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Abstract: (1) Background: Titanium nitride (TiN) electrodes have been used for implantable
stimulation and sensing electrodes for decades. Nevertheless, there still is a discrepancy between the
in vitro and in vivo determined safe charge injection limits. This study investigated the consequences
of pulsing implanted electrodes beyond the in vivo safe charge injection limits. (2) Methods:
The electrodes were implanted for a month and then pulsed at 20 mA and 50 mA and 200 Hz
and 400 Hz. Afterwards, the electrodes were investigated using electrochemical and analytical
methods to evaluate whether electrode degradation had occurred. (3) Results: Electrochemical tests
showed that electrodes that pulsed at 20 mA and 200 Hz (lowest electrical dose) had a significantly
lower charge injection capacity and higher impedance than the other used and unused electrodes.
(4) Conclusions: The electrodes pulsed at the lowest electrical dose, for which no tissue damage
was found, appeared to have degraded. Electrodes pulsed at higher electrical doses for which
tissue damage did occur, on the other hand, show no significant degradation in electrochemical
tests compared to unused implanted and not implanted electrodes. It is thus clear that the tissue
surrounding the electrode has an influence on the charge injection properties of the electrodes and
vice versa.
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1. Introduction

Titanium nitride (TiN) has been used for implantable electrodes for many decades, starting with
cardiac pacing electrodes [1]. The demands on cardiac pacing electrodes increased when it was desired
to sense the heart rhythm, in order to provide rate-adaptive pacing [2]. Despite the high voltages
applied during cardiac pacing, the electrode polarization should remain low so that the heart signal
can reliably be recorded [1,3]. Porous electrodes were highly desirable for that purpose [4] but the
electrodes should also be biocompatible [1] and corrosion resistant [3].

At the end of the previous century, TiN also received interest as a material for neural stimulation
and recording electrodes [5]. Neural stimulation and recording applications within this field include,
among others, visual prosthesis [6], brain implants [7,8] and cochlear implants [9]. Initially, studies
reported conflicting results [5,6,9], which was likely due to differences in the fabrication method [4].
The majority of studies, however, reported very favourable properties of porous TiN [5,6], which were
due to its large surface area rather than specific material properties [4].

The performance of stimulation and recording electrodes can be evaluated using their safe charge
injection limits (Qinj), charge storage capacity (CSC) and impedance. Qinj is evaluated by comparing
the electrode polarization under pulsing conditions to the safe potential limits established using slow
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sweep cyclic voltammetry (CV). The safe potential window is typically defined by the potentials at
which water reduction and oxidation occurs. CSC is a measure of how much charge can be stored on
the surface of the electrode and is measured using CV. The amount of charge available during fast
pulsing, however, is typically much less than CSC. Impedance magnitude (typically at 1 kHz) can
be used as a measure for battery consumption or recording performance. The lower the impedance,
the better [10].

These properties are typically investigated under in vitro conditions in inorganic saline [5,6,9–20].
However, CSC, Qinj and the impedance spectrum differ under acute and chronic in vivo
circumstances [4,7,8,21–28]. Qinj and electrode polarization have been reported to be significantly
lower after implantation compared to in vitro measurements [7,8,23–27]. Moreover, they have been
reported to decrease during the implanted period, when electrode failure does not occur [7,23–26].

TiN has long been known as a biocompatible [29–31] and corrosion resistant material [3,32,33],
even under cathodic high voltage pulsing conditions [34]. Under anodic conditions, TiN oxidation
reactions may occur, which primarily lead to passivation of these reactions until higher anodic voltages
are reached [32]. At very high anodic voltages, TiN will eventually be degraded [34]. However, as Qinj

is lower when implanted compared to in vitro [7,8,21–27], unsafe voltages may be reached during
pulsing. The aim of this study was therefore to investigate whether implanted TiN electrodes would
degrade during pulsing when Qinj measured in vivo was exceeded but Qinj measured in saline was not.

