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Abstract: 316L stainless steel is a promising material candidate for a hydrogen containment system.
However, when in contact with hydrogen, the material could be degraded by hydrogen embrittlement
(HE). Moreover, the mechanism and the effect of HE on 316L stainless steel have not been clearly
studied. This study investigated the effect of hydrogen exposure on the impact toughness of 316L
stainless steel to understand the relation between hydrogen charging time and fracture toughness at
ambient and cryogenic temperatures. In this study, 316L stainless steel specimens were exposed to
hydrogen in different durations. Charpy V-notch (CVN) impact tests were conducted at ambient and
low temperatures to study the effect of HE on the impact properties and fracture toughness of 316L
stainless steel under the tested temperatures. Hydrogen analysis and scanning electron microscopy
(SEM) were conducted to find the effect of charging time on the hydrogen concentration and surface
morphology, respectively. The result indicated that exposure to hydrogen decreased the absorbed
energy and ductility of 316L stainless steel at all tested temperatures but not much difference was
found among the pre-charging times. Another academic insight is that low temperatures diminished
the absorbed energy by lowering the ductility of 316L stainless steel.
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1. Introduction

The Marine Environment Protection Committee (MEPC) of the International Maritime
Organization (IMO) regulations met for its 72nd session with the aim to dramatically reduce the
greenhouse gas emissions from ships by at least 50% by 2050 compared to 2008 [1]. The new regulations
lead to the high demand for new eco-friendly fuels for marine ships and vessels with low greenhouse
gas emissions. Among the alternative energies, liquid hydrogen (LH2) has been of great concern
because it has zero carbon dioxide emissions in the exhaust gas and a higher energy-to-weight ratio in
comparison with conventional fuels, like natural gas or gasoline. Despite these advantages, hydrogen
can dissolve into materials and cause hydrogen embrittlement (HE) in hydrogen containers because of
its small size [2]. Furthermore, a low temperature of up to −253 ◦C of liquid hydrogen could make the
materials used for LH2 vessels become brittle. Therefore, the effect of cryogenic temperature and HE
on the working capability of materials used for hydrogen containers must be understood. Figure 1
illustrates a hydrogen container.
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For the transportation and storage of LH2, 316L stainless steel is considered one of the most
attractive material candidates for liquid hydrogen-containing vessels because of its high resistance to
HE [3] and good mechanical properties at low temperatures [4]. Understanding the effect of cryogenic
temperature and HE on the performance of 316L stainless steel is very important in selecting 316L
stainless steel as a material candidate for containing liquid hydrogen. However, the mechanism of HE
on 316L stainless steel has not yet been clearly understood [5].

Former studies investigated the influence of HE on the mechanical properties and microstructure
of 316L stainless steel. Fukuyama et al. (2004) conducted tensile tests at 10–70 MPa of hydrogen
atmosphere and at ambient temperature for 316L stainless steel. They realized that the impact of
hydrogen on the tensile performance of the material was negligible. Hydrogen was only distributed
in the thin outer layer and its concentration was not uniform along with the specimen because of
its low diffusivity [6]. Kanezaki et al. (2008) cathodically charged 316L stainless steel in a H2SO4

solution (pH = 3.5) at 27 A/m2, 50 ◦C for 672 h. They found that hydrogen was only distributed in the
thin outer layer with a thickness of approximately 100–200 µm after cathodic charging and the high
hydrogen concentration was only distributed on the 100 µm outer layer [7]. The high nickel content of
316L stainless steel promotes a better stability of the austenite phase, which plays an important role
in resistance against hydrogen-assisted fracture [8]. In the cubic lattice of materials, the presence of
hydrogen in the matrix causes several changes, such as defects in transformation and phase formation.
For austenitic stainless steels like 316L stainless steel, HE leads to the phase transformation from
austenitic γ (face-centered cubic) to ε (hexagonal close-packed) and α (body-centered cubic) as proven
by several studies [9–11]. The diffusion rate of hydrogen in the γ-austenite phase is lower than that in
the martensite phase; therefore, the effect of HE in the former phase is lower. Furthermore, HE also
changes the surface morphology and microstructure of hydrogen-exposed specimens [12].

