

Article

The Dehydrogenation Mechanism and Reversibility of LiBH₄ Doped by Active Al Derived from AlH₃

Qing He^{1,2}, Dongdong Zhu¹, Xiaocheng Wu^{2,*}, Duo Dong¹, Xiaoying Jiang¹ and Meng Xu¹

- Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China; helinqi@163.com (Q.H.); zhudd8@163.com (D.Z.); dongduohit@163.com (D.D.); qz_jxy1@163.com (X.J.); xmm2021@163.com (M.X.)
- ² Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
- * Correspondence: 11026032@zju.edu.cn; Tel.: +86-1356-700-5297

Received: 10 April 2019; Accepted: 10 May 2019; Published: 13 May 2019

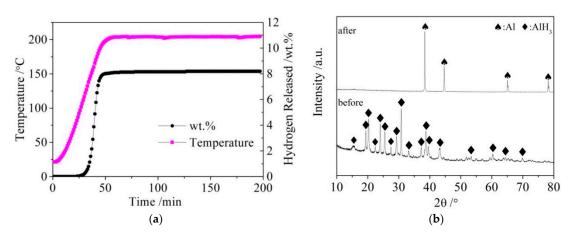
Abstract: A detailed analysis of the dehydrogenation mechanism and reversibility of LiBH₄ doped by as-derived Al (denoted Al*) from AlH₃ was performed by thermogravimetry (TG), differential scanning calorimetry (DSC), mass spectral analysis (MS), powder X-ray diffraction (XRD), scanning electronic microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the dehydrogenation of LiBH₄/Al* is a five-step reaction: (1) LiBH₄ + Al \rightarrow LiH + AlB₂ + "Li-Al-B-H" + B₂H₆ + H₂; (2) the decomposition of "Li-Al-B-H" compounds liberating H₂; (3) 2LiBH₄ + Al \rightarrow 2LiH + AlB₂ + 3H₂; (4) LiBH₄ \rightarrow LiH + B + 3/2H₂; and (5) LiH + Al \rightarrow LiAl + 1/2H₂. Furthermore, the reversibility of the LiBH₄/Al* composite is based on the following reaction: LiH + LiAl + AlB₂ + 7/2H₂ \leftrightarrow 2LiBH₄ + 2Al. The extent of the dehydrogenation products (LiH, AlB₂, and LiAl) on the surface of Al*. A passivation shell formed by these products on the Al* is the kinetic barrier to the dehydrogenation of the LiBH₄/Al* composite.

Keywords: LiBH₄; Al; dehydrogenation mechanism; kinetic properties; reversibility

1. Introduction

Hydrogen is recognized as an ideal energy vector with the advantages of high combustion value and zero pollution [1–3]. However, the storage of hydrogen is still challenging for its on-board application. Hydrogen energy can be stored in gas, liquid, and solid forms, among which solid hydrogen storage is the safest. Currently, complex metal hydrides are considered as the most promising hydrogen storage materials due to their large hydrogen storage capacities [4–6].

Lithium borohydride (LiBH₄) has drawn much attention for on-board hydrogen storage due to its theoretical hydrogen storage capacity as high as 18.5 wt.%, which far exceeds the requirements of vehicle hydrogen storage material by the US department of energy [7,8]. Unfortunately, LiBH₄ is thermodynamically stable, and dehydrogenation is only initiated when the temperature is above 400 °C under 1 bar H₂. The reversibility of LiBH₄ is poor, and rehydrogenation requires a temperature over 600 °C under 350 bar H₂ [9,10]. Various methods have been developed to improve the dehydrogenation properties and reversibility of LiBH₄. Some researchers [11–13] found that thermodynamic destabilization of LiBH₄ could be achieved by adding reactive hydride composites (RHC) to change its dehydrogenation steps. For instance, Vajo et al. [13] reported that the dehydrogenation reaction enthalpy was much lower than that of the pure LiBH₄ by doping with MgH₂. The formation of MgB₂ during the dehydrogenation reaction destabilized LiBH₄, and the reversibility of the LiBH₄-MgH₂ composite was also better than pure LiBH₄. After that, many metal hydrides or complex hydrides have been employed to improve the hydrogen storage properties of LiBH₄ [14–21].



