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Abstract: This study examines an extended method to obtain the parameters in the Generalized
Incremental Stress State Dependent Damage (GISSMO) model. This method is based on an iterative
Finite Element Method (FEM) method aiming at predicting the fracture behavior considering softening
and failure. A large number of experimental tests have been conducted on four different alloys
(7003 aluminum alloy, ADC12 aluminum alloy, ZK60 magnesium alloy and 20CrMnTiH Steel), here
considering tests that span a wide range of stress triaxiality. The proposed method is compared with
the two existing methods. Results show that the new extended Iterative FEM method gives the good
estimate of the fracture behaviors for all four alloys considered.
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1. Introduction

The research into lightweight and high-durability materials used in automobiles has greatly
increased in recent years, due to an increased focus on preserving natural resources and reducing air
pollution. One effective way to achieve weight reduction is through material development, but with
this approach comes a demand for accurately predicting the flow and damage behaviors of the new
material. [1,2] Flow behavior and damage evolution is, however, a challenging task.

A large amount of research has been focused on evaluating the flow and fracture properties
through micromechanics-based consideration [3–11]. Among these are the porous plasticity models,
the best-known being the classical model by Gurson [3] that includes the growth of voids in a metallic
matrix and a yield condition that relates to porosity. The Gurson model and many of its subsequent
extensions agree well with experiments; however, it fails to predict the material behavior under shear
dominated loading conditions. To remedy this issue, Nahshon and Hutchinson [12] distinguished
shear dominated states by the third invariant of stress. Dæhli et al. [13] extended the Gurson model by
Lode-dependent void evolution, both successfully predicting fracture under low triaxiality. However,
the Gurson model is computationally inefficient as the element size must scale with the dominant
void sparking. Thus, the phenomenological fracture models outweigh the porous models in industrial
applications, as these models often require fewer material constants to be determined through data
fitting. The typical fracture models [14–17] are formalized on experimental observation, which directly
related to the stress state. Identified through the stress, the triaxiality and the lode angle are proposed.
Compared to the Gurson model, the Johnson-Cook (JC) model [17–19] predicts the fracture locus
accounting for the strain, the strain rate and the temperature, and the model parameters in the JC
model is easily to calibrate. Other fracture models in Ref. [14,15,20] predicts the fracture locus in 3D
space with more accuracy. Moreover, it is worth noticing that these fracture models are uncoupled from
flow behavior, which is described by the standard material model. The Generalized Incremental Stress
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State Dependent Damage (GISSMO) Model which is developed by Neukamm [21,22], fully describes
the ductile damage accounting for material softening and fracture. The fracture behavior is described
by the damage variable and the damage softening behavior is represented by an instability measure.
As the GISSMO model meets the industrial requirements, it finds wide use in crashworthiness and
forming process simulations [23–27].

The parameter calibration strongly influences the accuracy of a numerical prediction.
The constitutive constants are classically obtained by graphical analysis [28] and linear regression
methods [29] to fit experimental data. For example, the force-displacement curves obtained from
experimental data is transformed into equivalent stress-strain curves, from which constitutive
parameters are obtained [30]. However, these calculation methods are conducted under assumptions
of relatively small strain variation, failing to predict fracture behavior in several industrial applications.
Recently, an iterative FEM method [31–34] has been developed for parameter calibration that, based
on trial and error, can determine a set of parameters, which leads to good agreements between
experimental data and numerical results. Xiao [31] obtained the fracture parameters through the
iterative FEM method to predict the fracture locus in the 3D stress state. However, fracture parameters
by the iterative FEM method are difficult to predict the fracture behavior considering softening.

In this paper, an extended iterative FEM method is proposed to obtain the GISSMO parameters.
The accuracy of the inverse iterative FEM method is then validated by considering four different types
of alloy through an extensive experimental program that subject the materials in different stress states.
FEM procedures are conducted for three sets of validated parameters obtained by three methods.
The accuracy of the three methods is evaluated. These stress-strain curves and fracture modes observed
throughout the tests are compared to the model predictions. Finally, a discussion on the iterative FEM
method is conducted.