2. Materials and Methods

Four Göttingen minipigs were implanted with four working electrodes (electrode pins) and four
large surface area pseudo-reference disk electrodes. Minipigs were selected because the subcutaneous
adipose tissue is similar to adipose tissue in humans. The number of electrodes and pseudo-reference
electrodes was chosen in order not to cause excessive discomfort to the animals and thereby also to
increase the homogeneity in the results. The electrodes were made from Ti6Al4V and coated with
porous TiN. The animals recovered from anaesthesia and were monitored for one month before the
corrosion experiments were conducted. The work was carried out according to Danish and European
legislation (ethical approval license no: 2014-15-0201-00268).

2.1. Electrode Fabrication

TiN coatings were deposited on electrode pins (6 mm2) made of a Ti6Al4V alloy and Ti disks
(1000 mm2) by reactive magnetron sputtering on a CC800/9 SiNOx coating unit (CemeCon AG,
Würselen, Germany). The coatings were sputtered from four Ti targets (88 × 500 mm2) with 99.5%
purity in a Ar/N2 mixture atmosphere. The purity of the gases was 99.999% and the Ar/N2-flow was
300 sccm/350 sccm. The deposition time was 21,000 s. The electrodes underwent three-fold rotation
during the coating process.

The electrodes coatings were investigated after deposition using samples taken from the same
batch. Scanning electron microscopy (SEM) (Nova 600, FEI Company, Hillsboro, OR, USA) images
were taken at magnifications ranging from 450× to 25,000× to get an overview of the surface and
to investigate the surface structure of the electrodes in detail. A silicium sample coated in the same
process was used to study the thickness, homogeneity and porous structure of the TiN coating using
SEM. Images were recorded at a magnification of 40,000×.

An ethylene tetrafluoroethylene (ETFE) coated 35N LT wire (Heraeus, Yverdon, Switzerland) was
crimped to the hollow end of the electrode pins. A polyether ether ketone (PEEK) body and silicone
tines were produced using injection moulding to insulate the electrode pins. The tines were first glued
to the PEEK body using a silicone adhesive. The PEEK body with tines was then glued to the electrode
pins also using a silicone adhesive. Further details and figures of the electrode production can be
found in Reference [24]. The electrodes were cleaned thoroughly before they were sterilized by an
overdose of electron-beam processing.
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2.2. Surgical Procedure

For electrode implantation, the animals were anesthetized using Propofol. Small incisions
were made in the back and the electrodes were implanted using a custom-made implantation tool.
This ensured that the electrodes were placed in tight pockets in subcutaneous adipose tissue, which
promotes fast healing and ingrowth. Five electrodes were implanted into each pig, four of which were
used for intense electrical stimulation and one electrode in each pig served as a control. Four counter
electrode disks with a percutaneous wire were also implanted in each pig. The minipigs recovered
from the procedure and were carefully monitored in order to detect and treat cases of infection.
The electrodes were not used for one month until the pigs were anaesthetized again using sevoflurane
to perform electrical stimulation. After the stimulation sessions were completed, the electrodes were
carefully dissected from the tissue. The electrodes were extensively cleaned using demineralized water
and alcohol, they were then rinsed and stored dry, so that they could be further investigated.

2.3. Electrical Stimulation

Electrical stimulation was performed using a DS5 (Digitimer, Hertfordshire, UK) per electrode.
The device was shorted between the pulses using a custom-build set-up to prevent drifting of the
baseline potential. Biphasic, charge balanced 200 µs square pulses were applied, cathodic first with an
inter-phase interval of 40 µs during which no current was applied. Stimulation was performed for 6 h
in total, divided into three 2-h sessions. Before, between and after these sessions, voltage transient
measurements (VTM) were recorded for each electrode using a VersaSTAT 3 potentio-galvanostat
(Princeton Applied Research, Oak Ridge, TN, USA).

Four stimulation paradigms were applied:

• Group 1: 20 mA, 200 Hz
• Group 2: 20 mA, 400 Hz
• Group 3: 50 mA, 200 Hz
• Group 4: 50 mA, 400 Hz

During pilot experiments, it was verified that the group 1 stimulation paradigm did not cause
tissue damage after one week of implantation (see Figure S1). To cause electrode damage, we decided
to increase 2 parameters: stimulation frequency and stimulation amplitude. The stimulation frequency
was doubled, which was expected to cause electrode damage due to an increasing trend in the
inter-pulse potential [35]. The stimulation amplitude was set to the maximum the DS5 can deliver,
which was expected to cause electrode damage by increasing the electrode potential during stimulation.
It was expected that group 2–4 protocols would result in tissue damage; therefore photographs were
taken of the tissue surrounding the electrodes to document the amount of tissue damage. However,
the focus of this study is corrosion and the electrodes were thus investigated more extensively using
electrochemical and analytical methods.