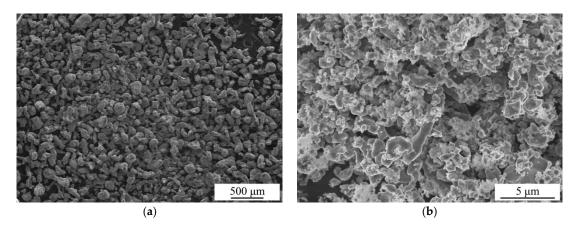
According to the theoretical calculation based on phase diagrams, the decomposition temperature of the LiBH₄/Al composite was predicted to be significantly lower than that of pure LiBH₄ [22,23]. Therefore, Al has been popularly employed as another destabilization agent to improve the hydrogen desorption properties of LiBH₄. The Al source can be either a metallic Al or a complex hydrides containing Al [24–26]. However, the metallic Al is usually coated with an oxide layer, which greatly limits the improvement of dehydrogenation and the reversibility of LiBH₄. Moreover, the utilization of Al-containing hydrides will inevitably introduce the influence of other atoms on the de/rehydrogenation reaction. In order to investigate the mechanism and influence of pure Al on the dehydrogenation and reversibility of LiBH₄, an as-prepared Al (denoted Al*) derived from AlH₃ was employed as a destabilization agent. The hydrogen desorption properties and mechanism of the LiBH₄/Al* composite were studied systematically, along with kinetic investigations using a Sieverts-type apparatus. The Kissinger method was used to calculate the activation energy of the main dehydrogenation step of the LiBH₄/Al* composite, and its reversibility was also discussed.

2. Materials and Methods

The LiBH₄ powder (95% purity; Acros Organics) and Al powder (99% purity; Sinopharm Group) were employed as raw materials. AlH₃ was synthesized as follows: LiAlH₄ and AlCl₃ were dissolved in diethyl ether at a molar ratio of 3:1. After the reaction (1) was fully carried out, the precipitate LiCl was filtered off, and the filtrate containing AlH₃ was separated from the mixture. Pure AlH₃ was then obtained from the filtrate by drying and de-ethering in vacuum. Finally, AlH₃ was completely dehydrogenated to obtain active Al* by heating to 200 °C and holding for 2.5 h. The dehydrogenation curves of AlH₃ and X-ray diffraction (XRD) patterns of AlH₃ before and after dehydrogenation are shown in Figure 1a,b, respectively.

$$3\text{LiAlH}_4 + \text{AlCl}_3 \rightarrow 4\text{AlH}_3 + 3\text{LiCl} \downarrow \tag{1}$$

Figure 1. The dehydrogenation curves (**a**) of AlH₃ and X-ray diffraction (XRD) patterns (**b**) of AlH₃ before and after dehydrogenation.


The commercial Al powder was used for comparison with the as-prepared Al* in this study. The LiBH₄/Al and LiBH₄/Al* composites were synthesized by ball-milling using a QM-3SP4 planetary ball mill (Nanjing Nanda Instrument Plant, Nanjing, China). The ball to powder ratio was 45:1. The milling process was carried out at 400 rpm for 30 min under a 0.1 MPa argon atmosphere. To prevent the temperature from rising too fast during long-term milling, the milling process was paused every 6 min for cooling. All of the samples were handled in a Mikrouna glove box filled with high purity argon (99.999%) and controlled H₂O (<0.5 ppm) and O₂ (<0.1 ppm) concentrations for preventing contamination.

The morphologies of the as-received Al and as-prepared Al* were observed via field emission scanning electronic microscopy (SEM, Hitachi, Tokyo, Japan). Dehydriding/rehydriding behaviors of the samples were examined using a carefully calibrated Sieverts-type apparatus [27]. For the temperature programmed desorption (TPD) measurements, the samples were heated from room temperature to 600 °C at a rate of 2 °C/min. For the rehydriding measurements, the samples were heated to 400 °C at a rate of 5 °C/min under 8 MPa H₂ and held at that temperature for 7 h. The thermal events during dehydrogenation of the samples were investigated by thermogravimetry/differential scanning calorimeter (TG/DSC, Netzsch, Ahlden, Germany). For the isothermal hydrogen desorption measurements, the samples were rapidly heated to a set temperature (i.e., 100 °C, 350 °C, 500 °C, and 600 °C) and held for 3h under argon flowing at 50 mL/min. For the non-isothermal dehydrogenation (i.e., the temperature programmed desorption, TPD) measurements, the samples were heated gradually from room temperature to 600 °C with a heating rate of 5 °C/min. The hydrogen desorption spectra were collected synchronously using a mass spectrometer (MS, Netzsch, Ahlden, Germany). The phase of the as-prepared samples and the dehydrogenation product of them at various temperatures were identified by X-ray diffraction (XRD, PANalytical, Almelo, Netherlands) and Fourier transform infrared spectroscopy (FTIR, Bruker, Basel, Switzerland). During XRD measurements, the samples were sealed with a polypropylene membrane to avoid exposure to any moisture or oxygen.

3. Results and Discussion

3.1. Dehydrogenation Mechanism of the LiBH₄/Al* Composite

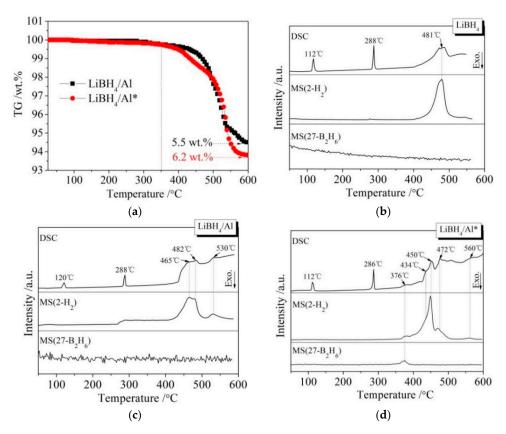

The SEM images of the as-received Al particles and as-prepared Al* particles are shown in Figure 2. It can be seen that the particle size of the as-received Al is about 100 μ m, while the particle size of active Al* derived from AlH₃ is about 1% of this. A sharp reduction in the particle size means a significant increase in the specific surface area.