2. Materials and Methods

2.1. Experiment Method

Four kinds of alloy, listing 7003-T6 aluminum (Test # 1–7), ADC12 aluminum (Test # 8–11), ZK60
magnesium (Test # 12–18) and 20CrMnTiH steel (Test # 19–25), are designated as the testing material
with the chemical composition shown in Table 1. These alloys are extensively used in aerospace
and automobile industries. Figure 1 presents 25 different specimens for a wide range of stress states.
The dimensions of tensile specimen are recommended by the GB/T228.1-2010 standard. All tests
are performed in the ETM504C electronic universal testing machine (Suzhou Dymeter Automotive
testing technology co., LTD, Suzhou, China) with a load range of (5–50) kN and a speed range of
(0.001–500) mm/min. The deforming results are measured by the Digital Image Correlation (DIC)
method, and the loading results are measured by force cell. For DIC method, signature is marked
in undeformed specimen, and displacement is measured by searching the signature in deformed
specimen. The crosshead speed of the testing machine is kept constant at 1.8 mm/min for smooth
tensile tests and 0.2 mm/min for notched and shear tests. These tests are performed in the ambient air
at the room temperature. Following experimental data is recorded: the stress-strain relation, fracture
mode, and elongation.
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Table 1. Chemical composition of the materials used in the study (wt.%). The single value means the maximum value of element’s concentration.

Materials Al C Cr Cu Fe Mg Mn Ni P Pb S Sn Si Ti Zr Zn

7003Al Bal. - - 0.1 0.35 0.5–1 0.3 - - - - - 0.3 0.2 0.05–0.25 5.5–6.5
ADC12 Bal. - - 1.5–3.5 1.2 0.3 0.5 0.5 - 0.1 - 0.1 9.6–12.0 - - 1

ZK60 - - - - - Bal. - - - - - - - - 0.45–0.9 4.8–6.2
CrMnTiH - 0.17–0.23 1–1.35 0.3 Bal. - 0.8–1.15 0.3 0.04 - 0.04 - 0.17–0.37 0.01–0.1 - -
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24 Tensile shear, 30°, θ = 30° 21 
25 Tensile shear, 60°, θ = 60° 21 

Figure 1. Schematic sketch of the specimen. specified value of R, H and θ can be found in Table 2. All
dimensions are in mm.

Table 2. Summary of experiments.

Mat. No. Description Gauge Length/mm

7003-T6

1 Smooth tensile 50
2 Pure Shear 19
3 Tensile Shear, 45◦, θ = 45◦ 17.5
4 Notched, R5, R = 5 mm, H = 10 mm 20
5 Notched, R10, R = 10 mm, H = 10 mm 20
6 Notched, R15, R = 15 mm, H = 8 mm 40
7 Notched, R20, R = 20 mm, H = 8 mm 50

ADC12

8 Smooth Tensile 35
9 Notched, R4, R = 4mm, H = 5mm 14
10 Notched, R8, R = 8mm, H = 5mm 18
11 Pure shear, flat 40.6

ZK60

12 Smooth Tensile 25
13 Notched, R1 12
14 Notched, R5 20
15 Notched, R10 30
16 Pure Shear 38
17 Tensile Shear, 30◦, θ = 30◦ 21
18 Tensile Shear, 60◦, θ = 60◦ 21

20CrMnTiH

19 Round smooth tensile 20
20 Round notch, R0.4, R = 0.4 mm, H = 9.2 mm 10.4
21 Round notch, R0.8, R = 0.8 mm, H = 8.4 mm 10.8
22 Round notch, R2, R = 2 mm, H = 6 mm 12
23 Pure shear 38
24 Tensile shear, 30◦, θ = 30◦ 21
25 Tensile shear, 60◦, θ = 60◦ 21
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2.2. Effective Stress and Strain Curves

Experimental obtained engineering curves cannot be directly used in parameter calibration.
In small strain, engineering curves is transformed into true stress-strain curves by volume constancy law,

εtrue = ln
(
1 + εeng

)
σtrue = σeng

(
1 + εeng

) (1)

where σtrue and εtrue is true stress and true strain. σeng and εeng is engineering stress and strain.
For some metals Equation (1) cannot compensate for the large necking effects, constitutive models
are used for extrapolating the after-necking stress-strain curves. Taken smooth tension for example,
the engineering curves are transformed into true stress-strain curves by volume constancy law. Then,
the soften part in the true stress-strain curve is extrapolated by the power law of Ludwik [35].
The extrapolated curve is shown in Figure 2 as the yellow dash one. The effective stress-strain curve is
obtained by subtracting off the elastic strain and inputting the true stress. The effective stress-strain
curve is used in material model calibration. The effective strain at fracture point is input as initial value
in iterative FEM method.
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Figure 2. Stress-strain curves for experimental data processing. The red solid curve is the engineering
stress-strain curves. The blue solid curve is transformed through the red one by plastic incompressibility
condition. To compensate for the non-uniform deformation beyond necking, the blue solid curve is
extrapolated by the power law of Ludwik. Yellow dash curve represents modified curve which could
be used in calibrating constitutive model.

