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Abstract: This paper analyzes, using the theory of critical distances, the environmentally assisted
cracking behavior of two steels (S420 and API X80) subjected to two different aggressive environments.
The propagation threshold for environmentally assisted cracking (i.e., the stress intensity factor
above which crack propagation initiates) in cracked and notched specimens (KIEAC and KN

IEAC) has
been experimentally obtained under different environmental conditions. Cathodic polarization has
been employed to generate the aggressive environments, at 1 and 5 mA/cm2, causing hydrogen
embrittlement on the steels. The point method and the line method, both belonging to the theory
of critical distances, have been applied to verify their capacity to predict the initiation of crack
propagation. The results demonstrate the capacity of the theory of critical distances to predict the
crack propagation onset under the different combinations of material and aggressive environments.

Keywords: theory of critical distances; environmentally assisted cracking; hydrogen embrittlement;
notch effect; cathodic polarization

1. Introduction

It is expected that fossil energies, such as gas and petroleum, will remain the main source of
energy for the next two decades. In addition, predictions estimate that energy demand will present
an increase of 48% by 2040 [1]. This increasing energy demand has led not only to the development
of other energy sources (e.g., nuclear power and renewables), but also to the extraction of fossil
energies in more demanding locations. This requires new infrastructure, much of which is operating in
increasingly poor conditions (e.g., aggressive environments containing hydrogen sulfides, chlorides
and sulfur, among others, elevated temperatures and/or pressures, etc.). The failure of structural
components that operate in aggressive environments is often related to environmentally assisted
cracking (EAC) processes, such as stress corrosion cracking (SCC) and hydrogen embrittlement
(HE) [2,3]. Both phenomena lead to brittle and unexpected failures caused by the degradation of the
mechanical properties of the materials [4,5].

In this context, the management of EAC becomes one of the main challenges [6]. The behavior of
materials under SCC or HE conditions is a subject of great importance, especially during the material
selection process, due to the high cost of the components [7–9]. In addition, repairs and replacements
of structural components containing defects involve elevated costs. In this sense, there are numerous
situations where the defects jeopardizing the structural integrity of the corresponding component are
not cracks, whose radius on the tip tends to zero. This is true in the case of, for example, corrosion
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defects, which generally have a finite radius (i.e., non-zero) on their tip. If these defects are considered
to behave as cracks, the corresponding structural integrity assessments, based on fracture mechanics
principles, may be overconservative [10–13]. Hence, it is necessary to develop structural integrity
assessment methodologies that take into account the actual behavior of notches, which are here
understood as those defects with a finite radius on their tip.

When dealing with the fracture behavior of notches, two different criteria can be distinguished:
the global criterion, which is analogous to ordinary fracture mechanics (it compares the notch stress
intensity factor with the corresponding notch fracture resistance), and the local criteria, which are
based on the stress-strain field around the defect tip. Among the latter, the theory of critical distances
(TCD) stands out. The accuracy of the TCD in the prediction of fracture (and fatigue) processes has
been widely reported in the literature, especially through its most simple approaches: the point method
(PM) and the line method (LM) (e.g., [14–19]).

Recently, the authors have proposed the use of the TCD to analyze EAC processes, providing
accurate results [20] in one specific aggressive environment. The aim of this paper is to extend the
validation of the use of the TCD in EAC assessments, analyzing the effect of two cathodic current
densities on two different steels (S420 and X80) that are commonly used in offshore components,
power plants and pipes. The experimental program is composed of 40 C(T) specimens (20 of which are
presented for the first time in this paper), with notch radii varying from 0 mm (crack-like defects) up
to 2 mm. The aggressive environments have been generated through cathodic charges (or cathodic
polarization) at 1 mA/cm2 (new tests) and 5 mA/cm2 (tests previously presented in [20]), which are
used to cause HE on the steels. The study has been completed with finite element simulations.

2. Theoretical Overview

2.1. The Theory of Critical Distaces

The Theory of Critical Distances (TCD) [14], first presented in the middle of the twentieth
century [14,21,22], is a group of methodologies, all of which use a characteristic material length
parameter when performing fracture and fatigue assessments. This parameter is called the critical
distance, L.