Figure 2. Scanning electronic microscopy (SEM) images of the as-received Al particles (**a**) and as-prepared Al* particles (**b**).

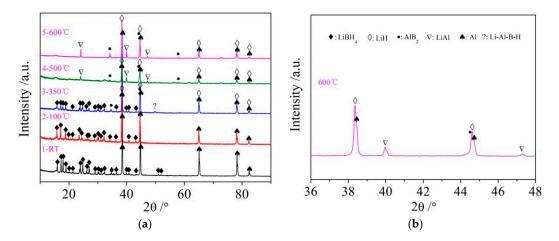
Figure 3 presents different simultaneous signals for the dehydrogenation of LiBH₄/Al and LiBH₄/Al* samples: the thermogravimetry (TG) signal, DSC signal, and hydrogen signal are plotted over the temperature. It can be seen from Figure 3a that the dehydrogenation curves of the LiBH₄/Al and LiBH₄/Al* composites are almost the same before 350 °C, and they both liberate about 0.1 wt.% of H₂. After being heated to 350 °C, the dehydrogenation rate of LiBH₄/Al* is clearly faster than that of LiBH₄/Al. Finally, the total dehydrogenation amounts of LiBH₄/Al and LiBH₄/Al* samples at 600 °C reached 5.5 wt.% and 6.2 wt.%, respectively. This can be ascribed to the Al* derived from AlH₃ having larger specific surface area, and the oxide-free surface of Al* possessing higher chemical reactivity. Therefore, the dehydrogenation reaction of LiBH₄/Al* is more sufficient than LiBH₄/Al.

Figure 3. Thermogravimetry (TG) curves (**a**) of LiBH₄/Al and LiBH₄/Al* samples and differential scanning calorimetry/mass spectrometry (DSC/MS) curves of LiBH₄ (**b**), LiBH₄/Al (**c**), and LiBH₄/Al* (**d**) samples.

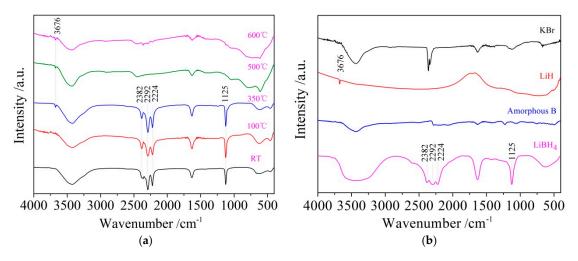
The DSC/MS curves of LiBH₄, LiBH₄/Al, and LiBH₄/Al* are displayed in Figure 3b–d, respectively. The endothermic peak in the DSC curve of pure LiBH₄ at 112 °C corresponds to the crystal transformation from an orthorhombic phase (o-LiBH₄) to a hexagonal phase (h-LiBH₄), while the endothermic peak at 288 °C corresponds to the melting of h-LiBH₄ [28]. LiBH₄ is dehydrogenated in the temperature range of 400 to 550 °C, and the dehydrogenation rate reached a maximum at 481 °C according to Figure 3b. Therefore, the endothermic peak at this temperature is ascribed to the decomposition of LiBH₄ based on Reaction (2).

$$\text{LiBH}_4 \rightarrow \text{LiH} + \text{B} + 3/2\text{H}_2\uparrow \tag{2}$$

There are three endothermic peaks at 465, 482, and 530 °C in the DSC curve of the LiBH₄/Al sample (Figure 3c). Each endothermic peak corresponds to a hydrogen evolution peak in the MS curve. The endothermic peak at 482 °C is in good agreement with that of the decomposition of LiBH₄ mentioned above. Compared with Figure 3b, the new endothermic peaks at 465 and 530 °C should be related to the reaction of LiBH₄ and the added Al. According to the work of other researchers [29–31], the endothermic peak at 465 °C is ascribed to the LiBH₄ reaction with Al forming LiH, AlB₂, and liberating H₂ (Reaction (3)), and the endothermic peak at 530 °C is attributed to the reaction of LiH with Al to form LiAl alloy and H₂ (Reaction (4)).


$$2\text{LiBH}_4 + \text{Al} \rightarrow 2\text{LiH} + \text{AlB}_2 + 3\text{H}_2\uparrow$$
(3)

$$\text{LiH} + \text{Al} \rightarrow \text{LiAl} + 1/2\text{H}_2\uparrow \tag{4}$$


