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Abstract: A detailed analysis of the dehydrogenation mechanism and reversibility of LiBH4

doped by as-derived Al (denoted Al*) from AlH3 was performed by thermogravimetry (TG),
differential scanning calorimetry (DSC), mass spectral analysis (MS), powder X-ray diffraction
(XRD), scanning electronic microscopy (SEM), and Fourier transform infrared spectroscopy
(FTIR). The results show that the dehydrogenation of LiBH4/Al* is a five-step reaction:
(1) LiBH4 + Al→ LiH + AlB2 + “Li-Al-B-H” + B2H6 + H2; (2) the decomposition of “Li-Al-B-H”
compounds liberating H2; (3) 2LiBH4 + Al→ 2LiH + AlB2 + 3H2; (4) LiBH4 → LiH + B + 3/2H2;
and (5) LiH + Al→ LiAl + 1/2H2. Furthermore, the reversibility of the LiBH4/Al* composite is
based on the following reaction: LiH + LiAl + AlB2 + 7/2H2↔ 2LiBH4 + 2Al. The extent of the
dehydrogenation reaction between LiBH4 and Al* greatly depends on the precipitation and growth
of reaction products (LiH, AlB2, and LiAl) on the surface of Al*. A passivation shell formed by these
products on the Al* is the kinetic barrier to the dehydrogenation of the LiBH4/Al* composite.
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1. Introduction

Hydrogen is recognized as an ideal energy vector with the advantages of high combustion value
and zero pollution [1–3]. However, the storage of hydrogen is still challenging for its on-board
application. Hydrogen energy can be stored in gas, liquid, and solid forms, among which solid
hydrogen storage is the safest. Currently, complex metal hydrides are considered as the most promising
hydrogen storage materials due to their large hydrogen storage capacities [4–6].

Lithium borohydride (LiBH4) has drawn much attention for on-board hydrogen storage due to
its theoretical hydrogen storage capacity as high as 18.5 wt.%, which far exceeds the requirements
of vehicle hydrogen storage material by the US department of energy [7,8]. Unfortunately, LiBH4 is
thermodynamically stable, and dehydrogenation is only initiated when the temperature is above 400 ◦C
under 1 bar H2. The reversibility of LiBH4 is poor, and rehydrogenation requires a temperature over
600 ◦C under 350 bar H2 [9,10]. Various methods have been developed to improve the dehydrogenation
properties and reversibility of LiBH4. Some researchers [11–13] found that thermodynamic
destabilization of LiBH4 could be achieved by adding reactive hydride composites (RHC) to change
its dehydrogenation steps. For instance, Vajo et al. [13] reported that the dehydrogenation reaction
enthalpy was much lower than that of the pure LiBH4 by doping with MgH2. The formation of MgB2

during the dehydrogenation reaction destabilized LiBH4, and the reversibility of the LiBH4-MgH2

composite was also better than pure LiBH4. After that, many metal hydrides or complex hydrides
have been employed to improve the hydrogen storage properties of LiBH4 [14–21].
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According to the theoretical calculation based on phase diagrams, the decomposition temperature
of the LiBH4/Al composite was predicted to be significantly lower than that of pure LiBH4 [22,23].
Therefore, Al has been popularly employed as another destabilization agent to improve the hydrogen
desorption properties of LiBH4. The Al source can be either a metallic Al or a complex hydrides
containing Al [24–26]. However, the metallic Al is usually coated with an oxide layer, which greatly
limits the improvement of dehydrogenation and the reversibility of LiBH4. Moreover, the utilization of
Al-containing hydrides will inevitably introduce the influence of other atoms on the de/rehydrogenation
reaction. In order to investigate the mechanism and influence of pure Al on the dehydrogenation
and reversibility of LiBH4, an as-prepared Al (denoted Al*) derived from AlH3 was employed
as a destabilization agent. The hydrogen desorption properties and mechanism of the LiBH4/Al*
composite were studied systematically, along with kinetic investigations using a Sieverts-type apparatus.
The Kissinger method was used to calculate the activation energy of the main dehydrogenation step of
the LiBH4/Al* composite, and its reversibility was also discussed.