Although some studies have reported the effect of HE on the performance of 316L stainless steel
in the cryogenic environment, they are different from those reported by this study. Former tensile tests
were conducted to study the effect of HE on the mechanical properties of materials in the ambient
and cryogenic temperatures [13–16]. However, fracture toughness is also an important parameter in
evaluating the resistance of a pre-cracked material under an applied load. The Charpy V-notch (CVN)
impact test [17] is utilized to estimate the absorbed energy during fracture under a high strain rate.
This test is widely applied in the industry to measure the material’s fracture toughness because of its
low cost, simplicity and popularity [18]. Former studies concluded that hydrogen exposure decreased
the impact toughness of steels [19,20]; however, others found that the effect of hydrogen exposure
on the impact toughness of steels was negligible [5,21]. Nevertheless, the effect of HE on the impact
behavior of steels at the cryogenic temperature was not clearly investigated. Thus, the cryogenic
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impact performance of 316L stainless steel and the effect of HE on this material must be understood to
select 316L stainless steel as a candidate for hydrogen-containing vessels.

This study revealed the effect of hydrogen exposure on the fracture toughness of 316L stainless
steel, including the impact resistance of 316L stainless steel under low temperature. Various durations of
cathodic hydrogen charging were used to cause HE in the 316L stainless steel specimens. After charging,
zinc electroplating was performed to prevent hydrogen from being desorbed out of the specimens and
maintain HE. The CVN impact test at the ambient and low temperatures was conducted to determine
the fracture toughness and the ductility of the specimens after being degraded by HE. Meanwhile,
the hydrogen amount in each case was measured to study the relationship between the hydrogen
concentration and the absorbed energy of the specimens. The microstructure of the fracture surfaces
was investigated by a scanning electron microscope to understand the characteristic of the fracture and
ascertain the CVN impact test result.

2. Materials and Methods

2.1. Material

The 316L stainless steel exhibited high resistance to HE, showing excellent mechanical performance
at low temperatures. This study used 316L stainless steel made based on the Japanese standard. Table 1
shows the composition of 316L stainless steel.

Table 1. Composition of 316L stainless steel.

Specimen Chemical Elements (wt. %)

C Si S P Mn Mo Ni Cr Fe

316L 0.020 0.56 0.003 0.028 1.33 2.1 10.19 16.4 Bal.

2.2. Specimens

The specimens were made based on ASTM E23—16b: Standard Test Methods for Notched Bar
Impact Testing of Metallic Materials [17]. V-notched specimens are widely used to test the absorbed
energy of metals because they are easy to prepare and the CVN impact test results can be achieved
quickly and cheaply. Each specimen had a specific dimension of 55 mm × 10 mm × 10 mm in length,
width and thickness, respectively. The V-notch was 2 mm in depth and 45 degree in V-angle. The notch
radius was 0.25 mm. Figure 2 illustrates the dimension of each V-notched specimen.
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2.3. Cathodic Hydrogen Charging and Zn Electroplating