It can be seen from Figure 3d that the dehydrogenation behavior of LiBH₄/Al* is more sophisticated than that of LiBH₄/Al. There is a tiny endothermic peak appearing at 376 °C in the DSC curve of the LiBH₄/Al* composite, accompanied by a small amount of H₂ and B₂H₆ desorption reflected in the MS

curve. What is more, there are four endothermic peaks of dehydrogenation locate at 434, 450, 472, and 560 °C. In order to investigate the mechanism of these thermal events, XRD and FTIR analyses were conducted on the solid products of the LiBH₄/Al* sample at different dehydrogenation temperatures (e.g., 100, 350, 500, and 600 °C). The results are shown in Figure 4; Figure 5, respectively. It can be seen from Figure 4a that no new phase was detected when the sample was heated to 100 °C. The shrinkage of the diffraction peaks of LiBH₄ is related to its crystal transformation. When the sample was heated to 350 °C, some tiny diffraction peaks of AlB_2 and an unknown phase appeared. The unknown phase, marked "?", was also reported by other researchers and considered to be compounds with components of Li-Al-B [32,33]. Combined with the FTIR spectra in Figure 5a, the diffraction peaks of LiH overlapping with the diffraction peaks of Al can also be found in Figure 4a at this stage. This indicates that LiBH₄ had started to react with Al* to form LiH, AlB₂, and compounds containing Li-Al-B. At the same time, B_2H_6 and H_2 were released, and the rate reached a peak at 376 °C according to Figure 3d. Therefore, the further decrease of the diffraction intensity of LiBH₄ at 350 °C (Figure 4a) can be attributed to its melting and dehydrogenation. When the sample was heated to 500 °C, the LiBH₄ could not be detected by the XRD analysis (Figure 4a), and the vibrational peaks of B-H stretching (2382, 2292, and 2224 cm⁻¹) and bending (1125 cm⁻¹) disappeared (Figure 5a), indicating that LiBH₄ had been completely consumed in dehydrogenation reactions at 376, 434, 450, and 472 °C (Figure 3d). What is more, the diffraction peaks of LiAl appeared, and the diffraction intensity of LiH and AlB₂ slightly increased, while the peaks of Al weakened, and the peaks of compounds containing Li-Al-B disappeared. Combined with the analyses of LiBH₄ and LiBH₄/Al samples, it can be reasonably assumed that the main dehydrogenation peak of $LiBH_4/Al^*$ at 450 °C is attributed to the reaction of $LiBH_4$ and Al to form LiH_1 , AlB_2 , and H_2 based on Reaction (3). The reaction temperature was lower than that of the LiBH₄/Al sample probably because the particle size of active Al* derived from AlH₃ is much smaller than that of as-purchased Al, and the oxide-free surface of Al* possesses higher chemical reactivity. An easier atomic diffusion and shorter diffusion lengths led to less activation energy required for the reaction. The dehydrogenation peak at 472 °C is ascribed to the self-decomposition of LiBH₄ forming LiH, B, and H₂ based on Reaction (2). However, the diffraction peaks of B were not found in the XRD examination, and this may be because B was in an amorphous state. Therefore, the dehydrogenation peak at 434 °C is probably related to the decomposition of the unknown compounds, which can be denoted as "Li-Al-B-H". Furthermore, the dehydrogenation peak at 376 °C is believed to be attributed to Reaction (5). In addition, AlB₂ is generally considered to be a product that makes the dehydrogenation system reversible, while B_2H_6 is a toxic gas, which may be a problem for the future application of the LiBH₄/Al* system. Finally, the appearance of LiAl indicates that LiH had begun to react with Al* to form LiAl and liberate H_2 (Reaction (4)) before 500 °C.

$$\text{LiBH}_4 + \text{Al} \rightarrow \text{LiH} + \text{AlB}_2 + \text{``Li-Al-B-H''} + \text{B}_2\text{H}_6\uparrow + \text{H}_2\uparrow$$
(5)

Figure 4. XRD patterns (**a**) of the LiBH₄/Al* sample obtained at different temperatures (room temperature, 100, 350, 500, and 600 °C) and expanded XRD pattern of LiBH₄/Al* sample of 600 °C at a 2 θ range of 36–48° (**b**).

Figure 5. Fourier transform infrared spectroscopy (FTIR) patterns of the LiBH₄/Al* sample (**a**) obtained at different temperatures (room temperature, 100, 350, 500, and 600 °C) and reference substances (**b**) including KBr, LiH, amorphous B, and LiBH₄.

Compared with the XRD patterns at 500 °C, no new phase was detected when the LiBH₄/Al^{*} sample was heated to 600 °C. The increase of the relative diffraction intensity of LiAl implies that the reaction of LiH with Al^{*} continued from 500 to 600 °C. The dehydrogenation rate of this reaction reached a peak at 560 °C according to Figure 3d. The existence of LiH and Al suggests that the LiBH₄/Al^{*} system still dehydrogenated incompletely even at 600 °C. In fact, the dehydrogenation amount of the LiBH₄/Al^{*} sample is far from the theoretical value (7.2 wt.%) according to Figure 3a, indicating that there exist some kinetic barriers in the dehydrogenation reaction of the LiBH₄/Al^{*} composite. Moreover, the physical barrier is probably the reaction products from the previous step, which surround the Al^{*} particles and preventing Al^{*} from coming into contact with other reactants.