In fracture analysis, the above-mentioned critical distance (L) follows:

L =
1
π

(
Kmat

σ0

)2

(1)

where Kmat is the material fracture toughness and σ0 is a characteristic material strength parameter
named the inherent strength, which is usually larger than the ultimate tensile strength and requires
calibration. Some critical distance default values for structural steels can be found in the literature [23].
In fatigue analysis, L presents an analogous expression:

L =
1
π

(
∆Kth
∆σ0

)2

(2)

The two simplest methodologies of the TCD are explained below.

2.1.1. The Point Method (PM)

The PM establishes that fracture occurs when the stress reaches the inherent strength, σ0, at a
distance equal to L/2 from the defect tip. The definition of the PM methodology is shown in Figure 1.
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In fracture analyses, the mathematical expressions is [14]:

σ
(L

2

)
= σ0 (3)

whereas in fatigue analyses, the corresponding equation would be analogous [14]:

∆σ
(L

2

)
= ∆σ0 (4)

The TCD parameters (the critical distance, L, and the inherent strength, σ0) can be easily derived by
performing two fracture (or fatigue) tests on two specimens presenting different notch radii. At fracture
(or fatigue), the stress-distance curves cross each other at one point with coordinates (L/2, σ0) ((L/2,
∆σ0) in fatigue analysis).

When combined with the stress distribution on the notch tip provided by Creager and Paris [24]
(Equation (5)), the PM generates predictions of the apparent fracture toughness (KN

mat) exhibited by
materials containing U-shaped notches:

KN
mat = Kmat

(
1 + ρ

L

)3/2(
1 + 2ρ

L

) (5)

2.1.2. The Line Method (LM)

The LM assumes that fracture takes place when the average stress along a distance equal to 2L
(from the notch tip) reaches the inherent strength, σ0 [14]:

1
2L

∫ 2L

0
σ(r)dr = σ0 (6)

Analogously, in fatigue analysis, the LM criterion is defined by the following equation [14]:

1
2L

∫ 2L

0
∆σ(r)dr = ∆σ0 (7)

In combination with the Creager-Paris stress distribution, the LM also provides an estimation of
the material apparent fracture toughness in the presence of U-shaped notches [14]:

KN
mat = Kmat

√
1 +

ρ

4L
(8)
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2.2. Environmentally Assisted Cracking and Hydrogen Embrittlement

Environmentally assisted cracking groups together a wide range of cracking phenomena that
take place under aggressive environments. Failure occurs as a consequence of a synergetic action
of material, environment and stresses [2]. These phenomena may lead to subcritical crack growth
processes and final fracture due to the degradation of the mechanical properties of the materials [5,25].

Hydrogen can cause embrittlement in metals by the action of atoms penetrating the material
microstructure and diffusing to the most stressed zones. In order for HE failure to occur, a susceptible
material, an exposure to a hydrogen-containing environment and high enough stresses are required.
HE can be caused by cathodic polarization, which is a technique employed to prevent corrosion
processes by reducing the corrosion rate when a potential (or current density) below the open circuit
potential is applied (by means of a cathodic polarization) between the anode and the cathode, usually
provided by an external source [8]. However, this method increases the H2 production, and, if the
polarization is excessive, a direct reduction of H2O is possible, as shown below:

2H2O + 2e− → H2 + 2OH− (9)

Before the H2 molecule formation, H atoms are present on the metal surface during a significant
time, which is increased by the presence of poisons of the hydrogen recombination reaction (e.g.,
H2S and As). Hydrogen atoms can penetrate into interstitial sites, facilitated by their small size,
and cause embrittlement [26,27].

3. Materials and Methods

3.1. Materials

This study analyzes, through the application of the PM and the LM, the effect of the environment
on the EAC behavior of two steels: a weldable thermo-mechanically treated S420 medium-strength
steel [28], and API X80 medium-strength steel obtained by means of control rolling and accelerate
cooling [29]. The mechanical properties of these steels, as received, are shown in Table 1:

Table 1. Mechanical properties of the materials being analyzed.

