generated
by frictional and plastic deformation of the BM by advancing the rotating tool. The shoulder of the
tool has a forging action as it restricts the expulsion of plasticized material from the BM, while the pin
extrudes material and produces a material flow between the advancing side (AS) and the retreating
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side (RS) of the joint. FSW has shown great potential in welding Al alloys for structural applications.
More recently, Ma et al. [3] published a critical review paper on recent developments in FSW of Al
alloys. Al alloys have remained the prime selection for structural material in aerospace, shipbuilding
and automotive industries for their excellent strength to weight ratio. In order to improve performance
while controlling the cost of Al alloys in these industries, there is an increasing demand to weld
dissimilar Al joints with FSW. Because of the different physical and chemical properties in dissimilar
Al alloy combinations, challenges such as solidification cracking, porosity, formation of intermetallic
and so forth, are present. Therefore, the FSW of dissimilar Al alloy combinations has gained attention
over the recent years, demonstrating the potential of the process to join these. The present review aims
to discuss and analyze the available literature on FSWed dissimilar Al alloy combinations so far.
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Figure 1. Schematic of friction stir welding, reproduced from [4], with permission from Elsevier, 2014.

2. General Progress in FSW of Dissimilar Al-Al Combinations

There are review papers available on FSW of same Al alloy joints, which discuss various aspects
of the process such as tool design, process parameters, heat generation, microstructure and mechanical
properties [4–11]. The number of research papers on FSW of dissimilar Al alloy joints published
to date is shown in Figure 2 (search on 15 December 2017 found 68 papers from Web of Science).
The vast majority of the publications has been in the past 5 years, reaching a peak on 2018. In addition,
Magalhães et al. [12] studied research and the extent of industrial application of FSW of similar and
dissimilar material joints as shown in Figure 3. The similar material joints of Al alloys are being studied
to a far larger extent compared to other alloys and the same trend is observed in the dissimilar material
combinations. This trend observed literature clearly identifies the interest on the FSW of dissimilar Al
alloy joints, which is expected to increase over the coming years.
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Figure 3. Papers on FSW: (a) same material joints and (b) dissimilar materials joints, reproduced
from [12], with permission from Taylor & Francis, 2017.

All papers from the top 10 ranked journals published on FSW, classified as Q1 by Scimago Journal
& Country Rank.

Summary of Published Works

In order to identify the key findings on various aspects a summary of existing literature follows
(Table 1). For the FSW of dissimilar Al alloy combinations there are the preliminary welding parameters
such as the BM placement, the tool rotational speed and welding speed. The placement of the BM
affects material flow, while rotational and welding speeds control heat input on both sides of the joint
during welding. All of these parameters have been investigated for the different material combinations
(see Table 1). In addition, the effects of welding parameters on the mechanical properties that is,
the hardness and the joint strength have been investigated. As it can be seen a number of studies have
been performed on the effect of the placement of BM (i.e., whether a particular material is placed on the
AS or the RS side) on the material flow and the resulting microstructure in the SZ and the mechanical
properties of the weld. Other papers have focused on the effect of tool geometry that is, shoulder
diameter to pin diameter ratio and pin profile (cylindrical, conical, polygonal) on the microstructure
and mechanical properties of the weld.
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Table 1. Summary of FSW of dissimilar Al alloy joints studied in literature.

No. Author (s) Alloy Combinations Thick
(mm)

Welding Parameters

Objective of StudyAlloy Positioning Rotation Speed
(rpm)

Welding Speed
(mm/min)AS RS

1 Niu, et al. [13] 2024-T351 & 5083-H112 6.35 2024 5083 600 150 Strain hardening behavior and mechanism

2 Niu, et al. [13] 7075-T651 & 2024-T351 6.35 7075 2024 600 150 Strain hardening behavior and mechanism

3 Hasan, et al. [14] 7075-T651 & 2024-T351 6 Both both 900 150 Effect of pin flute radius and alloy positioning

4 Ge, et al. [15]
7075-T6 & 2024-T3

Lap joint:
7075-upper; 2024-lower

3 NA NA 600 30, 60, 90, 120 Effect of pin length and welding speed

5 Kalemba–Rec,
et al. [16] 7075-T651 & 5083-H111 6 Both Both 280, 355, 450,

560 140 Influence of tool rotation speed, pin geometry and alloy positioning

6 Safarbali,
et al. [17] 2024-T4 & 7075-T6 4 2024 7075 1140 32 Effect of post-weld treatment

7 Palanivel,
et al. [18] 6351-T6 & 5083-H111 6 6351 5083 800, 1000, 1200 45, 60, 75 Optimization of shoulder profile, rotational speed and welding speed