During stimulation, the voltage transients were recorded every 30 min using an oscilloscope.
From these voltage transients, the resistive drop after pulse cessation (IR-drop) was calculated as [10]:

IR-drop = Epulse_end − Epulse_end+40 (1)

where Epulse_end is the recorded potential at the end of the cathodic pulse and Epulse_end+40 is the
potential 40 µs after pulse cessation (see Figure 1) [10]. Emc and Ema are the maximum cathodic and
anodic voltage excursions after IR-drop is subtracted from the original voltage transient.
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Figure 1. IR-drop, dV/dt, Emc and Ema are derived from the original data, while in the manuscript
normalized data are presented. The data is normalized by subtracting the IR-drop and setting the
pre-pulse potential to 0.

VTM before, between and after the stimulation blocks, was performed using the VersaSTAT 3
potentio-galvanostat using the same stimulation pulse.

The pulsing capacitance (Cpulse) was computed using the slope (dV/dt) of the voltage transient:

Istim = Cpulse·
dV
dt

(2)

where Istim is the stimulation current (1 mA while implanted and 5 mA in the electrochemical
characterization). Qinj was calculated using the current (Imax) at which Emc or Ema reached the
safe potential limits (−0.6 and 0.9 V vs. open circuit potential, respectively) [10,24]:

Qinj =
Imax·t

A
(3)

where t is the pulse duration (200 µs) and A is the geometrical surface area of the electrodes (6 mm2).
When voltage excursions exceeded machine limits (±10 V), Imax was extrapolated from the highest
current assuming a linear relation.

Vext = Vm

(
1 +

Iext − Im

Im

)
(4)

where Vm and Im were the measured potential and current, respectively, and Vext and Iext were the
extrapolated potential and current. When Vex reached the potential limits, Iext was used as Imax in (3).
This method provided accurate results using data for which Imax was measured.

2.4. Coating Characterization

After explantation, all electrodes were characterized using SEM and energy-dispersive x-ray
spectroscopy (EDX). The electrochemical properties were investigated using electrochemical
impedance spectroscopy (EIS), CV and VTM. Two electrode groups were added to the 4 groups
of active implants, therefore these measurements were performed on six electrode groups:

• Group 1: implanted—20 mA, 200 Hz
• Group 2: implanted—20 mA, 400 Hz
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• Group 3: implanted—50 mA, 200 Hz
• Group 4: implanted—50 mA, 400 Hz
• Group 5: implanted controls
• Group 6: not implanted controls

SEM (Nova 600, FEI Company, Hillsboro, OR, USA) images were recorded at magnifications
varying from 450× to 10000× to obtain an overview of the surface and to investigate in detail the
surface structure of the electrodes. SEM images of the not implanted control electrodes (group 6) were
made, both to compare to the other electrode groups, as well as to investigate the uniformity of the
coating after deposition. Further SEM analysis was carried out on a Si-wafer which was coated in the
same process as the electrodes. The Si-wafer was mounted in a manner similar to the electrodes and
the measured thickness is representative for the coating thickness on the electrodes. The advantage
of using Si-wafer is that a cross-section analysis of the coating can be done easily. EDX (EDAX,
AMETEK, Leicester, UK) spectra were made to investigate the chemical composition of the coatings
after deposition and to determine whether the surface chemistry of the electrodes changed after having
been implanted and after intense pulsing.

Electrochemical characterization measurements were performed in an electrochemical cell at room
temperature using phosphate buffered saline as the electrolyte. The measurements were performed in a
3-electrode set-up, using the above mentioned porous TiN electrodes as working electrodes (0.06 cm2),
a Ag|AgCl reference electrode (1.6 cm2) and a platinum foil counter electrode (50 cm2).