The two predominant methods used to generate HE in specimens are electrochemical charging
and hydrogen gas charging. Hydrogen gas charging involves exposing the specimen to hydrogen
atmosphere, while electrochemical hydrogen charging, or cathodic hydrogen charging, is a method by
which a specimen is immersed in an electrolytic solution. Electricity is then used to generate water
electrolysis. Cathodic hydrogen charging was used herein to generate HE in the 316L stainless steel
specimens because this method was simple to perform. Cathodic hydrogen charging was conducted
based on the ISO 16573-2015: Steel—Measurement method for the evaluation of HE resistance of
high-strength steels [22]. The generated hydrogen diffused into the specimen surface, which played
a role as a cathode. A platinum mesh was used as an anode. The notched specimens were totally
immersed in the electrolyte solution composed of 3% NaCl + 0.3% NH4SCN. The NaCl molecules
in the H2O solvent were dissolved to Na+ and Cl− ions, which acted as electrolytes in the solution,
while NH4SCN prevented the H+ ions from recombination to H2 during hydrogen charging [23]. The
charging’s current density was kept constant at 20 A/m2 using the potentiostat mode of a WBCS3000S
Standard Type Battery Cycler (WonATech, Seoul, Korea). The charging durations were 12 h, 24 h and
48 h. Hydrogen was liberated at the cathode surface (specimen) and might diffuse into the specimen.
The amount of liberated hydrogen depended on the current density. A larger current density liberated
more hydrogen on the specimen surface. Figure 3 illustrates the schematic diagram of hydrogen
charging for the V-notched specimens.
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Figure 3. Schematic diagram of the cathodic hydrogen charging.

After the hydrogen exposure, each specimen was slightly polished by a grit sanding sponge after
being charged to remove the little dirt on the specimen surface. Next, zinc electroplating was conducted
to prevent hydrogen from being desorbed. The thin Zn layer acted as a barrier that prevents hydrogen
from diffusing out during the loading test. The schematic diagram of the electroplating was the same
as the hydrogen charging, except for the current density and the plating solution. In this procedure, the
applied current density was 300 A/m2. The plating solution included Zn2+ ions, which were referenced
from the ISO 16573-2015 standard [22]. Each specimen was initially electroplated for approximately 8
min. The specimen was then rotated and continued to be electroplated again in approximately 8 min
to ensure that the Zn layer homogeneously covered the specimen. The electroplating times could be
slightly adjusted to make sure that the Zn layers sufficiently covered the specimens with homogeneous
thicknesses. Figure 4 illustrates the specimens before (a) and after (b) electroplating.
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2.4. Hydrogen Concentration Measurement

After being hydrogen pre-charged, the hydrogen concentration on the surface of each specimen
was measured by a ONH-2000 hydrogen analyzer (ELTRA GmbH, Haan, Germany) for the 12 h, 24 h
and 48 h charged and uncharged specimens. For this measurement, each sample has 1 g in weight was
cut from the specimen surface. The samples were then investigated for hydrogen concentration for
approximately 2.5 min inside the dual range thermal conductivity cell of the hydrogen analyzer. At
least five samples were analyzed for each duration of hydrogen exposure to ascertain the repeatability
of the hydrogen concentration results. The hydrogen concentration was used to unveil the relationship
between the absorbed energy and the hydrogen concentration for each CVN specimen.

2.5. CVN Impact Test

After being electroplated, the specimens were prepared by controlling the desired temperature
conditions. Then, the Charpy impact tests were conducted. The CVN impact test demonstrated the
absorbed energy during the material fracture, which also indicated work needed to make the material
fracture at the experimental temperature of the CVN impact test. The absorbed energy was calculated
as follows:

ECVN = MR(cosβ − cosα)g, (1)

where ECVN is the absorbed energy; M is the mass of the hammer; R is the specimen length; β is the
angle after the impact; α is the falling angle before the impact; and g is the gravitational acceleration.
The absorbed energy of the specimens was recorded to estimate the toughness and ductility of the
impact tests. Ductile fracture has high absorbed energy in the CVN impact test as well as better impact
toughness, while brittle fracture has low absorbed energy in the CVN impact test. Therefore, the
ductile fracture was preferred in most applications. Aside from the specimens used for the CVN
impact test at the ambient temperature, the others were pre-cooled in the desired low temperature for
40–50 min to ensure their thermal equilibrium. To lower the temperature to −50 ◦C and −125 ◦C for
the low-temperature impact test, liquefied nitrogen (LN2) was injected to an insulated chamber and
the inlet flow rate of nitrogen was automatically adjusted to maintain the desired temperature by the
two thermocouples connected to a computer. For −196 ◦C, the specimens were directly immersed to
liquid nitrogen at atmospheric pressure in another insulated chamber. After pre-cooling for 40–50 min,
the CVN impact test was conducted within 5 s for each specimen since the time that each specimen
was brought out of the insulated chamber [17]. Each case was repeated at least three times to ensure
the reliability of the testing results. Figure 5 presents the experimental procedure of the CVN impact
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test. Table 2 illustrates the experimental scenario of the hydrogen pre-charging, zinc electroplating and
CVN impact tests.
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Table 2. Experimental scenario.