2.3. GISSMO Model

The GISSMO, developed by Neukamm et al. [21,22] and Basaran et al. [36], ensures flexibility for
a wide range of metal as it can correctly predict damage regardless the details of the material model
formulation. Besides, the GISSMO targets damage prediction that accounts for material instability,
localization, and failure. Damage accumulation, which is illustrated by Johnson [17] and Xue [37],
is based on an incremental formulation found from

∆D =
n
ε f

D(1− 1
n )

.
εp, (2)

This equation considers the nonlinear relation between plastic strain and internal damage [38,39],
and the damage exponent n allows for a nonlinear accumulation of damage until failure. The equivalent
plastic strain increment is denominated as

.
εp. ε f represents the equivalent plastic failure strain which

allows for an arbitrary definition of triaxiality dependent failure strains ε f (σ∗) by inputting a tabulated
curve. Triaxiality is defined as p/σm, in which p is the average main stress and σm is the von Mises
stress. D is the damage value, which accumulates in each element during deformation. When D = 1,
the element is deleted.
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Similar to damage accumulation, material instability is determined as

∆F =
n
εc F(1− 1

n )
.
εp, (3)

where εc is the triaxiality dependent critical strain εc(σ∗) which acts as an activation for coupling
damage and stress. F is the instability measure. If F = 0, the material is undeformed. F = 1 corresponds
to the onset of localization.

As soon as F reaches unity, the element stress is reduced by

σ = σ̃

[
1−

(
D−Dcrit

1−Dcrit

)m]
, (4)

where σ is the modified stress and σ̃ is the current stress. Dcrit is the damage only comes to some value
when F reaches unity. m is a fading exponent intended to better depict the rate of material softening.

2.4. Extended Iterative Finite Element Method

The extended Iterative FEM (EIFEM) method is a trial-and-error method, aiming at obtaining
stress and strain at large strain. The EIFEM method is inspired by the method in Ref. [31], which can
obtain parameters in the JC model. This paper extended the model to calibrate parameters in the
GISSMO model. Five parameters need to be calibrated, including stress triaxiality σ∗, fracture strain ε f ,
critical strain εc, fading exponent m, and damage exponent n. The proposed procedure of the extended
Iterative FEM method (EIFEM) is,

1. Initial value of ε f
0 , εc

0, m0 and n0. ε f
0 is the fracture strain and εc

0 is the necking strain at obtained
effective stress-strain curve. m0 and n0 can be set to arbitrary value. in this paper, m0 = 1, n0 = 3.

2. Iteration till the shape of numerical force and displacement curve after necking coincide with
experimental one. 3D FEM simulation by LS-DYNA is conducted to calculate elongation ∆LFEM.
In simulation, the deforming process is predicted by the JC material model and the fracture model
is the GISSMO model. If numerical shape differs experimental shape, n and m are modified by
ni = ni – 1 − 1 and mi = mi − 1 + 0.5 till convergence.

3. Iteration till the experimental elongation coincides with the numerical elongation ∆LEXP = ∆LFEM.

If ∆LEXP , ∆LFEM, ε f would be modified by ε f
i + 1 × ∆LEXP = ε

f
i × ∆LFEM

i . If ε f
i = εc

i but ∆LFEM

still unequal to ∆LEXP, εc is modified by εc
i+1 × ∆LEXP

n = εc
i × ∆LFEM

n(i) . ∆Ln is the displacement at

necking point. A satisfied pair of εc and ε f is obtain when ∆LEXP = ∆LFEM.
4. Check if the standard deviation below 3%. The standard deviation (Std) between experimental

and numerical curves is defined as

Std =

∫ l f
0

∣∣∣ fExp(l) − fFEM(l)
∣∣∣dl

Max
{

fExp(l)
}
l f

, (5)

where l is displacement. The iteration is continued until the Std below 3%. Otherwise return
to Step 2 and renew the number of m, n, εc and ε f till convergence. In the last iterative FEM
simulation, σ∗ is obtained at the fracture element right before deleting element.