The whole hydrogen desorption process of the LiBH₄/Al* sample, which is schematically shown in Figure 6, can be concluded as follows: While heating in the crucible, LiBH₄ first transformed from an orthorhombic phase (*o*-LiBH₄) to a hexagonal phase (*h*-LiBH₄) at 112 °C and melted at 288 °C. Then, the molten LiBH₄ reacted with Al* to form LiH, AlB₂, and "Li-Al-B-H" compounds while releasing B_2H_6 and H_2 based on Reaction (5) at 376 °C. As the LiH, AlB₂, and "Li-Al-B-H" compounds were supposed to nucleate and grow on the surface of Al*, the reaction stopped when Al* was completely wrapped by these reaction products to form a passivation shell. When the temperature rose to 434 °C, the decomposition of the "Li-Al-B-H" compounds liberated a certain amount of H₂, and the

encapsulated Al* exposed some new surfaces. Thus, the main dehydrogenation reaction of LiBH₄ and Al* occurred at 450 °C to form LiH, AlB₂, and H₂ based on reaction (3). Similarly, the reaction stopped when the surface of Al* was completely wrapped by LiH and AlB₂. Therefore, the excess molten LiBH₄ underwent self-decomposition to form LiH, B, and H₂ (Reaction (2)) at 472 °C. That boron (B) was not detected in the XRD examination may be because B was in the amorphous state. Finally, the product LiH reacted with Al* to form LiAl alloy and H₂ based on Reaction (4) when the sample was heated to 560 °C. The actual dehydrogenation amount of the LiBH₄/Al* sample did not reach the theoretical value since there were still uncontacted and unreacted LiH and Al* at 600 °C.

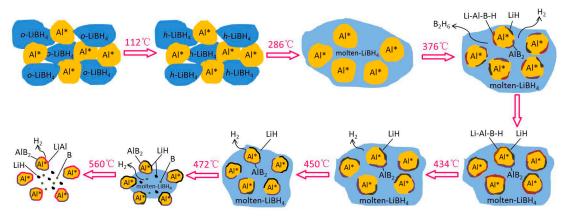
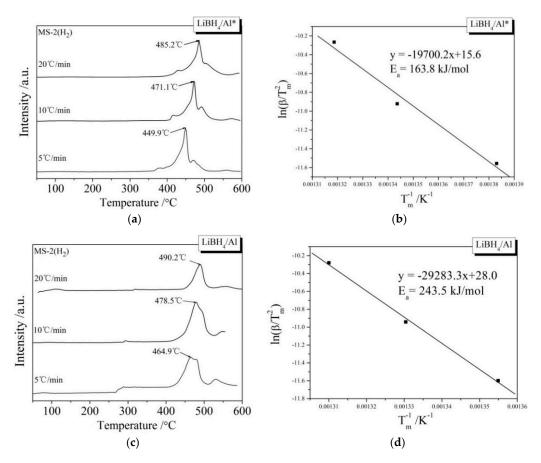


Figure 6. Schematic diagram of the dehydrogenation process of the LiBH₄/Al* sample.


3.2. Kinetic Properties of the Dehydrogenation of the LiBH₄/Al* Composite

The kinetic properties of the dehydrogenation of the LiBH₄/Al^{*} composite were studied using the Kissinger method, which assumes that the apparent activation energy (E_a) of dehydrogenation reaction is determined by Equation (6).

$$\ln(\beta/T_m^2) = -E_a/RT_m + C \tag{6}$$

In this equation, β is the heating rate in thermal analysis, and T_m represents the absolute temperature at the maximum reaction rate. Moreover, *R* is the universal gas constant, and *C* also represents a constant. Therefore, the E_a of the dehydrogenation reaction of the LiBH₄/Al* composite can be obtained from the slope of a linearly fitted line in the $\ln(\beta/T_m^2)$ - T_m^{-1} spectrum.

During the kinetic investigations, the LiBH₄/Al and LiBH₄/Al* samples were heated to 600 °C at the rates of 5, 10, and 20 °C/min, respectively. The MS curves at various heating rates and the Kissinger spectra reflecting the E_a of the main dehydrogenation reaction are shown in Figure 7. It can be seen that the temperatures for the maximum dehydrogenation rate of LiBH₄/Al* at the heating rates of 5, 10, and 20 °C/min are 449.9, 471.1, and 485.2 °C, respectively. These are all lower than that of LiBH₄/Al at the same heating rates. The E_a of the main dehydrogenation reaction of LiBH₄/Al* is calculated to be 163.8 kJ/mol, while that of LiBH₄/Al is 243.5 kJ/mol. This is in good agreement with the previous analysis that the smaller particle size and higher chemical reactivity of Al* can reduce the activation energy and improve the kinetic properties of the dehydrogenation reaction.