No Charging Current
Density (A/m2)

Charging
Duration (h)

Electroplating
Current Density

(A/m2)

Temperature of
CVN Impact Test

(◦C)

1 0 0 0

25
2

20
12

3003 24
4 48

5 0 0 0

−50
6

20
12

3007 24
8 48

9 0 0 0

−125
10

20
12

30011 24
12 48

13 0 0 0

−196
14

20
12

30015 24
16 48

2.6. Scanning Electron Microscopy (SEM)

For each case of the CVN impact test, a Supra 25 scanning electron microscope (Carl Zeiss AG,
Oberkochen, Germany) was used to analyze the microstructure in the middle of the fracture surfaces
after the impact test. This step focuses on the effect of the hydrogen charging time on the surface
morphology (e.g., tortuousness, depth and size of dimples) on the specimen’s fracture surface after the
CVN impact test. ImageJ software was employed to measure the dimple size. The absorbed energy and
microstructure combination could unveil the impact properties of the specimens. The microstructure
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of the ductile fracture mainly has a tortuous appearance with large and deep dimples. In contrast, the
brittle fracture microstructure mainly contains small spherical dimples and cleavage facets.

3. Results and Discussion

3.1. Hydrogen Concentration in the Specimens

Figure 6 illustrates the hydrogen concentration at the surface of the uncharged and 12 h, 24 h
and 48 h pre-charged specimens. This chart shows that the hydrogen concentration in the charged
specimens was higher than that in the uncharged specimens. The average hydrogen concentration in
the uncharged samples was 3.52 wt. ppm, which was approximate to that in the previous research [24].
In comparison with the non-exposed samples, the results for the 12 h, 24 h and 48 h charged samples
are 5.79, 10.1 and 8.74 wt. ppm, which correspond to 164%, 287% and 248%, respectively. The hydrogen
concentration dramatically increased and reached a saturation point at 24 h of charging. After 24 h
of charging, the hydrogen concentration remained relatively closed to the saturated concentration of
hydrogen. Besides, the errors of hydrogen concentration were relatively large. This result confirmed
the high resistance of 316L stainless steel to HE because hydrogen hardly diffused into this material
and was homogeneously distributed on the thin outer layer of the hydrogen-exposed specimens. The
next section explains the effect of the hydrogen charging time and the temperature of the CVN impact
test on the absorbed energy of 316L stainless steel.
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3.2. CVN Impact Absorbed Energy

In a CVN impact test, the ductile fracture has higher absorbed energy and higher plastic
deformation than the brittle fracture. Figure 7 shows the temperature-dependent absorbed energy of
the CVN impact test for the 12 h, 24 h and 48 h hydrogen charged and uncharged 316L stainless steel
at 25 ◦C (ambient temperature), −50 ◦C, −125 ◦C and −196 ◦C, respectively.
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Overall, the tested 316L stainless steel’s absorbed energy gradually decreased when decreasing
the temperature of the CVN impact test. Specifically, in comparison with 25 ◦C, the average absorbed
energy of the uncharged specimens at −50 ◦C, −125 ◦C and −196 ◦C are 76.0%, 69.4% and 61.0%
respectively. These ratios for the 12 h, 24 h and 48 h charged specimens were approximate to those of
the uncharged specimens. Therefore, the ductility of impact tests decreased gradually from ambient
temperature to −196 ◦C. The decrease in the absorbed energy as well as the ductility was caused by
lowering the temperature of impact tests, which resulted in the more brittle fracture of 316L stainless
steel [25,26].