Solartron, Model 1294 in conjunction with 1260 Impedance/gain-phase Analyzer (Solartron
Analytical, Farnborough, UK) were used to perform EIS measurements. Accompanying SMaRT
software was used to run the measurements. A sinusoidal current was used at frequencies from
0.1 Hz to 100 kHz, with 10 measurements per decade. Three different currents (5, 10 and 50 µA) were
used to ensure that the measurement currents were in the linear operation range of the electrode [36].
An integration time of 10 s was used to obtain a reliable and noise-free signal.

Cyclic voltammetry (CV) was performed by cycling the electrode potential was cycled between
the safe potential limits (−0.6 and 0.9 V vs. Ag|AgCl) previously established for similar electrodes [24].
The sweep rates used for CV were 0.05, 0.1, 0.5 and 1.0 V/s. Ten cycles were made at each sweep rate,
the last cycle was used for data analysis. The cathodic charge storage capacity (CSC) was derived from
the CV by taking the integral of the CV below the zero-current axis [10].

VTM were conducted in the same manner as described above for the implanted electrodes, except
the 3-electrode setup and the electrochemical cell were employed. The maximum charge injection limit
(Qinj) and pulsing capacitance (Cpulse) were derived according to Equations (1)–(3).

2.5. Statistics

The data recorded during the 2-h pulsing sessions using an oscilloscope were filtered using a
low-pass Butterworth filter (passband 5 kHz, stopband 15 kHz). Emc and IR-drop were then normalized
to the first measurement (session 1, start). Emc was selected for statistical analysis to represent the
electrode polarization and IRdrop, as a measure of the tissue resistance. Before, between and after the
pulsing sessions, voltage transients were recorded using the VersaSTAT 3 (Princeton Applied Research,
Oak Ridge, TN, USA). From these voltage transients Qinj and Cpulse were used to further quantify the
electrochemical performance of the electrodes. A linear mixed model was used to statistically analyse
the data. Parameters (group, session, time and combinations thereof) were added stepwise to the
model, until adding another parameter did not make a significant difference to the model.

One-way ANOVA was used to investigate the electrochemical properties of the electrodes after
explantation (electrochemical cell setup). The following electrochemical properties of the 6 different
electrode groups were used for statistical analysis:

• Cathodic CSC at 0.05 and 1.0 V/s
• Impedance magnitude at 0.1 Hz
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• Qinj

Significant findings are reported at p-values smaller than 0.05.

3. Results

All implantations were carried out without any complications. The animals recovered well from
the surgery and no infections were observed during the month the electrodes were implanted.

3.1. General Coating Characteristics

In contrast to the well-known yellow-golden coloured TiN, the coatings on the electrodes had
a brownish colour. To analyse the structure and chemical composition of the coating, the electrodes
were studied in SEM and EDX. The overview SEM image (Figure 2a) shows a uniform coating on the
electrode and in the corresponding EDX spectrum (Figure 2b) the expected peaks belonging to Ti and
N are present. The quantification of the amounts of Ti and N from an EDX spectrum is difficult because
the K-line of N and the L-line of Ti are very close. Here, numbers close to a 1:1 atomic ratio of Ti to
N are found (note that weight-% is used in Figure 2b). The SEM images in Figure 3a clearly show a
faceted structure, typical for TiN deposited at high pressure. The cross-section SEM image in Figure 3b
shows the porous morphology of the coating as well. The coating thickness is approximately 6 µm.
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3.2. Changes in Electrochemical Properties during Intensive Pulsing

The shorting part of the setup broke down during the last series of measurements. The last two
stimulation sessions could therefore not be completed with one of the electrodes in the 20 mA—00 Hz
group. The data obtained with this electrode after the breakdown was not used in the analyses.