Figure 7. MS curves (**a**,**c**) of LiBH₄/Al* and LiBH₄/Al samples at different heating rates (5, 10, and 20 °C/min) and Kissinger spectra (**b**,**d**) of the main dehydrogenation reaction of the LiBH₄/Al* and LiBH₄/Al samples.

3.3. Reversibility of the LiBH₄/Al* Composite

In order to investigate the reversibility of the LiBH₄/Al* composite, a rehydrogenation test was carried out under 8 MPa H₂ at 400 °C. The rehydrogenation curve of the sample is shown in Figure 8. It can be seen that the dehydrogenated LiBH₄/Al* sample absorbed 2.6 wt.% of hydrogen in the first 60 min. Then it entered a stable hydrogen absorption stage and reached saturation after 480 min. The total rehydrogenation capacity was 5.5 wt.%. Compared with the harsh rehydrogenation conditions reported by other researchers [9,10], the doping of active Al* derived from AlH₃ effectively improved the reversible hydrogen storage properties of LiBH₄.

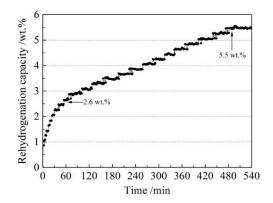


Figure 8. The rehydrogenation curve of the dehydrogenated LiBH₄/Al* sample under 8 MPa H₂ at 400 $^{\circ}$ C.

The rehydrogenation mechanism exploration was conducted using XRD and FTIR analysis of the rehydrided products of the LiBH₄/Al* sample, and the results are shown in Figure 9a,b, respectively. It can be seen from the XRD patterns that the diffraction peaks of LiAl, LiH, and AlB₂ disappeared, while the diffraction peaks of LiBH₄ reappeared, and the diffraction intensity of Al increased after rehydrogenation. Furthermore, the vibrational peaks of B–H stretching (2382, 2292, and 2224 cm⁻¹) and bending (1125 cm⁻¹) were also detected in the FTIR spectra. Therefore, the re-formation of LiBH₄ can be confirmed during the rehydrogenation process. Based on the above analysis, it can be safely concluded that the rehydrogenation process of LiBH₄/Al* is based on Reaction (7).

$$LiH + LiAl + AlB_2 + 7/2H_2 \leftrightarrow 2LiBH_4 + 2Al$$
(7)

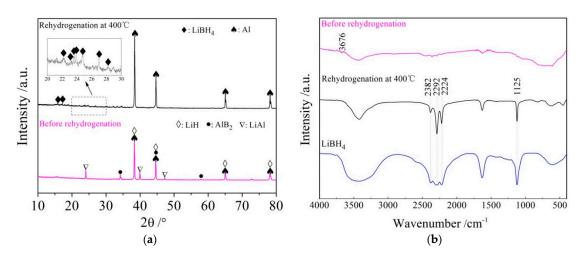


Figure 9. XRD patterns (a) and FTIR spectra (b) of LiBH₄/Al* sample before and after rehydrogenation.

4. Conclusions

The dehydrogenation of LiBH₄ doped by active Al* derived from AlH₃ results from a five-step reaction: (1) LiBH₄ + Al \rightarrow LiH + AlB₂ + "Li-Al-B-H" + B₂H₆ + H₂; (2) the decomposition of "Li-Al-B-H" compounds liberating H₂; (3) 2LiBH₄ + Al \rightarrow 2LiH + AlB₂ + 3H₂; (4) LiBH₄ \rightarrow LiH + B + 3/2H₂; and (5) LiH + Al \rightarrow LiAl + 1/2H₂. Furthermore, the reversibility of the LiBH₄/Al* composite is based on the following reaction: LiH + LiAl + AlB₂ + 7/2H₂ \leftrightarrow 2LiBH₄ + 2Al.

The hydrogen desorption kinetics of LiBH₄ were effectively improved by doping with active Al^{*} derived from AlH₃. Higher dehydrogenation capacity, lower activation energy, and better reversibility of LiBH₄/Al^{*} can be achieved due to the larger specific surface area and higher chemical reactivity of Al^{*}. The extent of the dehydrogenation reaction between LiBH₄ and Al^{*} greatly depended on the precipitation and growth of reaction products (LiH, AlB₂, and LiAl) on the surface of the Al^{*}. A passivation shell formed by these products on the Al^{*} is the kinetic barrier to the dehydrogenation of the LiBH₄/Al^{*} composite. Therefore, future work should focus on cracking this barrier to further improve the hydrogen storage properties of the LiBH₄/Al^{*} composite.

Author Contributions: Conceptualization, Q.H. and D.Z.; methodology, Q.H. and D.D.; data curation, M.X. and X.W.; formal analysis, X.W.; investigation, M.X. and X.J.; resources, Q.H.; supervision, Q.H.; project administration, Q.H.; funding acquisition, Q.H.; writing-original draft preparation, X.W.; writing-review and editing, Q.H. and D.Z.