Figure 8 shows the charging time-dependent absorbed energy behavior of 316L stainless steel at
25 ◦C (ambient temperature), −50 ◦C,−125 ◦C and−196 ◦C, respectively. At the same temperature of the
CVN impact test, the absorbed energy of the pre-charged specimens relatively dropped in comparison
to that of the uncharged specimens. For the CVN impact test conducted at the ambient temperature,
the drop in the absorbed energies at the 12 h, 24 h and 48 h charged specimens corresponded to 16.6%,
14.2% and 12.6%, respectively, when compared to those in the uncharged specimens. This result also
indicates that hydrogen pre-charging slightly decreased the ductility of the notched specimens at the
ambient temperature.
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For the CVN impact test conducted at −50 ◦C, the absorbed energy for the pre-charged specimens
was almost alike to the uncharged specimens. Specifically, the dropped ratio for the CVN impact test
for the 12 h and 48 h pre-charged specimens is approximately 0.23% and 1.7% respectively, compared
to the uncharged specimens. The absorbed energy for the 24 h pre-charged specimen increased by
0.45%. Therefore, the effect of hydrogen pre-charging at −50 ◦C was negligible.

At −125 ◦C, the absorbed energy also exhibited a slight decrease with the pre-charging time
of hydrogen. The drop in the absorbed energy is 7.9%, 11.3% and 9.7% for the 12 h, 24 h and 48 h
pre-charged specimens, respectively. Finally, at −196 ◦C, the drop in the absorbed energy for the 12 h,
24 h and 48 h pre-charged specimens is 12.9%, 9.2% and 10.0%, respectively. Overall, most of the
hydrogen pre-charged specimens exhibited a drop in the absorbed energy, indicating that hydrogen
pre-charging decreased the ductility of 316L stainless steel in the CVN impact tests at the ambient
temperature, −50 ◦C, −125 ◦C and −196 ◦C. Former studies also revealed that hydrogen exposure
changes the fracture mode of materials from ductile to brittle [2,27] and therefore decreased the
absorbed energy in the CVN impact test of metallic materials. In Figures 7 and 8, the exposure to
hydrogen decreased the absorbed energy in the CVN impact tests but the drop in absorbed energy
remained stable from 24 h to 48 h of charging, which reflected a similar behavior with hydrogen
concentration in 24 h charged and 48 h charged specimens. A former study also revealed that when
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increasing the hydrogen outgassing time to low carbon stainless steel, not much difference in hardness
of the specimens was observed [28].

3.3. Fracture Surface Morphology

Figure 9 illustrates the specimens under CVN impact tests. In Figure 9, cracks were found on
the V-notched specimen after the CVN impact test. The appearance of the cracks mostly depended
on the temperature of the impact tests. The presence of plastic deformation increased in the order of
−196 ◦C, −125 ◦C, −50 ◦C and ambient temperature. For CVN impact tests conducted at −196 ◦C, all
V-notched specimens were separated into 2 pieces and showed very little plastic deformation. The
specimens in CVN impact tests conducted at −125 ◦C and −50 ◦C were partly separated by the impact
tests and showed relatively little plastic deformation. Meanwhile, impact tests conducted at ambient
temperature showed extensive plastic deformation and all specimens were not separated. Further, the
differences in the appearance of impacted specimens according to charging times were not clear.
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Figure 9. Photograph of tested specimens.

Scanning electron microscopy was conducted after the CVN impact test to investigate the fracture
surface of the specimens. The brittle fracture has little plastic deformation and mainly contains small
spherical dimples, flat facets and cleavage facets on the fracture surfaces. For ductile fracture, the
fracture surface mainly includes a tortuous appearance with deep and large dimples. The ductile
fracture has more plastic deformation than the brittle fracture. Therefore, the absorbed energy in the
CVN impact test of ductile fracture was higher than that of brittle fracture.

