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Abstract: The structural transformations and magnetic property changes of the
Nd16.2FebalCo9.9Ga0.5B7.5 (SG1, SG2) and Nd15.0FebalGa2.0B7.3 (SG3) nanocomposite alloys obtained
by melt spinning in the as-quenched state and after annealing at a temperature range of 560–650 ◦C
for 30 min were studied. The methods used were X-ray diffraction analysis, magnetic property
measurements, TEM studies, X-ray fluorescence analysis and Mössbauer spectroscopy. Amorphous
phase and crystalline phase Nd2Fe14B (P42/mnm) were observed in the alloy after melt spinning.
The content of the amorphous phase ranged from 20% to 50% and depended on the cooling rate.
Annealing of the alloys resulted in amorphous phase crystallization into Nd2Fe14B and led to the
increased coercivity of the alloys up to 1840 kA/m (23.1 kOe) at 600 ◦C annealing for 30 min. The alloy
with the maximum coercivity had a grain size of the Nd2Fe14B phase ≈50–70 nm with an Nd-rich
phase between grains.

Keywords: R-Fe-B; phase composition; hysteresis properties; Nd2Fe14B; Nd-rich phase;
amorphous phase

1. Introduction

Permanent magnets have found their application in various engines, generators, recording and
storage devices, etc. Industry needs require a steady increase in the density of magnetic energy
and production volumes of permanent magnets [1–3]. At present, the maximum magnetic energy
(BH)max obtained for a Nd-Dy-Fe-B system of alloys is produced by a powder technology method
using sintering dispersed powders with a grain size of about 1 µm. This grain size provides high
values of coercivity at a level of about 1600 kA/m (20 kOe) [3]. However, due to low natural reserves
and the high cost of Dy, there is significant demand for permanent magnets without Dy.

In this regard, particular interest is shown in nanocrystalline or nanocomposite permanent
magnets obtained by high-energy methods: high-energy milling, severe plastic deformation,
quenching from liquid state, etc. In these systems, exchange coupling effects [4–9] or the formation
of intergranular phases changing the exchange interaction between the grains and increasing the
coercivity can be observed. According to Murakami et al. [10], such phases can be ferromagnetic
and non-ferromagnetic [1,11] and can have completely different compositions. In the binary Nd-Fe
system, metastable phases can be encountered when quenching from the liquid state into the alloy
enriched with neodymium [12]. However, the effect on the formation of a highly coercive state and
composition has not been fully studied in these materials. Thus, in nanocrystalline or nanocomposite
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alloys obtained by the extreme effects methods, the magnetic properties are determined not only by the
fundamental parameters of the phases but mainly by the parameters of the structure and morphology
of these phases.

Another important question linked to the formation of a highly coercive state is the alloying of
the Nd-Fe-B system. For the last 30 years or more of the investigation of the Nd2Fe14B compound,
the influence of a large number of alloying components has been studied, but the most interesting
effect can be observed with Ga addition [13–17]. The influence of Ga on the formation of the texture
during the quenching process from the liquid state was studied by Nguyen et al. [13]. Since the main
drawback of materials obtained by the extreme effects methods is the isotropy of their properties,
the formation of the texture could greatly increase (BH)max and surpass the sintered magnets in terms
of properties.

According to Cui et al. [18], a partial substitution of 1.1 at.% Fe for Ga of mechanically alloyed
Nd8.4Fe87.1B4.5 helped to control the morphology, particularly the grain sizes of both the α-Fe and
Nd2Fe14B phases. In [19] it was reported by Pan, that Ga exists in the matrix phase, in grain boundaries,
also forms a Ga-rich phase in the Nd15Co16Ga2B7 alloy. The amount of Ga for the replacement of Fe
should be 1–2% (at.). The existing form of Ga in the grain boundaries is the same as in the matrix
phases, which inhibits the formation of soft magnetic phases. The addition of Ga can decrease the
grain size and increase the grain boundary area, resulting in the domain walls pinning effect and in an
increase of the coercivity of the alloys. Ga additions are often used in sintered magnets to form the
required parameters of the structure and intergrain phases by Kaihong [20]. According to Sasaki [21],
the influence of Ga in the structure formation of sintered magnets is not fully understood. There are
works by Hu et al. [22] and Dahal et al. [23] devoted to the investigation of the effect of Ga on Gd2Fe17

compound, as well as Mössbauer studies of the effect of Ga on its magnetic properties. Nevertheless,
the study of the effect of gallium in alloys obtained by extreme methods, in particular quenching from
a liquid state, is an actual task.