The significant parameters of the statistical model for IR-drop were: Time, Session,
Group × Session and Time × Session. For Emc, Group was an additional significant parameter of the
statistical model. Figure 4 shows that the results for IR-drop and Emc were similar. Both IR-drop and
Emc were significantly larger during session 1 compared to sessions 2 and 3 for electrode groups 2,
3 and 4. IR-drop and Emc were only significantly larger during session 1 compared to sessions 2 and 3
at the 30 and 60 min measurements. Figure 4a,b also show that IR-drop (for groups 2, 3 and 4) and Emc

(all groups) were significantly larger after 30 and 60 min of pulsing compared to after 90 and 120 min
of pulsing during session 1.
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Figure 4. (a) IR-drop increased from baseline and then decreased during the first pulsing session for
electrode groups 2, 3 and 4. (b) During session 2 and 3 (shown), an increase in IR-drop was seen
from the start of stimulation, after which IR-drop remained stable. The IR-drop of group 2, 3 and 4
electrodes was significantly smaller during sessions 2 and 3 compared to session 1. (c) The same trend
was observed for Emc of all electrode groups but to an even greater extent (notice the axis). (d) An
increase in Emc was also observed from the start of stimulation during sessions 2 and 3 (shown). Emc of
group 2, 3 and 4 electrodes was also significantly smaller during sessions 2 and 3 compared to session 1
but notice again the difference in the axis of IR-drop and Emc.

Emc of group 1 electrodes was significantly larger than Emc of group 2, 3 and 4 electrodes in all
sessions. During session 2, Emc of group 2 electrodes was significantly smaller than Emc of group 1 and
3 electrodes and during session 3 Emc of group 2 electrodes was significantly smaller than Emc of group
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1, 3 and 4 electrodes. Figure 4c,d show that IR-drop and Emc of all electrode groups was significantly
smaller at the start of stimulation compared to after 30, 60, 90 and 120 min of pulsing during session 3.
The same was found for session 2.

3.3. Changes in Electrochemical Properties between Pulsing Sessions

For both Cpulse and Qinj, the significant fixed effects were: Time, Group and Time*Group.
The results of the statistical analysis for Cpulse and Qinj were identical, except for a baseline difference
between electrode groups observed for Qinj (p = 0.045). Qinj of group 2 electrodes (8.3 ± 2.4 µC/cm2)
was significantly smaller than Qinj of group 3 and 4 electrodes (15.8 ± 2.4 µC/cm2).

Figure 5a,b show that Qinj and Cpulse, respectively, of group 1 electrodes did not change
significantly. For group 2, 3 and 4 electrodes, Qinj increased significantly to values of
26.45 ± 2.7 µC/cm2, 50.00 ± 2.4 µC/cm2 and 52.50 ± 2.4 µC/cm2, respectively, after 6 h of
intense pulsing. Cpulse of electrode groups 2, 3 and 4 increased significantly to capacitances of
54.1 ± 5.4 µF/cm2, 97.1 ± 4.9 µF/cm2 and 106.0 ± 4.9 µF/cm2, respectively. Figure 5c,d show that the
increase in Cpulse caused a decrease in electrode polarization. This decrease in electrode polarization
led to an increased Qinj.
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CSC at 0.05 and 1.0 V/s and a significantly larger impedance magnitude at 0.1 Hz compared to all 

Figure 5. (a) After the first pulsing session Qinj was increased compared to before pulsing for electrode
groups 2, 3 and 4. (b) The same was observed for Cpulse of electrode groups 2, 3 and 4. (c) Normalized
voltage transients recorded before pulsing at 3 mA. (d) Normalized voltage transients recorded at 3 mA
after 2 h of pulsing.

Electrode group 1 had a significantly smaller Qinj than all other electrode groups after the first
pulsing session, which remained after the second and third pulsing session. Furthermore, electrode
group 2 had a significantly smaller Qinj than electrode groups 3 and 4 after the first pulsing session.
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This difference also remained significant after pulsing sessions 2 and 3. The same group differences
were observed for Cpulse.

3.4. Electrochemical Characteristics after Explantation

The results of the electrochemical characterization in phosphate buffered saline were largely
consistent across measurements, as shown in Figure 6. Group 1 electrodes had a significantly smaller
CSC at 0.05 and 1.0 V/s and a significantly larger impedance magnitude at 0.1 Hz compared to all
other electrode groups. They also had a significantly smaller Qinj compared to group 2 electrodes
and the control electrodes in groups 5 and 6. But the Qinj of group 1 electrodes was not significantly
different from group 3 and 4 electrodes.
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Figure 6. (a) The impedance magnitude was significantly larger for electrode group 1 compared to the
other electrode groups, which was implanted and pulsed at the lowest electrical dose. (b) The cyclic
voltammogram shows that the charge storage capacity of electrode group 1 was significantly smaller
than the other electrode groups. (c) The normalized voltage transients at 5 mA show that the slope
of the group 1 electrodes was larger than the slopes of the other electrode groups but no significant
difference was found for Cpulse. (d) Qinj of group 1 electrodes was significantly smaller than Qinj of
group 2, 5 and 6 electrodes.