Material E (GPa) σy (MPa) σu (MPa) eu (%)

S420 206.4 447.7 547.1 21.7
0 209.9 621.3 692.9 29.6

The S420 steel is mainly used in offshore structures, pressure vessels and power plants. It presents
a ferritic-pearlitic microstructure with a grain size ranging between 5–25 µm. The X80 steel, which is
employed in oil and gas transportation at low temperatures, presents a ferritic-pearlitic microstructure
with a grain size ranging between 5–15 µm. It is interesting to notice the presence of a small volumetric
fraction of bainite/degenerated pearlite and the absence of acicular ferrite in X80 steel. The chemical
composition and the microstructure of these steels are gathered in Table 2 and Figure 2, respectively.

Table 2. Chemical composition of the two steels being analyzed.

Material C Si S P Mn Ni Cr Mo Cu Al V Ti Nb

S420 0.08 0.28 0.001 0.012 1.44 0.03 0.02 0.003 0.015 0.036 0.005 0.015 0.031
X80 0.07 0.18 <0.005 <0.005 1.83 0.03 - 0.15 0.02 0.03 - - 0.03
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Figure 2. Microstructure of: (a) X80 steel; (b) S420 steel.

3.2. Simulation of Hydrogen Embrittlement

Cathodic polarization (or cathodic charge) has been used in this work to cause embrittlement on
the steels through fixed current intensities between the steel and the anode (in this case platinum) [26].
Both metals are connected through an aqueous solution, which is prepared following Pressouyre’s
method [30] and consists of an 1 N H2SO4 solution in distilled water with 10 mg of an As2O3 solution
and 10 drops of CS2 per liter of dissolution. The pH of the aqueous environment is kept in the range
0.65–0.80 at room temperature [31,32].

In this study, two levels of current intensity (5 mA/cm2 and 1 mA/cm2) have been considered.
The former was previously applied in [20], whereas the latter has been specifically applied for this study.
Cathodic polarization at these levels is used to cause two levels of hydrogen embrittlement on the steels.
These testing conditions have been used, in combination with slow strain rate conditions and notched
geometries, to generate hydrogen embrittlement. The application of cathodic polarization in actual
structures, and their corresponding structural materials, is generally far from these circumstances,
so that HE is avoided.

Figure 3 shows a schematic of the cathodic charge used in this work. The solution is stirred
to avoid hydrogen bubbles on the specimen surface and prevent localized corrosion. As shown in
Figure 4, the C(T) specimen is used as the working electrode, the platinum grid is used as the counter
electrode and the saturated calomel electrode becomes the reference electrode.
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3.3. Analysis of Environmental Assisted Cracking: An Approach from the Theory of Critical Distances

The TCD has been reformulated to address EAC processes [20]. In order to obtain the critical
distance in EAC conditions, LEAC, the equation proposed is [20]:

LEAC =
1
π

(
KIEAC
σ0EAC

)2

(10)

where LEAC is the EAC critical distance, KIEAC is the EAC crack propagation threshold (obtained
from cracked specimens) and σ0EAC is the inherent strength under EAC conditions, which has to
be calibrated.

Analogously to fracture processes, and assuming Equation (10) for the EAC critical distance,
predictions of the apparent crack propagation threshold for EAC (KN

IEAC), above which EAC
initiates and grows from U-shaped notches, can be derived. The combination of Creager-Paris
stress distribution [24] with the PM and the LM leads to Equations (11) and (12), respectively:

KN
IEAC = KIEAC

(
1 + ρ

LEAC

)3/2(
1 + 2ρ

LEAC

) (11)

KN
IEAC = KIEAC

√
1 +

ρ

4LEAC
(12)

These equations allow the apparent EAC crack propagation threshold, KN
IEAC, to be calculated

from the notch radius, ρ, the material EAC critical distance, LEAC, and the material EAC crack
propagation threshold, KIEAC (calculated in cracked conditions following the methodology proposed
in the standard ISO 7539 [33]).