In this paper, we focused on the structural transformations and magnetic properties of the
Nd-Fe-B-Ga nanocrystalline alloy, with the goal of clarifying an understanding of the relationship
between the structure and properties of this system in the initial state and after the heat treatment.

2. Materials and Methods

The near single-phase alloy ingots Nd16.2FebalCo9.9Ga0.5B7.5 (SG1, SG2) and Nd15.0FebalGa2.0B7.3

(SG3) were prepared by induction melting from the pure constituent elements under a high-purity
Ar atmosphere. The ingots were re-melted to ensure homogeneity. The chemical composition of the
samples, namely SG1, SG2 and SG3 was discovered using X-ray fluorescent analysis on Primus II
(Rigaku, Japan, Tokyo) spectrometer. The flakes were made by melt spinning in an argon atmosphere
onto a copper wheel rotating at different linear speeds Vs; SG1: Vs = 10 m/s, SG2: Vs = 20 m/s and SG3:
Vs = 10 m/s. The thermal analysis of the flakes was carried out using the STA 449 F3 Jupiter differential
scanning calorimeter (NETZSCH, Germany, Selb) at a heating rate of 15 ◦C/min to determine the
crystallization temperature of the samples. These flakes were then annealed under a vacuum of 10−4 Pa
to crystallize and develop the desired microstructure and optimize the magnetic properties. The phase
analysis, crystallite sizes and lattice parameters were characterized by X-ray diffraction analysis
(XRD) with the help of the Ultima IV (Rigaku, Japan, Tokyo) diffractometer with CoKα radiation
(λ = 0.17902 nm). X-ray data analysis was carried out using software based on Rietveld’s method
released in PDXL (Rigaku, Japan, Tokyo)) software. Crystallite size was determined by the XRD
peaks broadening method using PDXL (Rigaku, Japan, Tokyo)) software. The quantitative analysis
of the amorphous phase was performed according to the procedure described by Savchenko in [24].
The microstructure of the flakes was characterized by JEM 1400 (JEOL, Japan, Tokyo) and Technai T20
(Thermo Fisher Scientific, Hillsboro, OR, USA, with EDX) transmission electron microscopes (TEM).
Hysteresis loops of the flakes were measured using the physical property measurement system PPMS
Ever Cool II (Quantum Design Inc., San Diego, CA, USA) vibrating sample magnetometer (VSM)
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with an applied field of up to 7200 kA/m (90 kOe). A Mössbauer spectrometer MS-1104Em (Research
Institute of Physics SFU, Russia, Rostov-on-Don) of the electromechanical type with a 50 mCi 57Co
source in an Rh matrix was used.

3. Results

Table 1 shows the chemical composition of the samples, namely SG1, SG2 and SG3. The alloys
SG1 and SG2 were similar in chemical composition. The difference between them was their individual
cooling rates: SG1—10 m/s, SG2—20 m/s.

Table 1. Chemical composition, results of the quantitative phase analysis and magnetic properties of
the melt quenched samples.

Sample,
Conditions

Chemical Composition (Fe-Basis), % Phase Composition, %
Lattice Spacing
Nd2Fe14B, nm

Magnetic Properties

Nd Co Ga B Dy Ni Cu Nd2Fe14B Amorphous Hci, kA/m
(Oe)