Figure 10 shows the fracture surfaces for the impact test conducted at ambient temperature for the
(a) uncharged, (b) 12 h charged, (c) 24 h charged and (d) 48 h charged specimens after the CVN impact
test. As shown in this figure, the fracture surfaces have a tortuous appearance and mainly covered by
large dimples. The cleavage fracture was not observed in the SEM images at ambient temperature
and the large dimples were relatively deep. Those were the signs of plastic deformation. Therefore, at
ambient temperature, the type of impact fracture was mainly ductile. For different charging times,
the morphology of the uncharged specimen was the roughest appearance by included many tortuous
and large dimples, the depth of those dimples was bigger than the other charged specimens, which
confirms the negligible drop in absorbed energy of charged specimens at ambient temperature. Besides,
the dimples on the fracture surface of 12 h charged specimen were relatively smaller and shallower
than the other specimens at ambient temperature, confirms that the absorbed energy of 12 h charged
specimen was the smallest among the charging time. Therefore, the effect charging times at 12 h on
the surface morphology as well as deformation of CVN impact tests at ambient temperature was the
largest, followed by 24 h and 48 h charging time. Besides, there were negligible differences between the
deformation as well as absorbed energy between 24 h charged specimen and 48 h charged specimen at
ambient temperature.
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Figure 10. Scanning electron microscope (SEM) images obtained from the impact test at the ambient
temperature: (a) uncharged, (b) 12 h charged, (c) 24 h charged and (d) 48 h charged.

Figure 11 shows the microstructure analysis of the fracture surface in the CVN impact test at
−50 ◦C. The fracture surfaces at −50 ◦C are primarily covered by relatively large dimples. However,
the fracture surface at this temperature was less circuitous than that in the ambient temperature, the
dimples in Figure 11 are relatively smaller and shallower than the dimples in Figure 10 and an increased
presence of the small spherical dimples and flat facets was observed. Thus, this appearance of the
fracture surfaces indicated that the deformation was less ductile in the impact tests at −50 ◦C than that
at the ambient temperature and led to a drop in the absorbed energy from the ambient temperature
to −50 ◦C in Figure 7. Moreover, the appearance of the fracture surfaces in Figure 11 are made quite
analogous, confirming that the impact properties of specimens at −50 ◦C are roughly alike. Overall,
the effect of hydrogen pre-charging on the CVN impact properties of 316L stainless steel at −50 ◦C was
negligible. The drop in the absorbed energy from the ambient temperature to −50 ◦C was caused by
the decrease in the temperature of the CVN impact test.
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Metals 2019, 9, 625 11 of 14

Figure 12 illustrates the microstructure images of the fracture surface in the CVN impact test
at −125 ◦C of 316L stainless steel according to the hydrogen charging time. As shown in this figure,
the fracture surfaces were mainly covered by small spherical dimples. The presence of the small and
spherical dimple fracture was more frequent here than in the ambient temperature and −50 ◦C, making
the average size of dimples at −125 ◦C smaller than at the ambient temperature and −50 ◦C and the
spherical dimples are relatively shallow. Thus, this appearance of the fracture surfaces indicated that
the CVN impact behavior at −125 ◦C was more brittle than at the ambient temperature and −50 ◦C,
confirming that the average absorbed energy at −125 ◦C was smaller than at −50 ◦C. Besides, there
were differences in the fracture surface according to the charging times. The surface morphology of
the uncharged specimen was rougher than the charged specimens. Specifically, the size of dimples
of the uncharged specimen was relatively larger and deeper, which confirms the drop in absorbed
energy of charged specimens at −125 ◦C. In addition, the fracture surfaces of the charged specimens in
Figure 12 are roughly alike, which mainly covered by small spherical dimples. Therefore, the surface
morphology and the average size of dimples confirmed that hydrogen pre-charging degraded the
impact toughness and surface morphology of the CVN impact test conducted at −125 ◦C but the
differences among the charged specimens were negligible.
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Figure 12. Scanning electron microscope (SEM) images obtained from the impact test at −125 ◦C: (a)
uncharged, (b) 12 h charged, (c) 24 h charged and (d) 48 h charged.