8 Hamilton,
et al. [19] 2017A-T451 & 7075-T651 6 Both Both 355 112 Phase transformation maps

9 Gupta, et al. [20] 5083-O & AA6063-
T6 6 NR NR 700, 900, 1100 40, 60, 80 Optimization of tool geometry, rotational speed and welding speed

10 Huang, et al. [21] 5052&AlMg2Si 8 Al-Mg2Si 5052 1000 80 Microstructure and mechanical properties

11 Moradi, et al. [22] 2024-T351& 6061-T6 6 2024 6061 800 31.5 Texture evolution

12 Prasanth and Raj [23] 6061-T6 & 6351-T6 6.35 NR NR 600, 900, 1200 30, 60, 90 Optimization of rotational speed, welding speed and axial force

13 Azeez and Akinlabi [24] 6082-T6 & 7075-T6 10 7075 6082 950, 1000 80, 100 Double-sided weld

14 Azeez, et al. [25] 6082-T6 & 7075-T6 10 7075 6082 950, 1000 80, 100 Single-sided weld

15 Peng, et al. [26] 6061-T651 & 5A06-H112 5 6061 5A06 600, 900, 1200 100, 150 Nanoindentation hardness and fracture behavior

16 Das and Toppo [27] 6101-T6 & 6351-T6 12 6101 6351 900, 1100, 1300 16 Influence of rotational speed on temperature and impact strength

17 Sarsilmaz [28] 2024-T3 & 6063-T6 8 2024 6063 900, 1120, 1400 125, 160, 200 Microstructure, tensile and fatigue behavior

18 Kookil, et al. [29] 2219-T87 & 2195-T8 7.2 Both Both 400, 600, 800 120, 180, 240,
300 Effect of rotational speed and welding speed

19 Hamilton,
et al. [30] 2017A-T451 & 7075-T651 6 Both Both 355 112 Positron lifetime annihilation spectroscopy

20 Kopyscianski,
et al. [31]

2017A-T451 & Cast
AlSi9Mg 6 2017A AlSi9Mg 355 112 Microstructural study

21 Ghaffarpour,
et al. [32] 5083-H12 & 6061-T6 1.5 6061 5083 700, 1800, 2500 25, 30, 212.5, 400 Optimization of rotational speed, welding speed and tool dimensions
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Table 1. Cont.

No. Author (s) Alloy Combinations Thick
(mm)

Welding Parameters

Objective of StudyAlloy Positioning Rotation Speed
(rpm)

Welding Speed
(mm/min)AS RS

22 Bijanrostami,
et al. [33] 6061-T6 & 7075-T6 5 6061 7075 1000, 1375, 1750,

2125, 2500
50, 125, 200, 275,

350
Underwater FSW: optimizations of rotational and welding speeds on

tensile properties

23 Kasman, et al. [34] 5083-H111& 6082-T6 5 NR NR 400, 500, 630,
800 40, 50, 63, 80 Effect of probe shape, rotational speed, welding speed.

24 Palanivel,
et al. [35] 5083-H111 & 6351-T6 6 6351 5083 800-1200 45-85 Macrostructure examination at different rotational and welding speeds

25 Doley and Kore [36] 5052 & 6061 1, 1.5 6061 5052 1500 63, 98 Study of welding speed

26 Saravanan,
et al. [37] 2024-T6 & 7075-T6 5 2024 7075 1200 12 Effect of shoulder diameter to probe diameter

27 Yan, et al. [38] Al-Mg-Si & Al-Zn-Mg 15 Both Both 800 180 Effect of alloy positioning on fatigue property

28 Yan, et al. [39] Al-Mg-Si & Al-Zn-Mg 15 Both Both 800 180 Study of Fatigue behavior

29 Hamilton,
et al. [40] 2017A-T451 & 7075-T651 6 Both Both 355 112 Numerical simulation

30 Zapata, et al. [41] 2024-T3 & 6061-T6 4.8 2024 6061 500, 650, 840 45, 65 Effect of rotational and welding speeds on residual stress