3.5. Coating Properties after Explantation

SEM images (see Figure 7) showed that the electrode surfaces were intact after 6 h of intense
stimulation. The coatings were all undamaged and had the same faceted structure, which is typical
for TiN, as the electrodes had after deposition of the coating. Figure 7 indicates that there were
no differences in chemical composition of group 1 and group 4 electrodes. The EDX spectra of all
electrodes in all groups showed similar levels of titanium, nitrogen and oxide.
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Figure 7. (a) Close-up SEM image (magnification: 10,000×) of an electrode in group 1 (20 mA—200 Hz),
showing that the surface structure is still intact (scale bar: 10 µm). The same is true for (b), showing
the detailed structure of an electrode in group 4 (50 mA—400 Hz, scale bar: 10 µm, magnification:
15,000×). (c) Overview SEM (magnification 450×) and corresponding EDX images of an electrode in
group 1 show that the chemical composition of the electrode surface after pulsing was very similar to
(d) the chemical composition of the electrode surface of an electrode in group 4. Also visualized by an
overview SEM (magnification 450×) and corresponding EDX images of an electrode in group 4.

4. Discussion

Several previous studies [37–39] have shown that TiN coatings grown at high N-partial pressures
become porous. These coatings have a brown colour that clearly distinguish them from the standard
golden-coloured TiN used on tools and components. For use in electrode applications, it is essential
to use the porous type of TiN coating as they have a high effective surface area, which in turn leads
to a low impedance [3,4]. Cunha et al. [39] did a systematic study of the influence of N-content of
the morphological structural and electrochemical properties of TiN coatings. In the case of high
N-content (Ti:N ratio 1:1.34), these authors obtain results similar to ours regarding the coating
morphology. The reason for the discrepancy in chemical composition (in our case we measure a
Ti:N ratio 1:1 with EDX) could be that Cunha et al. [39] have determined the chemical composition
using Rutherford Backscattering Spectrometry, which provides a more precise determination compared
to EDX. Other studies have found that porous near-stoichiometric TiN coatings can be obtained just by
adjusting the energy available during film growth [40].

Six groups of electrodes were used in this study, five of which were implanted and four of which
were used for 6 h of intense pulsing at different electric doses:

• Group 1: 20 mA, 200 Hz
• Group 2: 20 mA, 400 Hz
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• Group 3: 50 mA, 200 Hz
• Group 4: 50 mA, 400 Hz
• Group 5: implanted controls
• Group 6: un-implanted controls

During intense pulsing, IR-drop was derived from the voltage transients as a measure of tissue
impedance and Emc was used as a measure of electrode polarization. Between the three 2-h pulsing
sessions, Qinj was evaluated and from these voltage transients Cpulse was derived.

No significant changes were observed during intense pulsing for group 1 electrodes, receiving the
lowest electrical dose. For group 2, 3 and 4 electrodes the IR-drop and Emc decreased and Qinj and
Cpulse increased. The stability in pulsing properties of group 1 electrodes together with the fact that
these electrodes received the lowest electrical dose, would intuitively lead to the expectation that these
electrodes did not corrode [4,7,8,23–26]. For group 2, 3 and 4 electrodes, on the other hand, it could be
expected that corrosion may have occurred, even though the observed electrochemical changes are
favourable in the light of pulsing capability (higher charge injection, lower electrode polarization).
Passivation at high anodic potentials was the main expected corrosive reaction [33,34], leading to
decreased pulsing capability. Excessive bubbling due to water reduction [34], however, may lead to
cracking of the coating. This could increase the surface area and thereby lead to an apparent increase
Qinj. The results of the electrochemical characterizations after explantation showed that group 1
electrodes had significantly deteriorated electrochemical properties compared to all other electrode
groups. Group 2, 3 and 4 electrodes, on the other hand, had no different electrochemical properties
after explantation than the two control groups (5 and 6).