2.5. Finite Element Method

The finite element (FE) analysis is conducted by the explicit mechanical solver of the commercial
finite element code LS-DYNA. FE models for tensile tests are meshed through 8-node hexahedron
elements by one-point integration, with single-point-constrain aligned to one side and the prescribed
motion to the other side. The average mesh size is 0.2 for each specimen in gauge length. As the
FEM mesh are similar between materials, the representative FEM mesh for ZK60 alloy are shown in
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Figure 3. Tensile specimens all move in constants speeds according to experimental speeds. Due to the
strain rate insensitivity, the velocity is set at a relatively larger value compared to experiment to reduce
the calculating time. The velocity is set at 10 mm/s in this paper. The plastic flow and damage are
considered separately. The GISSMO model describes the fractured and damage behavior. In LS-DYNA,
the GISSMO model is embedded in the ADD_EROSION which provides the failure and erosion option.
The JC material model describes the flow behavior. The JC material model, which is one of the most
widely used empirical models, provides an accurate prediction of the flow behavior considering the
effects of stress state and strain rate. As all tests are performed at room temperature, the temperature
effect is ignored. The strain rate part is also ignored as all experiments are in quasi-static state. The JC
material model [40] is simplified as follows:

σe = A + Bεp
c, (6)

where A, B, and c are material constants and σe is the flow stress. By achieving the good fit of smooth
tensile experimental data, four parameter sets are calibrated and listed in Table 3. Please note that the
elastic modulus is obtained from the elastic region ranging from start point to yielding point (the value
stress value is A). This elastic modulus would make the numerical predicted results more accurate.
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Figure 3. The representative FEM model for ZK60 alloy, (a) smooth tensile test, (b) pure shear test,
(c) notched tensile test and (d) tensile and notched tests.

Table 3. Parameters for numerical simulation.

Mat. E/GPa A B c n m

7003-T6 66 348 252 0.44 3 2.5
ADC12 33 115 1938 0.67 2 10
ZK60 31 221 316 0.43 2 1.5

20CrMnTiH 125 944 754 0.28 3 3.5

Fracture curves ε f (σ∗), critical strain curves εc (σ∗), the fading exponent m and the damage
exponent n are identified through the numerical simulation. Although different GISSMO parameters
combinations may lead to a similar numerical result, the effect could be minimized by increasing the
number of tests for GISSMO model calibration. Recall the method in Section 2.4, the parameters m and
n can be calibrated. The fading exponent m and the damage exponent n are listed in Table 3. ε f (σ∗)

and εc (σ∗) are cubic spline interpolations of fracture strain and critical strain.
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3. Results and Discussion

3.1. Experimental Results

The original experimental results are presented in Figure 4. The engineering stress is calculated by
load, which is directly obtained by force cell. The engineering strain is obtained by DIC method. Recall
the method in Section 2.2, the effective stress and strain curves are obtained. Then, the triaxiality σ∗,
critical strain εc and fracture strain ε f are obtained based on the EIFEM method in Section 2.4. Then σ∗,
εc and ε f is used in numerical simulation.
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Figure 4. Engineering stress and strain curves for (a) 7003 aluminum alloy, (b) ADC12 aluminum alloy,
(c) ZK60 magnesium alloy and (d) 20CrMnTiH Steel.

Table 4. Summary of experimental and numerical results.

Mat. No. Description σ* εc εf Elongation/mm

Exp. Num. R.E. (%) 1

7003-T6

1 Smooth tensile 0.33 0.3 0.79 8.16 8.30 1.80
2 Pure Shear −0.01 0.3 0.83 1.94 1.84 4.87
3 Tensile Shear, 45◦ −0.08 0.05 0.73 2.55 2.49 2.33
4 Notched, R5 0.55 0.02 0.47 0.96 0.97 0.72
5 Notched, R10 0.46 0.1 0.44 1.19 1.17 1.32
6 Notched, R15 0.4 0.01 0.50 1.32 1.32 0.24
7 Notched, R20 0.38 0.01 0.50 1.42 1.45 2.12

