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XPS Analysis 

The XPS spectra shows a peak at 710.7 eV which can be associated with Fe+3 and appears on all 

the coatings (Figure S1). Satellite at 743.2 eV is characteristic of the Fe+3 state, and positions of satellites 

2 and 3 in agreement with the Fe+3 state. Visually detectable Fe+2 satellites are seen as evidence of the 

mixture of Fe+3 and Fe+2. 
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Figure S1. XPS spectra for Fe2p for: (a) Fe3Al, (b) Fe3Al/TiC, and (c) Fe3Al-Cr/TiC. 

The appearance of the peak at 74.7 eV in the sample before corrosion (Figure S2a) is assigned to 

the binding energy of Al3+ in Al2O3. This oxide could be formed during HVOF technique by the 

exposure of pure aluminum to air. In the case of the polarized (passivated) sample (Figure S2b), there 

is a shift in the Al3+ peak towards high binding energy. By deconvolution of the spectra, it was 

revealed the coexistence of Al3+ as Al2O3, Al(OH)3 and AlCl3 at 74.7, 75 and 77.29 eV, respectively. This 

result for Al is similar to what Frangini et al. [1] reported while comparing oxidized and passivated 

iron aluminide samples. They reported that the outer part of the passive film predominantly consists 

of mixed Al–Fe oxy-hydroxide, whereas the inner part is of mostly an Al-rich oxide phase. 

    

Figure S2. XPS spectra of Al2p for Fe3Al/TiC: (a) before and (b) after polarization test. 

On the passive layer of the two composites appears the peaks of Ti2p (Ti2p1/2 and Ti2p3/2) which 

are compatible to TiO and TiO2. (Figure S3a,b). The peak of Cr2p appears on Fe3Al-Cr/TiC and is 

attributed to Cr(OH)3 that is formed in the passive layer (Figure S3c). These results indicate that the 

passive layer of the composite coatings (Fe3Al/TiC and Fe3Al-Cr/TiC) consists of a mixture of 

aluminum, iron and titanium oxide and aluminum hydroxide, and chromium hydroxide in the case 
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of Fe3Al-Cr/TiC. The presence of hydroxide could be the result of hydration of a passive film that can 

happen by raising potential, as reported by Rao [2]. 

 

 

Figure S3. XPS spectra of Ti2p for: (a) Fe3Al/TiC (b) Fe3Al-Cr/TiC, and (c) Cr2p of Fe3Al-Cr/TiC. 
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