31 Sun, et al. [42] UFG 1050 & 6061-T6 2 Both Both 800 400, 600, 800,
1000 Microstructure and mechanical properties at different welding speeds

32 Texier, et al. [43] 2024-T3 & 2198-T3 3.18 2198 2024 NR NR Heterogeneities in microstructure and tensile properties at the
shoulder-affected regions

33 Rodriguez, et al. [44] 6061-T6 & 7050-T7451 5 7050 6061 270, 340, 310 114 Fatigue behavior

34 Yoon, et al. [45] 6111-T4 & 5023-T4
Lap joint 1 NA NA 1500

1000
100
700 Mechanism of onion ring formation

35 Rodriguez, et al. [46] 6061-T6 & 7050-T7451 5 7050 6061 270, 340, 310 114 Microstructure and mechanical properties

36 Ilangovan, et al. [47] 5086-O & 6061-T6 6 6061 5086 1100 22 Effect of probe profiles

37 Reza–E–Rabby,
et al. [48] 2050-T4 & 6061-T651 20 Both Both

150
300
300

101
203
406

Effect of probe features

38 Donatus, et al. [49] 5083-O & 6082-T6 NR 5083 6082 400 400 Anodizing behavior

39 Karam, et al. [50] A319 & A413 cast 10 A413 A319 630, 800, 1000 20, 40, 63 Influence of rotational and welding speed

40 Ipekoglu and Cam [51] 7075-O & 6061-O
7075-T6 & 6061-T6 3.17 6061 7075 1000

1500
150
400 Effect of initial temper conditions and postweld heat treatment

41 Cole, et al. [52] 6061-T6 & 7075-T6 4.6 Both Both 700-1450 100 Effect of temperature

42 Song, et al. [53] 2024-T3 & AA7075-T6
Lap joint 5 NA NA 1500 50, 150, 225, 300 Effect of alloy positioning and welding speed on defects and mechanical

properties
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Table 1. Cont.

No. Author (s) Alloy Combinations Thick
(mm)

Welding Parameters

Objective of StudyAlloy Positioning Rotation Speed
(rpm)

Welding Speed
(mm/min)AS RS

43 Jannet and Mathews [54] 5083-O & 6061-T6 6 6061 5083 600, 750, 900 60 Effect of rotational speed

44 Palanivel, et al. [55] 6351-T6 & 5083-H111 6 6351 5083 950 36, 63, 90 Effect of welding speed

45 Jonckheere, et al. [56] 2014-T6 & 6061-T6 4.7 Both Both 500, 1500 90 Effect of alloy positioning and tool offset on temperature and hardness

46 Palanivel, et al. [57] 6351-T6 & 5083-H111 6 6351 5083 600-1300 36-90 Optimization of process parameters (probe shapes, rotational and
welding speeds, axial force) for UTS

47 Ghosh, et al. [58] A356 & 6061-T6 3 6061 A356 1000 70-240 Effect of welding speed

48 Velotti, et al. [59] 2198-T351 & 7075-T6
Lap joint 3 & 1.9 NA NA 830 40 Stress corrosion cracking investigation

49 Koilraj, et al. [60] 2219-T87 & 5083-H321 6 2219 5083 400-800 15-60 Optimization of process parameters (probe shapes, rotational and
welding speeds, shoulder to probe diameter ratio) for UTS

50 Dinaharan, et al. [61] 6061 cast &6061 rolled 6 Both Both 800, 1000, 1200,
1400 50 Effect of rotational speed and alloy positioning

51 Palanivel, et al. [62] 6351-T6 & 5083-H111 6 6351 5083 600, 950, 1300 60 Effect of rotational speed and probe profile

52 Song, et al. [63] 5052-H34 & 5023-T4 ~1.5 5052 5023 1500 100-700 Liquation cracking study

53 Ghosh, et al. [64] A356 & 6061-T6 3 6061 A356 1000, 1400 80, 240 Effect of rotational and welding speed

54 Kim, et al. [65] 5052-H34 & 5023-T4 1.5 &
1.6 Both Both 1000, 1500 100, 200, 300,

400 Effect of alloy positioning

55 Prime, et al. [66] 7050-T7451 & 2024-T351 25.4 2024 7050 NR 50.8 Residual stress study

56 Miles, et al. [67]
5182-O & 5754-O
5182-O & 6022-T4
5754-O & 6022-T4

~2 NR NR 500, 1000, 1500 130, 240, 400 Formability study

57 Ouyang and Kovacevic
[68] 6061-T6 & 2024-T3 12.7 NR NR 637 133 Material flow study
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3. Welding Parameters