ADC12

8 Smooth Tensile 0.34 0.005 0.019 0.70 0.69 1.50
9 Notched, R4 0.36 0.005 0.033 0.12 0.13 3.52

10 Notched, R8 0.35 0.005 0.035 0.23 0.23 2.50
11 Pure shear, flat −0.03 0.005 0.025 0.10 0.10 1.52

ZK60

12 Smooth Tensile 0.33 0.08 0.697 4.11 4.07 0.84
13 Notched, R1 0.41 0.10 0.262 0.36 0.35 1.51
14 Notched, R5 0.46 0.05 0.107 0.65 0.65 0.28
15 Notched, R10 0.48 0.03 0.289 1.13 1.09 3.39
16 Pure Shear 0.07 0.26 0.343 0.27 0.27 0.77
17 Tensile Shear, 30◦ 0.22 0.05 0.420 0.17 0.17 1.50
18 Tensile Shear, 60◦ 0.30 0.09 0.587 0.31 0.31 1.10

20CrMnTiH

19 Round smooth tensile 0.33 0.03 0.17 1.95 1.94 0.51
20 Round notch, R0.4 0.50 0.03 0.08 0.13 0.13 4.83
21 Round notch, R0.8 0.64 0.05 0.15 0.08 0.08 1.15
22 Round notch, R2 0.69 0.03 0.09 0.13 0.12 4.78
23 Pure shear −0.07 0.1 0.45 0.34 0.34 0.41
24 Tensile shear, 30◦ 0.2 0.1 0.42 0.21 0.22 2.57
25 Tensile shear, 60◦ 0.27 0.1 0.34 0.34 0.33 2.08

1 R.E. denotes the relative error.
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3.2. Numerical Results and Validation

Table 4 presents the experimental and numerical elongation. The relative errors are below
5% for all tests. Figure 5 shows the force and displacement curves for experiment and simulation.
Figure 5a presents curves for tensile tests. Numerical results agree with the experimental results
well. For 20CrMnTiH steel and 7003 aluminum alloy, the after-necking region in numerical force and
displacement curves coincides with the experimental curves. The good agreements are also observed
in notched and shear tests shown in Figure 5b–e.
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Figure 5. Numerical and experimental force and displacement curves. (a) Tensile tests, (b) notched and
shear tests for 7003 aluminum alloy, (c) notched and shear tests for ADC12 aluminum alloy, (d) notched
and shear tests for ZK60 magnesium alloy and (e) notched and shear tests for 20CrMnTiH steel. Scatters
represent experimental data and solid lines represent numerical results hereinafter.

Visual comparisons between experimental and numerical predicted fracture modes are shown in
Figures 6–9. Good agreements on the fracture modes are observed in those figures, indicating that the
EIFEM method can reproduce the fracture behavior for different metals over a wide stress triaxiality
with certain accuracy.
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Figure 6. Fracture mode for 7003Al-T6 aluminum alloy for (a) smooth tensile test, (b) pure shear
test, (c) tensile and shear test, (d) notched test for notched radii 5 mm, (e) notched test for notched
radii 10 mm, (f) notched test for notched radii 15 mm and (g) notched test for notched radii 20 mm.
Hereinafter, the numerical fracture mode is in plastic strain contour.
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Figure 8. Fracture mode for ZK60 magnesium alloy for (a) smooth tensile test, (b) notched test for notched
radii 1mm, (c) notched test for notched radii 5mm, (d) notched test for notched radii 10mm, (e) pure shear
test, (f) shear and tensile test at shear angle 30◦ and (g) shear and tensile test at shear angle 60◦.
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Figure 9. Fracture mode for 20CrMnTiH steel for (a) smooth tensile test, (b) notched test for notched
radii 2 mm, (c) notched test for notched radii 0.8 mm, (d) notched test for notched radii 0.4 mm, (e) pure
shear test, (f) shear and tensile test at shear angle 30◦ and (g) shear and tensile test at shear angle 60◦.

3.3. Comparison

To further study the application range of the proposed method, the numerical results predicted by
the GISSMO model are compared with other two methods. The first method is widely used in industry
for rough calculation. To get the fracture strain in the first method, the experimental obtained force
and displacement curves are transposed into effective stress and strain based on method in Section 2.2.
Then the fracture strain is obtained at the end point in the effective stress and strain curve. Usually
this fracture strain is smaller than the EIFEM obtained fracture strain. To verify which fracture strain
is more accurate, the numerical simulation for first method also carried out in LS-DYNA. For better
clarification, the notation in first method adds A, so the fracture strain is written as ε f

A. The second
method is a commonly used iterative FEM method as in Ref. [31]. Different value of fracture strain can
be obtained by this method, and the corresponding notation adds a B, so ε f

B. The stepwise procedure
for the second method is shown in Appendix A. The numerical simulation for validating the second
method is also conducted.