Analytical investigations could neither confirm nor reject the electrochemical results. SEM images
show that all coatings seemed to be intact. EDX spectra did not reveal differences between the harshest
and mildest stimulated electrodes either. However, it must be noted that it is difficult to distinguish
between the oxygen and nitrogen signal using EDX because the K-peaks of the two elements are quite
close. As oxidation of the coating could have occurred, other analytical methods have been attempted
(X-ray photoelectron spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry) in order to
detect any differences in oxygen amounts. Preliminary results were unsuccessful, mainly because the
geometry and size of the electrode is quite challenging in both the experimental set-ups. It is, however,
very unlikely that the coating oxidized without showing any signs of damage. Norlin et al. [34] show
SEM images porous TiN electrodes after anodic pulsing, which are severely damaged. For the current
electrodes no signs of damage were found using SEM and EDX analysis.

Corrosion studies of stimulation electrodes have been performed extensively in saline [3,34,41–43].
Some studies found that the damage threshold is exactly at the water window limit [43], others suggest
that the water window limit may be too conservative under pulsing conditions [41,44] and yet others
suggest that corrosion may occur even within the limits of water reduction and oxidation [42]. TiN has
been most extensively investigated by Norlin et al. [3,34,45]. Their pulsing study was carried out using
700V pulses of both anodic and cathodic polarity [34]. As expected, TiN showed severe corrosion upon
anodic pulsing but was stable when cathodic pulses were applied. The voltages recorded in this study
during constant current pulsing were, however, a factor 15–30 smaller. In a later study, the electrodes
were aged using more conservative voltages (−3 and 1 V vs. Ag|AgCl), corresponding to 4 months
of use based on the charge passed [3]. TiN proved very stable, which was expected, as high anodic
voltages were avoided. In the current study, very high anodic voltages were also avoided by using a
cathodic first stimulation paradigm. Anodic voltages between 1 and 3 V (vs. open circuit potential)
were observed with the highest voltages in the 50 mA groups (groups 3 and 4). No signs of corrosion
were observed for the electrodes in those groups, while corrosion of the anodically pulsed samples by
Norlin et al. [34] was obvious in SEM images.

It has also been shown before that safe limits obtained in inorganic solutions do not necessarily
apply to electrodes in protein containing solution [46] and implanted electrodes [47,48]. It was therefore
concluded that proteins must protect the electrode surface against corrosion [46,48,49]. However,
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Qinj was never measured in vivo for these electrodes and it is therefore unclear whether or not it
was exceeded [47,48]. The in vitro water window limits for platinum were not exceeded in either
of the studies but in both studies corrosion was observed nevertheless [47,48]. Shepherd et al. [48]
argue, however, that corrosion was not stimulation-induced but due to production failures. In the
current study, Qinj (measured in vivo) was exceeded for all stimulated electrode groups (1, 2, 3 and
4) during all stimulation sessions. However, group 1 and 2 electrodes were pulsed at approximately
20% of Qinj as measured in saline and groups 3 and 4 electrodes were pulsed at approximately 50%
of the in vitro Qinj. Robblee et al. [47] stimulated their electrodes at approximately 5% and 30% of
Qinj in vitro. They observed platinum dissolution for all electrodes pulsed at 30% of Qinj (in vitro)
and less for electrodes pulsed at 5%. Shepherd et al. [48] stimulated the electrodes at 5-10% of Qinj

in vitro but concluded that the observed corrosion was not stimulation-induced. This makes it obvious
that in vitro safe limits cannot be applied in vivo. However, it does not rule out that limits measured
in vivo using techniques developed in vitro may be too conservative.