σr,
A ×m2/kg

σs,
A ×m2/kg

SG1 Vs = 10
m/s

34.7
± 0.5

8.7 ±
0.3

0.5 ±
0.1

1.2 ±
0.1

0.11
±

0.05

0.10
±

0.05

0.09
±

0.05
65 ± 5 35 ± 5 a = 0.8782

c = 1.2192
137.2
(1720) 19.9 79.2

SG2 Vs = 20
m/s

34.6
± 0.5

8.7 ±
0.3

0.4 ±
0.1

1.3 ±
0.1

0.10
±

0.05

0.11
±

0.05

0.08
±

0.05
50 ± 5 50 ± 5 a = 0.8782

c = 1.2192 14.4 (180) 12.7 106.1

SG3 Vs = 10
m/s

32.8
± 0.5

0.10
±

0.05

2.1 ±
0.2

1.2 ±
0.1 -

0.10
±

0.05

0.10
±

0.05
80 ± 5 20 ± 5 a = 0.8823

c = 1.2251
253.3
(3176) 27.7 93.8

The amount of Nd for all samples was also higher than the stoichiometric amount necessary for
the formation of the Nd2Fe14B phase. SG3 had the highest amount of Ga. Figure 1 shows XRD patterns
of SG1, SG2 and SG3 alloys in the as-quenched state.
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The SG1, SG2 and SG3 alloys in the initial state after melt spinning were characterized by the
presence of a crystalline Nd2Fe14B (P42/mnm) phase and amorphous phase (see Figure 1a) in an
amount of 20 to 50 vol.%. In the SG1 and SG2 alloys, obtained at different cooling rates, the amount
of amorphous phase was larger in the SG2 sample obtained with a higher cooling rate. In alloy SG3,
the lattice spacings were found to increase in comparison with the SG1 and SG2 alloys and the pure
phase of Nd2Fe14B. It can be assumed that this was due to the diffusion effect of Ga in the solid solution.
The magnetic properties of the investigated alloys are presented in Table 1. The coercivity values were
correlated with the amount of amorphous phase. It should be mentioned that the magnetic loops
had a stretched shape. According to the TEM data, the grain size of the Nd2Fe14B phase was about
11 ± 2 nm (Figure 1b).

To determine the crystallization temperatures of the amorphous phase, Differential scanning
calorimetry (DSC) studies were carried out and presented in Figure 2.
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Figure 2. Differential scanning calorimetry (DSC) curves of samples after melt quenching.

From the DSC curves, it can be seen that all the samples had exothermic peaks linked with the
crystallization of the amorphous phase. In addition, the peak area was connected to the amorphous
phase volume fraction. The SG2 sample had the highest peak area with the maximum amorphous
phase volume fraction (50 ± 5%). The SG1 and SG3 samples showed a smaller peak area, with a smaller
amorphous phase volume fraction (35 ± 5% and 20 ± 5%, respectively). For samples SG1 and SG2,
crystallization temperatures of the amorphous phase were very close to 529 and 534 ◦C, respectively,
and the SG3 alloy had a crystallization start temperature of 572 ◦C, due to the higher Ga content.

Annealing of the alloys was carried out in a temperature range of 560–650 ◦C for 30 min. During the
annealing of the sample SG1, the crystallization of the amorphous phase took place with the formation of
Nd2Fe14B. As the amorphous phase is soft and the Nd2Fe14B phase is hard magnetic, the crystallization
process is accompanied by drastic coercivity growth. A phase with the hexagonal crystal structure
(P63/mmc), which we described as a Nd-rich phase also appeared. The maximum volume fraction of
the Nd-rich phase was reached at 560 ◦C. With an increase of the annealing temperature, the volume
fraction decreased (Table 2 and Figure 3).
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Table 2. Results of the quantitative phase analysis and magnetic properties of the samples
after annealing.

Annealing
Temperature, ◦C

Phase Composition, % Parameters of Nd2Fe14B Phase Magnetic Properties

Nd2Fe14B Nd-rich Crystalline
Size, nm a, nm c, nm Hci, kA/m

(kOe)
σr,

A ×m2/kg
σs,

A ×m2/kg

SG1

560 90 ± 2 10 ± 1 39 ± 3 0.8773 1.2194 238.7 (3.0) 65.5 130.3
580 89 ± 2 11 ± 1 39 ± 3 0.8774 1.2185 1161.8 (14.6) 65.4 127.5
600 97 ± 2 3 ± 1 37 ± 3 0.8779 1.2199 1559.7 (19.6) 64.9 130.3
625 100 ± 3 <3 40 ± 2 0.8791 1.2201 1313.0 (16.5) 65.5 129.5
650 100 ± 3 <3 47 ± 2 0.8784 1.2186 222.8 (2.8) 65.5 128.7

SG2

560 94 ± 3 6 ± 2 35 ± 2 0.8774 1.2187 326.3 (4.1) 52.0 130.2
580 92 ± 3 8 ± 2 37 ± 2 0.8774 1.2186 867.4 (10.9) 65.2 129.8
600 97 ± 3 3 ± 1 37 ± 2 0.8779 1.2199 1838.2 (23.1) 65.8 130.6
625 100 ± 3 <3 40 ± 2 0.8791 1.2201 1297.1 (16.3) 67.2 129.7
650 100 ± 3 <3 47 ± 2 0.8784 1.2186 1090.2 (13.7) 66.6 130.9