3.1. Positioning of Alloy

The placement of the alloy affects material flow as it strongly influences material stirring and
mixing. This can be crucial in the final joint microstructure when the BM combination selected have
significant differences in mechanical properties [69,70]. As the material flow during FSW is quite
complex on its own, the placement of materials becomes an important parameter in welding, similar
to the importance of the rotation and the welding speeds (see Table 1). For example Yan et al. [38]
showed this for the Al-Zn-Mg and the Al-Mg-Si combination. There is an interesting material flow
resistance behavior at the RS due to the difference in mechanical properties. When the Al-Zn-Mg
alloy is placed at the AS, there was limited movement of the Al-Mg-Si alloy material to the AS side
because of its stronger ability to flow as shown in Figure 4a. When the Al-Mg-Si was placed at the
RS, there was no RS material (Al-Zn-Mg) flow to AS due to the strong resistance to flow by this high
strength material as shown in Figure 4b. As it can be seen from Figure 4, the zig-zag line bonding
interface formed due to excellent material mixing. The bonding interface may have vortex type in case
of poor combination of rotational speed and welding speed and it becomes more prominent for BMs
with significant difference in the properties. Niu et al. [71] investigated an AA2024-AA7075 joint and
found that the top section of the SZ was composed of the BM of RS, whereas the middle and bottom
sections by the BM of AS as shown in Figure 5. Kim et al. [65] also showed that by placing the high
strength Al alloy on the AS generates excessive agglomerations and defects due to limited material
flow. In essence, the high strength Al should be placed at the RS to minimize the effect of the resistance
to material flow.
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from [38], with permission from Elsevier, 2016.

In the case of the lap joint, the BM placement affects the material flow and leads to the generation
of the ubiquitous hook defect. Now the material movement is in an upward direction that is, from the
bottom sheet to the top sheet, creating hook defects of various sizes. As expected, in addition to the
rotation and welding speed, the placement of the BM affects the hook size as well [53,72–74]. As it
can be seen from Figure 6, the hook height is larger at the RS when the AA2024 is placed at the top,
while it decreases when the AA7075 is placed as a top plate.
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Figure 6. Cross sections of lap joints produced at various welding speeds: AA2024 as top plate
(a) 50, (b) 150, (c) 225, (d) 300 mm/min; AA7075 as top plate (e) 50, (f) 150, (g) 225, (h) 300 mm/min,
reproduced from [53], with permission from Elsevier, 2014.

3.2. Tool Rotation and Welding Speeds

Tool rotation and welding speeds control heat generation or heat input as they relate to the
material plastic flow during FSW. The tool rotation speed affects the intensity of plastic deformation
and through this affects material mixing. Kalemba-Rec et al. [16] showed a proportional relationship
between material mixing and tool rotation speed for a dissimilar AA7075-AA5083 joint. However,
very large rotation speeds lead to numerous imperfections such as poor surface (flash), voids, porosity,
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tunneling or formation of wormholes because of the excessive heat input [75–77], as shown in Figure 7.
Low welding speeds increase heat input and are associated with defects like tunneling [55,58,75,78,79].
It is therefore necessary to select the appropriate combination of tool rotation and welding speed for a
defect free joint with a good metallurgical bond and mechanical properties. As it can be seen in Table 1,
quite a lot of papers have focused on the optimization of these parameters for different combinations
of Al alloys [23,29,32,33,35,36,41,42,50,54,55,58,64,80].
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3.3. Tool Geometry