Numerical simulations for the aforementioned two methods carry out in LS-DYNA. The material
model is John-Cook model and the fracture model is the GISSMO model, both are consistent with the
EIFEM method. The method A and the method B cannot obtain the critical strain εc, the εc in the two
method are set to a relatively large constant. Then the GISSMO model cannot display the soften region.
The value of εc influence the value of ε f . In this paper, the εc is set to 1 in method A and method B. m
and n are set according to Table 3. The fracture strain vs. stress triaxiality for the three methods are
shown in Figure 10.
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Force and displacement relationships for method A and B is presented in Figure 11. The elongation
is discussed firstly. Elongation calculated by method A is much smaller than experimental elongation.
Elongations calculated by method B are closer to the experimental data. However, the relative errors
for Test No. 9, 10, 17, 20 and 22 (numbered in Table 2) are beyond 5%, indicating the method B cannot
accurately predict the failure behavior. Then the force and displacement curves are compared. For
method A, the numerical force and displacement curves overlap the elastic region, failing to predict
the harden and soften region. For method B, numerical force and displacement curves in Test No.
2, 3, 8–11,16–18, 23–25 match the experimental data. However, for other tests, the numerical curves
cannot capture the soften region. The experiments well predicted by methods B include tests of ADC12
alloy and all shear tests. The experiments failing to be predicted by method B include the uniaxial
tensile tests for 7003 alloy and 20CrMnTiH steel and notched tests for 7003 alloy, ADC12 alloy, and
20CrMnTiH steel. The well predicted experiments are brittle fracture (ADC12 alloy) and shear fracture,
with relatively small strain and no soften effects. The bad estimated force and displacement curves are
featured by obvious soften effects. So, the method B cannot predict soften effect. The reason lies in
the constant value of critical strain εc. εc will influence the value of fracture strain ε f . Usually, ε f in
condition εc < ε f is larger than condition εc

≥ ε f . So, the ε f obtain by the EIFEM method is larger than
ε f by method B. Physically, the soften effect leads to the inaccurate estimate of fracture stain. Usually,
ε

f
EIFEM ≥ ε

f
B ≥ ε

f
A. In conclusion, method A is not recommending unless for small strain conditions or

very rough calculation. Method B can be safely used in deformation with little or no soften effects.
The EIFEM method can accurately predict the large deformation and obvious soften conditions.
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B, (e) ZK60 Mg alloy based on method A, (f) ZK60 Mg alloy based on method B, (g) 20CrMnTiH based
on method A and (h) 20CrMnTiH based on method B.
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4. Conclusions

This paper validates the accuracy for an extended parameter identification method by experiments
and simulations, followed by comparison with two existing methods. The EIFEM method obtains the
parameters in the GISSMO fracture model. The numerical obtained elongation, force, and displacement
curves and the fractured position agree well with experiment. The EIFEM method achieves the
best estimate compared with other two methods. Method A is recommended to use in small strain
conditions or rough calculation. Method B can be used in metal with little or no soften effects.
The EIFEM method can be used in predicting the large deformation and obvious soften effects.
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Appendix A

The iterated FEM method is used to obtain stress triaxiality σ∗ and fracture strain ε f . In stepwise
Step L is the gauge length and ∆L is elongation.

Step 1: Obtaining the initial value of ε f
0 . ε f

0 = ∆L/L.
Step 2: Numerical simulation for tensile tests. In this step, the FEM method is performed to

simulate the tensile tests. Through the first attempt of tensile simulation, σ∗ can be obtained in the first
fractured element at the fractured moment.

Step 3: Iteration of ε f . The elongation ∆L(FEM) is not identical to the ∆L(EXP) under ε f
0 . Therefore,

the fracture strain is modified by ε f
i + 1 × ∆L(EXP) = ε

f
i × ∆L(FEM) to reduce the difference between

∆L(FEM) and ∆L(EXP). This iteration is continued until the relative error between ∆L(FEM) and ∆L(EXP)

below 3%. Through the FEM procedures, the precise values of stress triaxiality σ∗ and fracture strain
ε f are identified.
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