2. Materials and Methods

The LiBH4 powder (95% purity; Acros Organics) and Al powder (99% purity; Sinopharm Group)
were employed as raw materials. AlH3 was synthesized as follows: LiAlH4 and AlCl3 were dissolved
in diethyl ether at a molar ratio of 3:1. After the reaction (1) was fully carried out, the precipitate LiCl
was filtered off, and the filtrate containing AlH3 was separated from the mixture. Pure AlH3 was
then obtained from the filtrate by drying and de-ethering in vacuum. Finally, AlH3 was completely
dehydrogenated to obtain active Al* by heating to 200 ◦C and holding for 2.5 h. The dehydrogenation
curves of AlH3 and X-ray diffraction (XRD) patterns of AlH3 before and after dehydrogenation are
shown in Figure 1a,b, respectively.

3LiAlH4 + AlCl3→ 4AlH3 + 3LiCl↓ (1)
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Figure 1. The dehydrogenation curves (a) of AlH3 and X-ray diffraction (XRD) patterns (b) of AlH3 
before and after dehydrogenation. 

The commercial Al powder was used for comparison with the as-prepared Al* in this study. 
The LiBH4/Al and LiBH4/Al* composites were synthesized by ball-milling using a QM-3SP4 
planetary ball mill (Nanjing Nanda Instrument Plant, Nanjing, China). The ball to powder ratio was 
45:1. The milling process was carried out at 400 rpm for 30 min under a 0.1 MPa argon atmosphere. 
To prevent the temperature from rising too fast during long-term milling, the milling process was 
paused every 6 min for cooling. All of the samples were handled in a Mikrouna glove box filled 
with high purity argon (99.999%) and controlled H2O (<0.5 ppm) and O2 (<0.1 ppm) concentrations 
for preventing contamination.  

Figure 1. The dehydrogenation curves (a) of AlH3 and X-ray diffraction (XRD) patterns (b) of AlH3

before and after dehydrogenation.

The commercial Al powder was used for comparison with the as-prepared Al* in this study.
The LiBH4/Al and LiBH4/Al* composites were synthesized by ball-milling using a QM-3SP4 planetary
ball mill (Nanjing Nanda Instrument Plant, Nanjing, China). The ball to powder ratio was 45:1.
The milling process was carried out at 400 rpm for 30 min under a 0.1 MPa argon atmosphere.
To prevent the temperature from rising too fast during long-term milling, the milling process was
paused every 6 min for cooling. All of the samples were handled in a Mikrouna glove box filled with
high purity argon (99.999%) and controlled H2O (<0.5 ppm) and O2 (<0.1 ppm) concentrations for
preventing contamination.
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The morphologies of the as-received Al and as-prepared Al* were observed via field emission
scanning electronic microscopy (SEM, Hitachi, Tokyo, Japan). Dehydriding/rehydriding behaviors
of the samples were examined using a carefully calibrated Sieverts-type apparatus [27]. For the
temperature programmed desorption (TPD) measurements, the samples were heated from room
temperature to 600 ◦C at a rate of 2 ◦C/min. For the rehydriding measurements, the samples were
heated to 400 ◦C at a rate of 5 ◦C/min under 8 MPa H2 and held at that temperature for 7 h. The thermal
events during dehydrogenation of the samples were investigated by thermogravimetry/differential
scanning calorimeter (TG/DSC, Netzsch, Ahlden, Germany). For the isothermal hydrogen desorption
measurements, the samples were rapidly heated to a set temperature (i.e., 100 ◦C, 350 ◦C, 500 ◦C,
and 600 ◦C) and held for 3h under argon flowing at 50 mL/min. For the non-isothermal dehydrogenation
(i.e., the temperature programmed desorption, TPD) measurements, the samples were heated gradually
from room temperature to 600 ◦C with a heating rate of 5 ◦C/min. The hydrogen desorption spectra
were collected synchronously using a mass spectrometer (MS, Netzsch, Ahlden, Germany). The phase
of the as-prepared samples and the dehydrogenation product of them at various temperatures were
identified by X-ray diffraction (XRD, PANalytical, Almelo, Netherlands) and Fourier transform infrared
spectroscopy (FTIR, Bruker, Basel, Switzerland). During XRD measurements, the samples were sealed
with a polypropylene membrane to avoid exposure to any moisture or oxygen.