The geometry of the shoulder and the pin profile govern heat generation and material flow during
welding [81]. The shoulder contributes to a large extent to heat input due to its size. The common
shoulder profiles employed are the flat, the concave and the convex. Additional features on the pin
such as a spiral or a groove improve frictional behavior as well as material flow. Palanivel et al. [18]
reported on the effect of shoulder profiles on the AA5083-AA6351 combination by using three different
shoulder features, the partial impeller (PI), the full impeller (FI) and the flat grove (FS) as shown
in Figure 8. The full impeller shoulder tool produced the optimum mechanical strength due to the
enhanced material flow it produced. The pin profile greatly affects material stirring and mixing.
Cylindrical or conical pin profiles which may have features like threads or threads with flats have
been used for dissimilar Al alloy combinations as shown in Figure 8. When used without threads
a smaller surface is provided to the material, while the threaded and flat features on it increase the
contact area while threads guide material flow around the pin in a rotational as well as a translation
direction [14,16,47,82]. The polygonal pin profiles produce pulses in the flow during material stirring
and mixing, leading to material adhering to the pin [83–86]. This pulsating effect hinders material
flow significantly in the case of dissimilar Al alloy combinations. It is therefore recommended to use
a cylindrical or a conical pin profile with various features in the dissimilar Al alloy joints for good
material flow to produce sound joints.
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Figure 8. Tools of different geometries used in different Al alloy combinations. (a) AA2024-AA7075,
reproduced from [14], with permission from Springer, 2018; (b) AA5083-AA7075, reproduced from [16],
with permission from Springer, 2018; (c) AA5083-AA6351, reproduced from [18], with permission from
SAGE, 2018; (d) AA5083-AA6082 [34], with permission from the authors; (e) AA5083-AA6351 [57],
with permission from Springer, 2013.

4. Microstructure Evolution

The typical microstructure of a FSW joint consists of three distinct zones that is, HAZ, TMAZ
and SZ [87,88]. These zones form depending on the thermal and mechanical deformation that
the tool induces during welding. The SZ undergoes extensive grain refinement, producing fine
grain microstructures, while the TMAZ has an elongated grain structure [89,90]. The microstructure
evolution depends on the welding parameters (as discussed in the previous section), as the material
movement or flow plays a more important role in the case of dissimilar material combinations
compared to same material joints. The appropriate selection of all process parameters results
in excellent material mixing on the both sides (AS and RS) of the joint and produces a sound
weld. Recently, a comprehensive EBSD investigation for the AA5083-AA2024 joint was reported by
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Niu et al. [91], as shown in Figure 9. As it can be seen from the EBSD orientation maps (Figure 9a–d),
tilted and elongated grains in the TMAZ and fine grains d in the SZ developed due to dynamic
recrystallization. Grain boundary orientations also varied in all three zones as shown in Figure 9(e–h).
A higher fraction of large (>10◦) angular grain boundaries was present in the SZ, while more of low
(2–10◦) angular grain boundaries were present in HAZ. Also, a more intense texture in the SZ was
formed compared to other zones.
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5. Mechanical Properties

5.1. Hardness

The hardness of the FSW joint is related to the joint strength and its deformation behavior,
especially in the case of dissimilar material combinations. The hardness distributions of various
different Al alloy combinations are shown in Figure 10. The common highly asymmetrical hardness
distribution along the cross-section of dissimilar material joints is due to the different microstructural
zones (SZ, TMAZ, HAZ) which develop due to the thermo-mechanical history during welding.
Since the maximum temperature is reached at the SZ, precipitates or strengthening particles dissolve
partially or completely decreasing hardness in SZ. Whereas the lowest hardness values are found in
the HAZ due to the coarsening of precipitates or over aging. Therefore, the HAZ always remains the
most common zone or site where failure occurs during tensile deformation. It is also worth noting
that SZ has higher hardness values compared to the BM (which may be of low strength) because
of the combined effect of grain refinement and the effect of both of the BMs in the SZ. However,
it is not always true due to different initial conditions of heat-treatable alloy combinations. Recently,
Niu et al. [13] reported an interesting hardness behavior of joints prior to and following fracture,
by quantifying hardening with the ratio of HVf/HVw, where HVf and HVw are the microhardness
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of the fractured and the as-welded joints, respectively. This ratio was over one in the SZ, TMAZ and
HAZ, which confirmed the strain hardened behavior of the joints as shown in Figure 11. In summary,
hardness distribution in the dissimilar material joints is closely associated with mechanical behavior
such as strain hardening and the fracture origin.Metals 2019, 9, x FOR PEER REVIEW 14 of 21 
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(e) AA6061-AA7075 reproduced from [46], with permission from Elsevier, 2015; (f) AA6061-AA7075
T6], reproduced from [51], with permission from Springer, 2014.
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Figure 11. Cross-sectional macrostructures and hardness distributions of the FSWed dissimilar joints:
(a) 25-joint before fracture, (b) 25-joint after fracture, (c) 72-joint before fracture, (d) 72-joint after
fracture; hardening level across the FSWed joints: (e) 25-joint and (f) 72-joint, reproduced from [13],
with permission from Elsevier, 2018. Note: 25-joint means AA2024-AA5083 and 72-joint means
AA7075-AA2024 joint.