Funding: This work was funded by the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LQ16E010002, LY18E010003), and the National Natural Science Foundation of China (Grant Nos. 51501100, 51801112, 51704001).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Parra, D.; Valverde, L.; Pino, F.J.; Patel, M.K. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. *Renew. Sustain. Energy Rev.* **2019**, *101*, 279–294. [CrossRef]
- Colbertaldo, P.; Agustin, S.B.; Campanari, S.; Brouwer, J. Impact of hydrogen energy storage on California electric power system: Towards 100% renewable electricity. *Int. J. Hydrogen Energy* 2019, 44, 9558–9576. [CrossRef]
- Zhao, G.; Nielsen, E.R.; Troncoso, E.; Hyde, K.; Romeo, J.S.; Diderich, M. Life cycle cost analysis: A case study of hydrogen energy application on the Orkney Islands. *Int. J. Hydrogen Energy* 2019, 44, 9517–9528. [CrossRef]
- 4. Orimo, S.I.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage. *Chem. Rev.* **2007**, *107*, 4111–4132. [CrossRef]
- 5. Milanese, C.; Jensen, T.R.; Hauback, B.C.; Pistidda, C.; Dornheim, M.; Yang, H.; Lombardo, L.; Zuettel, A.; Filinchuk, Y.; Ngene, P.; et al. Complex hydrides for energy storage. *Int. J. Hydrogen Energy* **2019**, *44*, 7860–7874. [CrossRef]
- 6. Puszkiel, J.; Garroni, S.; Milanese, C.; Gennari, F.; Klassen, T.; Dornheim, M.; Pistidda, C. Tetrahydroborates: Development and potential as hydrogen storage medium. *Inorganics* **2017**, *5*, 74. [CrossRef]
- 7. Wu, R.; Ren, Z.; Zhang, X.; Lu, Y.; Li, H.; Gao, M.; Pan, H.; Liu, Y. Nanosheet-like Lithium Borohydride Hydrate with 10 wt.% of Hydrogen Release at 70 °C as a Chemical Hydrogen Storage Candidate. *J. Phys. Chem. Lett.* 2019, 10, 1872–1877. [CrossRef]
- 8. *DOE, U.S. Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles;* US Department of Energy, Office of Energy Efficiency and Renewable Energy and The Freedom CAR and Fuel Partnership: Washington, DC, USA, 2009.
- 9. Orimo, S.I.; Nakamori, Y.; Kitahara, G.; Miwa, K.; Ohba, N.; Towata, S.I.; Züttel, A. Dehydriding and rehydriding reactions of LiBH₄. *J. Alloys Compd.* **2005**, 404, 427–430. [CrossRef]
- Liu, X.; Peaslee, D.; Jost, C.Z.; Baumann, T.F.; Majzoub, E.H. Systematic pore-size effects of nanoconfinement of LiBH₄: Elimination of diborane release and tunable behavior for hydrogen storage applications. *Chem. Mater.* 2011, 23, 1331–1336. [CrossRef]
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Černý, R.; Ravnsbæk, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal borohydrides and derivatives-synthesis, structure and properties. *Chem. Soc. Rev.* 2017, 46, 1565–1634. [CrossRef]
- 12. Von Colbe, J.B.; Ares, J.R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.; Guzik, M.; Jacob, I.; et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. *Int. J. Hydrogen Energy* **2019**, *44*, 7780–7808. [CrossRef]
- Vajo, J.J.; Skeith, S.L.; Mertens, F. Reversible storage of hydrogen in destabilized LiBH₄. *J. Phys. Chem. B* 2005, *109*, 3719–3722. [CrossRef]
- 14. Chaudhary, A.L.; Li, G.; Matsuo, M.; Orimo, S.I.; Deledda, S.; Sørby, M.H.; Hauback, B.C.; Pistidda, C.; Klassen, T.; Dornheim, M. Simultaneous desorption behavior of M borohydrides and Mg₂FeH₆ reactive hydride composites (M = Mg, then Li, Na, K, Ca). *Appl. Phys. Lett.* **2015**, *107*, 073905. [CrossRef]
- Puszkiel, J.A.; Gennari, F.C. Reversible hydrogen storage in metal-doped Mg-LiBH₄ composites. *Scr. Mater.* 2009, *60*, 667–670. [CrossRef]
- 16. Mao, J.F.; Guo, Z.P.; Liu, H.K.; Yu, X.B. Reversible hydrogen storage in titanium-catalyzed LiAlH₄-LiBH₄ system. *J. Alloys Compd.* **2009**, *487*, 434–438. [CrossRef]
- Puszkiel, J.A.; Gennari, F.C.; Larochette, P.A.; Ramallo-López, J.M.; Vainio, U.; Karimi, F.; Pranzas, P.K.; Troiani, H.; Pistidda, C.; Jepsen, J.; Tolkiehn, M.; et al. Effect of Fe additive on the hydrogenation-dehydrogenation properties of 2LiH + MgB₂/2LiBH₄+MgH₂ system. *J. Power Sources* 2015, 284, 606–616. [CrossRef]
- Noritake, T.; Aoki, M.; Towata, S.; Ninomiya, A.; Nakamori, Y.; Orimo, S. Crystal structure analysis of novel complex hydrides formed by the combination of LiBH₄ and LiNH₂. *Appl. Phys. A* 2006, *83*, 277–279. [CrossRef]
- 19. Shi, Q.; Yu, X.; Feidenhans'l, R.; Vegge, T. Destabilized LiBH₄-NaAlH₄ Mixtures Doped with Titanium Based Catalysts. *J. Phys. Chem. C* **2008**, *112*, 18244–18248. [CrossRef]