3. Results and Discussion

3.1. Dehydrogenation Mechanism of the LiBH4/Al* Composite

The SEM images of the as-received Al particles and as-prepared Al* particles are shown in Figure 2.
It can be seen that the particle size of the as-received Al is about 100 µm, while the particle size of active
Al* derived from AlH3 is about 1% of this. A sharp reduction in the particle size means a significant
increase in the specific surface area.
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than that of LiBH4/Al. Finally, the total dehydrogenation amounts of LiBH4/Al and LiBH4/Al* 
samples at 600 °C reached 5.5 wt.% and 6.2 wt.%, respectively. This can be ascribed to the Al* 
derived from AlH3 having larger specific surface area, and the oxide-free surface of Al* possessing 
higher chemical reactivity. Therefore, the dehydrogenation reaction of LiBH4/Al* is more sufficient 
than LiBH4/Al. 

Figure 2. Scanning electronic microscopy (SEM) images of the as-received Al particles (a) and
as-prepared Al* particles (b).

Figure 3 presents different simultaneous signals for the dehydrogenation of LiBH4/Al and
LiBH4/Al* samples: the thermogravimetry (TG) signal, DSC signal, and hydrogen signal are plotted
over the temperature. It can be seen from Figure 3a that the dehydrogenation curves of the LiBH4/Al
and LiBH4/Al* composites are almost the same before 350 ◦C, and they both liberate about 0.1 wt.% of
H2. After being heated to 350 ◦C, the dehydrogenation rate of LiBH4/Al* is clearly faster than that of
LiBH4/Al. Finally, the total dehydrogenation amounts of LiBH4/Al and LiBH4/Al* samples at 600 ◦C
reached 5.5 wt.% and 6.2 wt.%, respectively. This can be ascribed to the Al* derived from AlH3 having
larger specific surface area, and the oxide-free surface of Al* possessing higher chemical reactivity.
Therefore, the dehydrogenation reaction of LiBH4/Al* is more sufficient than LiBH4/Al.
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Figure 3. Thermogravimetry (TG) curves (a) of LiBH4/Al and LiBH4/Al* samples and differential
scanning calorimetry/mass spectrometry (DSC/MS) curves of LiBH4 (b), LiBH4/Al (c), and LiBH4/Al*
(d) samples.

The DSC/MS curves of LiBH4, LiBH4/Al, and LiBH4/Al* are displayed in Figure 3b–d, respectively.
The endothermic peak in the DSC curve of pure LiBH4 at 112 ◦C corresponds to the crystal transformation
from an orthorhombic phase (o-LiBH4) to a hexagonal phase (h-LiBH4), while the endothermic peak at
288 ◦C corresponds to the melting of h-LiBH4 [28]. LiBH4 is dehydrogenated in the temperature range
of 400 to 550 ◦C, and the dehydrogenation rate reached a maximum at 481 ◦C according to Figure 3b.
Therefore, the endothermic peak at this temperature is ascribed to the decomposition of LiBH4 based
on Reaction (2).

LiBH4→ LiH + B + 3/2H2↑ (2)

There are three endothermic peaks at 465, 482, and 530 ◦C in the DSC curve of the LiBH4/Al
sample (Figure 3c). Each endothermic peak corresponds to a hydrogen evolution peak in the MS
curve. The endothermic peak at 482 ◦C is in good agreement with that of the decomposition of
LiBH4 mentioned above. Compared with Figure 3b, the new endothermic peaks at 465 and 530 ◦C
should be related to the reaction of LiBH4 and the added Al. According to the work of other
researchers [29–31], the endothermic peak at 465 ◦C is ascribed to the LiBH4 reaction with Al forming
LiH, AlB2, and liberating H2 (Reaction (3)), and the endothermic peak at 530 ◦C is attributed to the
reaction of LiH with Al to form LiAl alloy and H2 (Reaction (4)).