3.4. Experimental Methods

In this work, fatigue pre-cracked C(T) specimens and notched C(T) specimens were tested using a
slow strain rate machine. A constant displacement rate of 6·10−8 m/s was employed in each material
and environment. Cathodic polarizations at 5 mA/cm2 and 1 mA/cm2 were used to generate two
different conditions. Both S420 and X80 specimens were manufactured in TL orientation. Standard
geometry [33] was used for pre-cracked specimens, slightly modified for notched ones, as shown in
Figure 5. As mentioned above, the use of the TCD in EAC analyses has been previously presented in [20].
The resulting methodology was validated in steels S420 and X80 subjected to cathodic polarization
at 5 mA/cm2, obtaining satisfactory results. However, before extending the use of the TCD in EAC
assessments, it is necessary to provide further validation. Such validation is provided in this work
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through the application of the TCD in the analysis of the EAC generated by an additional cathodic
polarization (1 mA/cm2).
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The whole experimental program is composed of 40 C(T) specimens with notch radii varying
from 0 mm (crack-like defect) up to 2.0 mm, as shown in Table 3. Half of the tests (those corresponding
to cathodic polarization at 5 mA/cm2) have been previously reported in [20], whereas the other
half are totally new. Each test has been duplicated in order to obtain more representative results.
Before conducting EAC tests, the specimens were exposed to the aqueous environment under
cathodic polarization conditions for 2 days in order to achieve the highest possible level of hydrogen
absorption through the corresponding environment. During the hydrogen absorption and the EAC
test, the specimens, were submerged in the aqueous solution, ensuring that the defect tip (crack
or notch) is always covered by the solution [34]. After the hydrogen absorption, a slow strain rate
machine was employed for the mechanical tests, where the specimens were subjected to a constantly
rising displacement at 6·10−8 m/s constant displacement rate, while being exposed to the cathodic
polarization [35]. Load-COD (Crack Opening Displacement) curves were obtained for all the specimens.

Table 3. Experimental program.

Material Displacement
Rate (m/s)

Cathodic Polarization
(mA/cm2)

ρ
(mm) Number of Tests

X80 6·10−8

5 [20]

0.00 2
0.25 2
0.50 2
1.00 2
2.00 2

1

0.00 2
0.25 2
0.50 2
1.00 2
2.00 2

S420 6·10−8

5 [20]

0.00 2
0.25 2
0.50 2
1.00 2
2.00 2

1

0.00 2
0.25 2
0.50 2
1.00 2
2.00 2
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The methodology proposed by the standard ISO 7539 [33] was employed in order to calculate the
stress intensity factor above which EAC initiates, KIEAC. The corresponding equation is:

KIEAC =
PQ

(BBNW)1/2
f
( a

W

)
(13)

where PQ is the applied load at the propagation onset due to EAC, B is the specimen thickness, BN is
the net specimen thickness (B = BN if no side grooves are present), W is the specimen width and f(a/W)
is a geometrical factor depending on the crack size, a, and the specimen width, W. In case of C(T)
specimens, the geometrical factor follows this equation:

f
( a

W

)
=

[(
2 + a

W

)(
0.886 + 4.64 a

W − 13.32
(

a
W

)2
+ 14.72

(
a

W

)3
− 5.6

(
a

W

)4
)]

(
1− a

W

)3/2
(14)

These equations were applied to both cracked specimens (generating KIEAC values) and notched
specimens (generating KN

IEAC values).
Finally, a finite element (FE) analysis was carried out in Abaqus (SIMULIA Academic Research

Suite, Abaqus 2016) in order to obtain the stress field at the defect tip when the crack starts to propagate.
The simulation was performed in linear elastic conditions. The structured meshing technique was
used and the model was developed using C3D8R 3D solid elements with reduced integration. This 3D
model required manual partitioning, which has been performed following the specimen shape in order
to refine the mesh in the most complex regions, such as the notch tip and the holes. The notch tip
presents 60 elements around the perimeter and 30 elements along the width. As the distance moves
away from the notch tip, the mesh becomes thicker. In other words, the mesh, which has been built
using hexahedric elements, is more refined close to the notch tip. Figure 6 represents the FE model
employed together with the mesh.
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4. Results

Table 4 gathers the experimental results of the tests. The values of KN
IEAC have been obtained

following the methodology proposed in ISO 7539 and using Equations (13) and (14). For cracked
specimens (ρ = 0 mm), KN

IEAC coincides with KIEAC.
Figure 7 shows, as an example, four of the experimental Load-COD curves obtained. They all

correspond to steel X80, with two different notch radii (ρ = 0 mm and ρ = 2.0 mm), and the two cathodic
polarizations (5 mA/cm2 and 1 mA/cm2). A clear notch effect and a much more moderate (but still
significant) effect of the cathodic polarization level can be observed.
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Table 4. Summary of the experimental results analyzed in this paper.