- Sofianos, M.V.; Chaudhary, A.L.; Paskevicius, M.; Sheppard, D.A.; Humphries, T.D.; Dornheim, M.; Buckley, C.E. Hydrogen storage properties of eutectic metal borohydrides melt-infiltrated into porous Al scaffolds. *J. Alloys Compd.* 2019, 775, 474–480. [CrossRef]
- 21. Zhang, Y.; Tian, Q. The reactions in LiBH₄-NaNH₂ hydrogen storage system. *Int. J. Hydrogen Energy* **2011**, *36*, 9733–9742. [CrossRef]
- 22. Jiang, W.; Cao, S. Effect of Al on the dehydrogenation of LiBH₄ from first-principles calculations. *Int. J. Hydrogen Energy* **2017**, *42*, 6181–6188.
- 23. Cho, Y.W.; Shim, J.H.; Lee, B.J. Thermal destabilization of binary and complex metal hydrides by chemical reaction: A thermodynamic analysis. *Calphad* **2006**, *30*, 65–69. [CrossRef]
- 24. Yu, X.; Xia, G.; Guo, Z.; Liu, H. Dehydrogenation/rehydrogenation mechanism in aluminum destabilized lithium borohydride. *Int. J. Mater. Res.* **2009**, *24*, 2720–2727. [CrossRef]
- 25. Kato, S.; Bielmann, M.; Ikeda, K.; Orimo, S.I.; Borgschulte, A.; Züttel, A. Surface changes on AlH₃ during the hydrogen desorption. *Appl. Phys. Lett.* **2010**, *96*, 051912. [CrossRef]
- 26. Carrillo-Bucio, J.; Tena-García, J.; Suárez-Alcántara, K. Dehydrogenation of surface-oxidized mixtures of 2LiBH₄+ Al/Additives (TiF₃ or CeO₂). *Inorganics* **2017**, *5*, 82. [CrossRef]
- 27. Kwak, Y.J.; Song, M.Y. How to Analyse Metal Hydride Decomposition Temperatures Using a Sieverts' Type Hydriding-Dehydriding Apparatus and Hydrogen-Storage Characteristics for an MgH₂-Based Alloy. *Mater. Sci.* **2018**, *24*, 24–28. [CrossRef]
- 28. Züttel, A.; Rentsch, S.; Fischer, P.; Wenger, P.M.C.E.P.; Sudan, P.H.; Mauron, P.; Emmenegger, C. Hydrogen storage properties of LiBH₄. *J. Alloys Compd.* **2003**, *356*, 515–520. [CrossRef]
- 29. Kang, X.D.; Wang, P.; Ma, L.P.; Cheng, H.M. Reversible hydrogen storage in LiBH₄ destabilized by milling with Al. *Appl. Phys. A* **2007**, *89*, 963–966. [CrossRef]
- 30. Zhang, Y.; Tian, Q.; Zhang, J.; Liu, S.S.; Sun, L.X. The dehydrogenation reactions and kinetics of 2LiBH₄-Al composite. *J. Phys. Chem. C* 2009, *113*, 18424–18430. [CrossRef]
- Friedrichs, O.; Kim, J.W.; Remhof, A.; Buchter, F.; Borgschulte, A.; Wallacher, D.; Cho, Y.W.; Fichtner, M.; Ohb, K.H.; Züttel, A. The effect of Al on the hydrogen sorption mechanism of LiBH₄. *Phys. Chem. Chem. Phys.* 2009, *11*, 1515–1520. [CrossRef]
- 32. Plerdsranoy, P.; Utke, R. Confined LiBH₄-LiAlH₄ in nanopores of activated carbon nanofibers. *Int. J. Hydrogen Energy* **2015**, *40*, 7083–7092. [CrossRef]
- 33. Hansen, B.R.; Ravnsbæk, D.B.; Reed, D.; Book, D.; Gundlach, C.; Skibsted, J.; Jensen, T.R. Hydrogen storage capacity loss in a LiBH₄-Al composite. *J. Phys. Chem. C* **2013**, *117*, 7423–7432. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).