2LiBH4 + Al→ 2LiH + AlB2 + 3H2↑ (3)

LiH + Al→ LiAl + 1/2H2↑ (4)

It can be seen from Figure 3d that the dehydrogenation behavior of LiBH4/Al* is more sophisticated
than that of LiBH4/Al. There is a tiny endothermic peak appearing at 376 ◦C in the DSC curve of the
LiBH4/Al* composite, accompanied by a small amount of H2 and B2H6 desorption reflected in the MS
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curve. What is more, there are four endothermic peaks of dehydrogenation locate at 434, 450, 472,
and 560 ◦C. In order to investigate the mechanism of these thermal events, XRD and FTIR analyses were
conducted on the solid products of the LiBH4/Al* sample at different dehydrogenation temperatures
(e.g., 100, 350, 500, and 600 ◦C). The results are shown in Figure 4; Figure 5, respectively. It can be seen
from Figure 4a that no new phase was detected when the sample was heated to 100 ◦C. The shrinkage
of the diffraction peaks of LiBH4 is related to its crystal transformation. When the sample was heated
to 350 ◦C, some tiny diffraction peaks of AlB2 and an unknown phase appeared. The unknown
phase, marked “?”, was also reported by other researchers and considered to be compounds with
components of Li-Al-B [32,33]. Combined with the FTIR spectra in Figure 5a, the diffraction peaks
of LiH overlapping with the diffraction peaks of Al can also be found in Figure 4a at this stage.
This indicates that LiBH4 had started to react with Al* to form LiH, AlB2, and compounds containing
Li-Al-B. At the same time, B2H6 and H2 were released, and the rate reached a peak at 376 ◦C according
to Figure 3d. Therefore, the further decrease of the diffraction intensity of LiBH4 at 350 ◦C (Figure 4a)
can be attributed to its melting and dehydrogenation. When the sample was heated to 500 ◦C, the
LiBH4 could not be detected by the XRD analysis (Figure 4a), and the vibrational peaks of B–H
stretching (2382, 2292, and 2224 cm−1) and bending (1125 cm−1) disappeared (Figure 5a), indicating that
LiBH4 had been completely consumed in dehydrogenation reactions at 376, 434, 450, and 472 ◦C
(Figure 3d). What is more, the diffraction peaks of LiAl appeared, and the diffraction intensity of
LiH and AlB2 slightly increased, while the peaks of Al weakened, and the peaks of compounds
containing Li-Al-B disappeared. Combined with the analyses of LiBH4 and LiBH4/Al samples, it can
be reasonably assumed that the main dehydrogenation peak of LiBH4/Al* at 450 ◦C is attributed
to the reaction of LiBH4 and Al to form LiH, AlB2, and H2 based on Reaction (3). The reaction
temperature was lower than that of the LiBH4/Al sample probably because the particle size of active
Al* derived from AlH3 is much smaller than that of as-purchased Al, and the oxide-free surface of Al*
possesses higher chemical reactivity. An easier atomic diffusion and shorter diffusion lengths led to
less activation energy required for the reaction. The dehydrogenation peak at 472 ◦C is ascribed to the
self-decomposition of LiBH4 forming LiH, B, and H2 based on Reaction (2). However, the diffraction
peaks of B were not found in the XRD examination, and this may be because B was in an amorphous
state. Therefore, the dehydrogenation peak at 434 ◦C is probably related to the decomposition of the
unknown compounds, which can be denoted as “Li-Al-B-H”. Furthermore, the dehydrogenation peak
at 376 ◦C is believed to be attributed to Reaction (5). In addition, AlB2 is generally considered to be
a product that makes the dehydrogenation system reversible, while B2H6 is a toxic gas, which may be
a problem for the future application of the LiBH4/Al* system. Finally, the appearance of LiAl indicates
that LiH had begun to react with Al* to form LiAl and liberate H2 (Reaction (4)) before 500 ◦C.