Material Specimen Cathodic Polarization
(mA/cm2) ρ (mm) PQ (kN) KN

IEAC
(MPa·m0.5)

X80

X80-5-1

5 [20]

0.00
27.86 67.42

X80-5-2 23.12 53.16

X80-5-3
0.25

34.41 63.21
X80-5-4 34.85 64.01

X80-5-5
0.50

38.26 70.28
X80-5-6 42.75 78.52

X80-5-7
1.00

44.50 81.74
X80-5-8 42.93 78.87

X80-5-9
2.00

56.24 103.31
X80-5-10 54.20 99.59

X80-1-1

1

0.00
24.30 60.00

X80-1-2 24.32 54.40

X80-1-3
0.25

30.70 56.40
X80-1-4 33.93 62.33

X80-1-5
0.50

33.53 61.58
X80-1-6 36.25 66.59

X80-1-7
1.00

37.90 69.62
X80-1-8 41.49 76.21

X80-1-9
2.00

51.24 94.12
X80-1-10 48.48 89.05

S420

S420-5-1

5 [20]

0.00
28.76 67.58

S420-5-2 24.01 61.25

S420-5-3
0.25

34.70 63.74
S420-5-4 33.94 62.34

S420-5-5
0.50

37.09 68.13
S420-5-6 34.21 62.84

S420-5-7
1.00

41.09 75.48
S420-5-8 40.49 74.37

S420-5-9
2.00

45.45 83.49
S420-5-10 45.67 83.89

S420-1-1

1

0.00
24.89 62.17

S420-1-2 24.65 61.61

S420-1-3
0.25

39.36 72.31
S420-1-4 36.57 67.17

S420-1-5
0.50

41.21 75.70
S420-1-6 39.68 72.90

S420-1-7
1.00

44.94 82.54
S420-1-8 43.86 80.58

S420-1-9
2.00

47.13 86.57
S420-1-10 46.60 85.60

The stress-distance curves at the notch tip and at crack propagation onset were obtained through
the FE model (i.e., when applying the corresponding PQ). The PM postulates (Figure 1) that the curves
cross each other at one point with coordinates (LEAC/2, σ0EAC). Figures 8–11 represent the stress-distance
curves for the different combinations of steel (X80 and S420) and environmental condition (5 mA/cm2
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and 1 mA/cm2). The resulting stress-distance curves were obtained with the average value of PQ
obtained in the two tests performed in nominally identical conditions.
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Figure 11. Stress-distance curves at crack initiation in S420 steel at 1 mA/cm2 of cathodic polarization.

Table 5 shows the experimental results of KIEAC (obtained from Equation (13) and the PQ values
obtained in cracked specimens) and the experimental values of LEAC. Figures 8–11 reveal how the
different curves do not cross each other at the same point, although the fundamental assumption of the
PM is fulfilled. Taking the average values, obtained in the different cut-off points obtained from the
stress-distance curves, the derivation of LEAC is straightforward.

Table 5. Values of KEAC, LEAC and the best fit of the EAC critical distance depending on the methodology.