SG3

560 95 ± 1 5 ± 2 37 ± 3 0.8787 1.2251 191.0 (2.4) 50.3 127.7
580 97 ± 2 3 ± 1 36 ± 2 0.8786 1.2242 891.3 (11.2) 64.9 130.6
600 100 ± 3 <3 42 ± 3 0.8793 1.2250 779.9 (9.8) 58.9 133.3
625 100 ± 3 <3 47 ± 3 0.8804 1.2242 549.1 (6.9) 62.3 133.3
650 100 ± 3 <3 44 ± 3 0.8799 1.2249 135.3 (1.7) 63.9 131.2Metals 2019, 9, 497  5 of 10 
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Figure 3. X-ray diffraction (XRD) patterns of samples after annealing.

According to the TEM data (Figure 4), the grain size of the Nd2Fe14B phase after annealing at
600 ◦C increased to 50–70 nm. Furthermore, a secondary phase that was located between the grains
and in the triangular grain boundaries of the main Nd2Fe14B phase can be seen on the microstructure
images (Figure 4). An increase in the annealing temperature led to a change in the morphology of the
Nd-rich phase.
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According to the XRD data, with the increase of the annealing temperature the amount of Nd-rich
phase decreased, possibly due to a change in the phase morphology. Detailed analysis of the chemical
composition of this boundary phase with the help of analytical transmission microscopy is presented
in Figure 5.
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sample after annealing at 625 ◦C for 30 min.

Figure 5 shows that the composition of the boundary phase changed with an increased Nd
concentration up to 30 at.% during scanning along the red line. Unfortunately, due to the low Ga
content, the variation of the concentration in the boundary region was not possible to register. In the
XRD and TEM data, similar patterns were observed in the case of sample SG2 (Table 2).

In the case of SG3, similar patterns were observed as for SG1 and SG2. However, at all temperatures,
the lattice spacing on all alloys was noticeably overestimated for the Nd2Fe14B phase, which can
indicate the dissolution of Ga in the Nd2Fe14B phase and the formation of a solid solution. The Ga
radius (rGa = 0.139 nm) was larger than that of the Fe (rFe = 0.126 nm), but smaller than the Nd radius
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(rNd = 0.182 nm), and we assume that the Ga dissolves predominantly at Fe positions. Otherwise,
the Nd2Fe14B phase lattice spacing would decrease.

Changes in the magnetic properties of the alloys after annealing are shown in Figure 6b and in
Table 2.
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Figure 6. Hysteresis loops of samples annealed at 600 ◦C for 30 min (a) and the dependence of coercivity
on the annealing temperature (b).

For all alloys, the dependence of the coercivity on the annealing temperature was the highest for
samples SG1, SG2, SG3 at 600, 600, 580 ◦C, respectively. The growth of the coercivity of all samples
was linked to the decrease of the amorphous phase amount and to the formation of the Nd-rich phase
between Nd2Fe14B grains. The drop of the coercivity was due to a change in the morphology of the
Nd-enriched phase and due to a change in the exchange interaction between the grains, as well as
the growth of the Nd2Fe14B phase grains, causing an excess in the size of the single-domain state.
The maximum coercivity achieved for sample SG3 was noticeably lower than for samples SG1 and
SG2, which can be related to the formation of a Ga solid solution based on the Nd2Fe14B phase and
a decrease in the anisotropy field, according to Hu [14] and, consequently, a decrease in coercivity.
The saturation magnetization did not practically depend on the annealing temperature for all samples,
although according to the XRD data, as the annealing temperature increased, the fraction of the
neodymium phase decreased. This fact confirmed that the shape and distribution of the Nd-rich phase
began to change after high temperature annealing. The remanence magnetization of samples SG2 and
SG3 increased slightly, and then remained almost the same due to the decay of the amorphous phase.
At temperatures above 600 ◦C the remanence was approximately half of the saturation magnetization,
which indicates the isotropy of the samples and the absence of texture. The maximum properties
were achieved for sample SG2 annealed at 600 ◦C: Hci = 1840 kA/m (23.1 kOe), σr = 65.8 A ×m2/kg,
σs = 130.6 A ×m2/kg. Typical loops of samples annealed at 600 ◦C are shown in Figure 6b.