LiBH4 + Al→ LiH + AlB2 + “Li-Al-B-H” + B2H6↑+ H2↑ (5)
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a 2θ range of 36–48◦ (b).
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Figure 5. Fourier transform infrared spectroscopy (FTIR) patterns of the LiBH4/Al* sample (a) obtained
at different temperatures (room temperature, 100, 350, 500, and 600 ◦C) and reference substances
(b) including KBr, LiH, amorphous B, and LiBH4.

Compared with the XRD patterns at 500 ◦C, no new phase was detected when the LiBH4/Al*
sample was heated to 600 ◦C. The increase of the relative diffraction intensity of LiAl implies that
the reaction of LiH with Al* continued from 500 to 600 ◦C. The dehydrogenation rate of this reaction
reached a peak at 560 ◦C according to Figure 3d. The existence of LiH and Al suggests that the
LiBH4/Al* system still dehydrogenated incompletely even at 600 ◦C. In fact, the dehydrogenation
amount of the LiBH4/Al* sample is far from the theoretical value (7.2 wt.%) according to Figure 3a,
indicating that there exist some kinetic barriers in the dehydrogenation reaction of the LiBH4/Al*
composite. Moreover, the physical barrier is probably the reaction products from the previous step,
which surround the Al* particles and preventing Al* from coming into contact with other reactants.

The whole hydrogen desorption process of the LiBH4/Al* sample, which is schematically shown
in Figure 6, can be concluded as follows: While heating in the crucible, LiBH4 first transformed from
an orthorhombic phase (o-LiBH4) to a hexagonal phase (h-LiBH4) at 112 ◦C and melted at 288 ◦C.
Then, the molten LiBH4 reacted with Al* to form LiH, AlB2, and “Li-Al-B-H” compounds while
releasing B2H6 and H2 based on Reaction (5) at 376 ◦C. As the LiH, AlB2, and “Li-Al-B-H” compounds
were supposed to nucleate and grow on the surface of Al*, the reaction stopped when Al* was
completely wrapped by these reaction products to form a passivation shell. When the temperature rose
to 434 ◦C, the decomposition of the “Li-Al-B-H” compounds liberated a certain amount of H2, and the
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encapsulated Al* exposed some new surfaces. Thus, the main dehydrogenation reaction of LiBH4 and
Al* occurred at 450 ◦C to form LiH, AlB2, and H2 based on reaction (3). Similarly, the reaction stopped
when the surface of Al* was completely wrapped by LiH and AlB2. Therefore, the excess molten LiBH4

underwent self-decomposition to form LiH, B, and H2 (Reaction (2)) at 472 ◦C. That boron (B) was not
detected in the XRD examination may be because B was in the amorphous state. Finally, the product
LiH reacted with Al* to form LiAl alloy and H2 based on Reaction (4) when the sample was heated to
560 ◦C. The actual dehydrogenation amount of the LiBH4/Al* sample did not reach the theoretical
value since there were still uncontacted and unreacted LiH and Al* at 600 ◦C.Metals 2019, 9, x FOR PEER REVIEW 7 of 11 
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3.2. Kinetic Properties of the Dehydrogenation of the LiBH4/Al* Composite

The kinetic properties of the dehydrogenation of the LiBH4/Al* composite were studied using
the Kissinger method, which assumes that the apparent activation energy (Ea) of dehydrogenation
reaction is determined by Equation (6).

ln(β/Tm
2) = −Ea/RTm + C (6)

In this equation, β is the heating rate in thermal analysis, and Tm represents the absolute
temperature at the maximum reaction rate. Moreover, R is the universal gas constant, and C also
represents a constant. Therefore, the Ea of the dehydrogenation reaction of the LiBH4/Al* composite
can be obtained from the slope of a linearly fitted line in the ln(β/Tm

2)-Tm
−1 spectrum.