Material Cathodic Polarization
(mA/cm2)

KIEAC
(MPa·m0.5) LEAC (mm) PM LEAC-BF

(mm)
LM LEAC-BF

(mm)

X80
5 [20] 60.29 0.286 0.194 0.276

1 58.37 0.318 0.208 0.303

S420
5 [20] 64.42 0.462 0.386 0.776

1 61.89 0.499 0.273 0.441

Once KIEAC and LEAC were obtained, predictions of KN
IEAC can be derived for each notch radius

following the PM (Equation (11)) or the LM (Equation (12)). Predictions provided by PM and LM using
the obtained LEAC values, and their comparison with the corresponding best fit of the experimental
results are shown in Figures 12–15. The values of the critical distance providing the best fit (least
squares) of the experimental results (LEAC-BF), when using both the PM (Equation (11)) and the LM
(Equation (12)), are also gathered in Table 5.
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Figure 12. Predictions in X80 steel at 5 mA/cm2: (a) PM; (b) line method (LM).
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Figure 13. Predictions in X80 steel at 1 mA/cm2: (a) PM; (b) LM.
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Figure 14. Predictions in S420 steel at 5 mA/cm2: (a) PM; (b) LM.
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Figure 15. Predictions in S420 steel at 1 mA/cm2: (a) PM; (b) LM.
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5. Discussion

KIEAC values have been obtained as the average value obtained in the pre-cracked specimens
(ρ = 0 mm), for each combination of material and environment. Even though the S420 steel does not
fulfil the recommendation for size independency specified by the standard, the aggressive environment
(hydrogen embrittlement) reduces the plasticity and, hence, the sample dimensions required to limit
plastic deformations. Consequently, a minimum thickness cannot be specified [33]. In any case,
regardless of whether or not KIEAC is size independent for the specimens being tested, the analysis
performed allows the results obtained for the different notch radii to be compared (as the thickness is
the same for the different specimens). Therefore, and for the sake of simplicity, they are all named
equally, without any reference to any possible size independence.

Moreover, the TCD assumes linear-elastic conditions, although the real situation may have certain
non-linearities. This may be done, and has been widely validated, once σ0 (or σ0EAC) is conveniently
calibrated. In other words, under non-linear conditions, σ0 becomes a parameter that converts a
non-linear situation into an equivalent linear-elastic one [14,36].

Tests under two levels of cathodic polarization (embrittlement levels) have been carried out in X80
and S420 steels. Stress-distance curves have been obtained through finite element simulations using
the load when the crack starts to propagate. In the four combinations of material and environment,
the different curves cross each other at approximately one point with coordinates (LEAC/2, σ0EAC), as the
TCD (PM) assumption postulates. Thus, it can be stated that the TCD assumptions are fulfilled in EAC
conditions, likewise in fracture and fatigue phenomena.

The values of LEAC at 1 mA/cm2 of cathodic polarization are larger than those values obtained
at 5 mA/cm2. This is related with the presence of sulfur in the acidic solution, given that sulfur ions
acting as poison are less active than the undissociated H2S during the hydrogen recombination reaction.
The test conditions may cause alkalinisation, and this phenomenon increases with the current density.
The alkalinisation reduces the hydrogen evolution and may form an oxide layer on the specimen that
prevents the hydrogen entry into the steel.

The experimental results of KN
IEAC show that an evident notch effect has been observed in all

combinations of material and environment, this effect being more pronounced in the X80 steel. This also
implies that steel X80 has lower values of LEAC than steel S420 (it is thus more sensitive to notches).

In any case, it has been observed that both PM and LM provide accurate predictions of KN
IEAC,

regardless of the material, environment and notch radius being analyzed. Some of the predictions
basically provide the same values as those generated by the best-fit. However, the LM provides
predictions that are more accurate, and the PM offers both straightforward and safe predictions.

6. Conclusions

In this paper, the effect of an aggressive environment on the environmentally assisted cracking
behavior of two steels containing U-shaped notches has been analyzed using the theory of critical
distances (TCD). The TCD has been applied through the point method and the line method to predict the
apparent crack propagation threshold for EAC, KN

IEAC, under two hydrogen embrittlement conditions
caused by cathodic polarization at a level of 5 mA/cm2 (previously reported in the literature) and
1 mA/cm2. TCD parameters have been obtained by a combination of experimental tests and finite
element simulations.

Both materials present an evident notch effect, with an increase of KN
IEAC with the notch radius, ρ.

This has been accurately predicted using the TCD (PM and LM).
Also, the capacity of the TCD for predicting the effect of the embrittlement conditions in the EAC

behavior of the notched steels being analyzed has been demonstrated.
Thus, this work provides additional validation of the use of the TCD for the analysis of

EAC processes.
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