5.2. Tensile Strength

The number of published papers investigating welding the 5xxx-6xxx series alloys to identify the
effect of process parameters (especially the tool rotation speed and welding speed) on the joint strength
is shown in detail in Table 1. The joint strength increases with the rotation speed due to the enhanced
material mixing effect [18,54,57,62]. The tool rotation speed intensifies plastic deformation and welding
speed controls the thermal cycle, residual stresses and rate of production. So, it is essential to select
the appropriate combination of these speeds for weld quality or joint strength. Bijanrostami et al. [33]
investigated the AA6061-AA7075 joint to identify that maximum joint strength is achieved with a
combination of moderate rotation and low welding speed. When high heat input conditions are used
(i.e., high rotation and low welding speeds) large grains and lower dislocation densities develop in
the SZ. On other side when low heat input condition are selected (i.e., low rotation and high welding
speeds) defects are generated. So, grain size strengthening and low dislocation densities are necessary
for joint strength. However, the maximum joint strength of an A356-AA6061 joint was achieved with
low rotation and welding speed by Ghosh et al. [58,64]. Evidence of fine grain size, fine distribution
of Si particles and reduced residual stresses in the SZ were found for low rotation and welding
speeds. Together with rotation and welding speeds, the effect of tool geometry like the pin profile
or features [14,18,47,48,62], pin shapes [34,57] and shoulder diameter to pin diameter ratio [37,60] on
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joint strength have been investigated. The pin profile or feature controls material flow and in effect
material mixing at the joint interface, the pin shape affects SZ size as well as material movement and
the shoulder to pin diameter ratio controls frictional heat generation between the tool and the BM.
The conical threaded pin was identified as the best possible configuration for the AA 6061–AA5086
joint due to the production of a uniformly distributed precipitates and the distinct generation of
the onion rings as material was mixed appropriately in the SZ, as reported by Ilangovan et al. [47].
In summary, the tensile strength of the dissimilar FSWed Al joints relies on the microstructure evolution
during FSW, which in turn depends on the heat input as governed by the welding parameters (as
discussed in Section 4).

6. Summary and Outlook

With regards to the research published and the appropriate future work to be performed in the
FSW of dissimilar Al alloy combinations, the following comments can be proposed:

6.1. Al Alloy Combinations

Almost all of the investigations conducted concerned BM in the as-rolled condition that is,
2xxx-5xxx, 2xxx-6xxx, 2xxx-7xxx, 5xxx-6xxx, 5xxx-7xxx Al series. It would be interesting to explore
dissimilar Al alloy combinations in as-cast conditions and as a combination between as-cast and
as-rolled conditions, depending on the application.

6.2. Base Metal Placement

Limited number of papers on the effect of placement is available and still remains inconclusive.
Base material placement becomes an issue in the cases where there are significant differences in
mechanical properties of the BMs as in the 6xxx-7xxx and the 5xxx-7xxx combinations.

6.3. Tool Offset

There is a very limited number of welding parameters optimization studies to study tool offset.
It needs further comprehensive evaluation using microstructure characterization to understand the
material flow in the SZ.

6.4. Bobbing Tool and Stationary shoulder Tool

The bobbin tool [92] and the stationary shoulder tool are considered as a strategic variant of FSW,
which have distinct benefits over the conventional FSW tool. Stationary shoulder tool offers low heat
input during welding and processing [93–95] and would benefit Al alloy dissimilar joints [96].

6.5. Corrosion and Fatigue Behavior

Finally, corrosion and fatigue behavior studies of various combinations of dissimilar Al alloy
joints would be beneficial to expand its industrial use.
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