During the kinetic investigations, the LiBH4/Al and LiBH4/Al* samples were heated to 600 ◦C at
the rates of 5, 10, and 20 ◦C/min, respectively. The MS curves at various heating rates and the Kissinger
spectra reflecting the Ea of the main dehydrogenation reaction are shown in Figure 7. It can be seen
that the temperatures for the maximum dehydrogenation rate of LiBH4/Al* at the heating rates of 5, 10,
and 20 ◦C/min are 449.9, 471.1, and 485.2 ◦C, respectively. These are all lower than that of LiBH4/Al at
the same heating rates. The Ea of the main dehydrogenation reaction of LiBH4/Al* is calculated to
be 163.8 kJ/mol, while that of LiBH4/Al is 243.5 kJ/mol. This is in good agreement with the previous
analysis that the smaller particle size and higher chemical reactivity of Al* can reduce the activation
energy and improve the kinetic properties of the dehydrogenation reaction.
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LiBH4/Al samples.

3.3. Reversibility of the LiBH4/Al* Composite

In order to investigate the reversibility of the LiBH4/Al* composite, a rehydrogenation test was
carried out under 8 MPa H2 at 400 ◦C. The rehydrogenation curve of the sample is shown in Figure 8.
It can be seen that the dehydrogenated LiBH4/Al* sample absorbed 2.6 wt.% of hydrogen in the first
60 min. Then it entered a stable hydrogen absorption stage and reached saturation after 480 min.
The total rehydrogenation capacity was 5.5 wt.%. Compared with the harsh rehydrogenation conditions
reported by other researchers [9,10], the doping of active Al* derived from AlH3 effectively improved
the reversible hydrogen storage properties of LiBH4.
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The rehydrogenation mechanism exploration was conducted using XRD and FTIR analysis of the
rehydrided products of the LiBH4/Al* sample, and the results are shown in Figure 9a,b, respectively.
It can be seen from the XRD patterns that the diffraction peaks of LiAl, LiH, and AlB2 disappeared,
while the diffraction peaks of LiBH4 reappeared, and the diffraction intensity of Al increased after
rehydrogenation. Furthermore, the vibrational peaks of B–H stretching (2382, 2292, and 2224 cm−1)
and bending (1125 cm−1) were also detected in the FTIR spectra. Therefore, the re-formation of LiBH4

can be confirmed during the rehydrogenation process. Based on the above analysis, it can be safely
concluded that the rehydrogenation process of LiBH4/Al* is based on Reaction (7).

LiH + LiAl + AlB2 + 7/2H2↔ 2LiBH4 + 2Al (7)
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4. Conclusions

The dehydrogenation of LiBH4 doped by active Al* derived from AlH3 results from a five-step
reaction: (1) LiBH4 + Al→ LiH + AlB2 + “Li-Al-B-H” + B2H6 + H2; (2) the decomposition of “Li-Al-B-H”
compounds liberating H2; (3) 2LiBH4 + Al → 2LiH + AlB2 + 3H2; (4) LiBH4 → LiH + B + 3/2H2;
and (5) LiH + Al→ LiAl + 1/2H2. Furthermore, the reversibility of the LiBH4/Al* composite is based
on the following reaction: LiH + LiAl + AlB2 + 7/2H2↔ 2LiBH4 + 2Al.

The hydrogen desorption kinetics of LiBH4 were effectively improved by doping with active Al*
derived from AlH3. Higher dehydrogenation capacity, lower activation energy, and better reversibility
of LiBH4/Al* can be achieved due to the larger specific surface area and higher chemical reactivity
of Al*. The extent of the dehydrogenation reaction between LiBH4 and Al* greatly depended on
the precipitation and growth of reaction products (LiH, AlB2, and LiAl) on the surface of the Al*.
A passivation shell formed by these products on the Al* is the kinetic barrier to the dehydrogenation
of the LiBH4/Al* composite. Therefore, future work should focus on cracking this barrier to further
improve the hydrogen storage properties of the LiBH4/Al* composite.
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