The Mössbauer spectra of samples SG1 and SG3 are shown in Figure 7, with the calculated results
presented in Table 3.
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Table 3. Mössbauer spectra parameters of SG1, SG2 and SG3 samples annealed at 600 ◦C for 30 min.

Mössbauer Parameters
Fe Site

k1 k2 j1 j2 c e Doublet

Hhf, kOe
SG1 284.4 304.0 272.1 334.9 249.4 231.0 -

SG2 285.2 305.8 273.2 333.9 250.1 246.0 -

SG3 260.7 293.3 269.0 321.6 324.0 218.5 -

Isomer shift (IS), mm/s
SG1 −0.06 −0.111 −0.104 0.074 −0.061 −0.040 0.112

SG2 −0.062 −0.107 −0.083 0.063 −0.087 −0.067 0.08

SG3 −0.12 −0.173 0.085 0.237 −0.009 −0.070 0.055

Quadrupole splitting
(QS), mm/s

SG1 0.243 0.190 0.141 0.560 0.082 0.588 0.687

SG2 0.236 0.184 0.152 0.597 0.106 0.449 0.649

SG3 −0.002 −0.014 0.685 0.730 0.359 0.166 0.801

Relative intensity, %
SG1 30.78 22.58 11.16 12.87 16.27 2.07 4.27

SG2 26.12 22.9 15.4 11.8 4.2 16.8 4.7

SG3 29.15 24.41 17.03 8.39 5.5 11.91 3.6

The spectra clearly show doublets that belong to the Nd-rich phase paramagnetic phase.
According to the Mössbauer spectrum there was a slight increase of ultrafine magnetic fields in
SG2 sample. To describe the Nd2Fe14B phase, six sextets with the parameters from the Manivel
paper [25] were used. Analysis of the Mössbauer spectra allows us to conclude that the parameters of
the doublet and the sextets of samples SG1 and SG3 were different, which means that the Ga formed
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solid solutions in both Nd2Fe14B- and Nd-rich phases. The low values of the areas of component (c)
and (e) (see Table 3) suggest a possible preferential occupation of these positions by Ga atoms.

4. Conclusions

The melt spinning of Nd-Fe-B-Ga alloys—Nd16.2FebalCo9.9Ga0.5B7.5 (SG1, SG2) and
Nd15.0FebalGa2.0B7.3 (SG3)—resulted in their partially amorphization, with the formation of a crystalline
Nd2Fe14B phase and an amorphous phase ranging from 20 to 50%. The amount of amorphous phase
grew as the cooling rate increased. After quenching from the liquid state, the researched alloy with
a high Ga content was characterized by increased lattice spacing values, which was linked to the
dissolution of Ga in the Nd2Fe14B phase and the formation of the solid solution. The annealing
of the alloys in the temperature range 560–650 ◦C for 30 min resulted in the crystallization of the
amorphous phase and the formation of a nanocomposite structure that consisted of a Nd2Fe14B
phase grain size of about 50–70 nm and an intergranular Nd-rich phase. The Nd-rich phase had
30 at.% Nd. This nanocomposite structure provided a highly coercive state. The crystallization
process was accompanied by an extreme dependence of coercivity on the annealing temperature,
with a maximum at 600 ◦C for alloys SG1 and SG2 and 580 ◦C for the SG3 alloy. The saturation
magnetization and remanence did not depend on the annealing temperature due to the isotropic state
of the alloys. The maximum properties were achieved on the SG2 alloy after annealing at 600 ◦C
for 30 min (Hci = 1840 kA/m (23.1 kOe), σr = 65.8 A × m2/kg, σs = 130.6 A × m2/kg). The SG3 alloy
with the maximum Ga content had lower properties compared to the SG1 and SG2 allows, due to the
Ga dissolution resulting in a decrease of the anisotropy field in the Nd2Fe14B phase. According to
Mössbauer studies, the Ga dissolved both in the Nd2Fe14B phase and in the Nd-rich phase. High Ga
addition (~ 2 at. %) in the NdFeB alloy led to a decrease in magnetocrystalline anisotropy that resulted
in a reduction of the coercivity of the alloys.
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