Interestingly, we found that corrosion most likely occurred for the electrodes pulsed at the lowest
electrical dose (group 1 electrodes; 20% of Qinj in vitro and 200 Hz). As group 2, 3 and 4 electrodes
showed no signs of corrosion in the electrochemical characterizations after explantation, the occurrence
of corrosion seems not only dependent on the electrode potentials or charge delivered. We suspect that
the occurrence of corrosion is not only medium dependent (organic vs. inorganic, basic vs. acidic) but
also tissue dependent. Although tissue damage was not the focus of this study, it seems to play an
important role. No tissue damage seems to have occurred for electrode group 1, while tissue damage
with increasing severity occurred for electrode groups 2–4 (see Figure S2). The lack of tissue damage
for electrode group 1 is confirmed by the lack of change in IR-drop, which is representative of tissue
impedance [10]. The same amount of charge density per phase was injected for electrode groups 1
and 2 but due to the increased frequency tissue damage is likely to have occurred in group 2 [50,51].
Tissue damage obviously occurred in electrode groups 3 and 4 (see Figure S2). Based on the IR-drop
data, it appears that the tissue was damaged during the first hour of the first pulsing session for
electrode groups 2, 3 and 4. It seems that a new electrode-tissue interface was formed that remained
during pulsing session 2 and 3. This new electrode-tissue interface allowed for more charge injection,
as Qinj and Cpulse were significantly increased after the first pulsing session compared to before pulsing.
And although the electrodes were still pulsed beyond the increased Qinj in vivo, the formation of a
new electrode-tissue interface and corresponding increase in Qinj may thus have prevented corrosion.

The electrode-tissue interface appears to play a very important role with regards to the occurrence
of corrosion. These results can therefore only be applied to stimulation electrodes implanted in
adipose tissue, like ours [23,24,52] and like Bion [53] for example. They cannot be applied to
implants in the brain [47], the cochlea [48] or the blood stream [1,2,4]. Furthermore, our electrode
is a macro-electrode (0.06 cm2). There are indications that different charge injection limits apply to
smaller microelectrodes [51]. These results might therefore not apply to microelectrodes. Lastly, as it is
challenging to work with larger animals, such as minipigs, the number of animals is low compared
to rodent studies for example. The results, however, are consistent across measurements and rather
homogeneous within the electrode groups and were thus statistically significant.

With the recent increase in investment in “electroceuticals,” the development of novel, smaller
and more sophisticated implants may be anticipated [54]. It is therefore more important than ever
before to establish safe limits that apply to these specific implants [51]. We show that this is not only
relevant in the light of tissue damage but also with respect to corrosion and long-term electrochemical
performance of the implants. In the light of tissue damage due to corrosion, TiN appears to be a very
suitable material for implants. There seems to occur no dissolution of the material [55], like with Pt [46]
and IrOx [43]. As long as very high anodic potentials are avoided [34], we show that no corrosion
occurs even after almost 9 million pulses. When corrosion does occur, its product (a passivation layer)
remains attached to the electrodes and is not harmful to the tissue [33,55].
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5. Conclusions

It was long suspected that in vitro safe limits established for implantable electrodes may not
be applicable in vivo, which we confirm here. We also show that the type of tissue in which the
electrode is implanted has an influence on safety limits. Biocompatibility and corrosion resistance
cannot be viewed as two separate properties of implantable stimulation (and sensing) electrodes.
Tissue responses influence the electrochemical behaviour of implanted electrodes and use of the
electrodes influences the tissue surrounding the electrodes. It is therefore of great importance that safe
limits are established for each electrode depending on the tissue in which it will be implanted.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/9/4/389/s1,
Figure S1: (a) Tissue around the tip of an electrode stimulated at 20 mA-200 Hz after 1 week of implantation.
The tissue was stained using haematoxylin and eosin (H&E), which is the most commonly applied stain in medical
diagnostics. Some inflammatory cells can still be observed but capsule formation has begun to take place. (b) Cells
around the silicone part of the electrode appear very similar to those around the electrode tip, indicating no signs
of stimulation-induced tissue damage. Figure S2: (a) The tissue around electrodes in group 1 showed no signs
of tissue damage upon sacrifice. (b) The tissue around electrodes in group 2 showed some redness around the
electrode tip, which likely is due to tissue damage. (c) The tissue around the electrode tips of electrodes in group 3
showed obvious tissue damage but the tissue around the insulated parts was unaffected. (d) The tissue around
the electrode tips of electrodes in group 4 showed even more extensive tissue damage and bleeding. Nevertheless,
the tissue around the insulated parts was unaffected.
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