Figure 13 illustrates the microstructure images on the fracture surface in the CVN impact test at
−196 ◦C. The appearance of the fracture surfaces in this figure is dominated by small and spherical
dimples, which are smaller and more circular than those in the fracture surface of the impact tests
conducted at the ambient temperature, −50 ◦C and −125 ◦C. Besides, the deep and large dimples are
rarely observed herein, confirming that the type of fracture at −196 ◦C was the least ductile fracture
among the tested temperatures. That is, this was the reason why the absorbed energy in the CVN
impact test at −196 ◦C was the smallest among the tested temperatures.



Metals 2019, 9, 625 12 of 14
Metals 2019, 9, x FOR PEER REVIEW 12 of 14 

 

 

Figure 13. Scanning electron microscope (SEM) images obtained from the impact test at −196 °C: (a) 

uncharged, (b) 12 h charged, (c) 24 h charged and (d) 48 h charged. 

Among the SEM images in Figure 13, the uncharged specimen’s size and depth were largest 

among the fracture surfaces obtained from the impact test at −196 °C, confirming that the type of 

fracture of the uncharged specimen at −196 °C was the most ductile fracture. Besides, the differences 

among the fracture surfaces the charged specimens were not noticeable. That is, they were covered 

by similar shallow and small spherical dimples, confirming that hydrogen exposure decreased the 

ductility and the absorbed energy of the charged specimens in the CVN impact test at −196 °C. 

4. Conclusions 

The CVN impact behavior of the hydrogen-exposed 316L stainless steel at the ambient 

temperature, −50 °C, −125 °C and −196 °C was studied herein. The following conclusions can be 

drawn from this study: 

 Exposure to hydrogen increased the hydrogen concentration of the samples collected at the 

specimen surface. After 24 h of charging, the hydrogen concentration in the charged specimens 

reached a saturation point. 

 Hydrogen charging resulted in a slight reduction in the absorbed energy and ductility of 316L 

stainless steel at most of the tested specimens. The drop in absorbed energy varied from 0.23% 

to 16.6%. 

 The surface morphology of the uncharged specimens was more ductile than that of the pre-

charged specimens impacted at ambient temperature, −125 °C and −196 °C. While the differences 

for specimens impacted at −50 °C were negligible. 

 Another academic insight obtained herein is that low temperature decreased the ductility of the 

V-notched specimens in the CVN impact test. The loss of ductility caused by the ductile to brittle 

transformation was attributed to the lowering of the temperature in the CVN impact tests. 

Therefore, the impact properties of 316L stainless steel have a high resistance against HE and 

this material can be a possible candidate as material for the hydrogen containment system. However, 

using 316L stainless steel at low temperature should be carefully considered because of the losses in 

ductility and fracture resistance caused by this low temperature. Former studies investigated the 

effect of HE on the mechanical properties of materials. A standard for the absorbed energy of 

hydrogen-exposed materials in specific temperature ranges must be surveyed and created. The 

results of this study could contribute to the research database for hydrogen tanks, hydrogen pipelines 

and fuel cell vehicles containing 316L stainless steel. 

Figure 13. Scanning electron microscope (SEM) images obtained from the impact test at −196 ◦C: (a)
uncharged, (b) 12 h charged, (c) 24 h charged and (d) 48 h charged.

Among the SEM images in Figure 13, the uncharged specimen’s size and depth were largest
among the fracture surfaces obtained from the impact test at −196 ◦C, confirming that the type of
fracture of the uncharged specimen at −196 ◦C was the most ductile fracture. Besides, the differences
among the fracture surfaces the charged specimens were not noticeable. That is, they were covered
by similar shallow and small spherical dimples, confirming that hydrogen exposure decreased the
ductility and the absorbed energy of the charged specimens in the CVN impact test at −196 ◦C.

4. Conclusions

The CVN impact behavior of the hydrogen-exposed 316L stainless steel at the ambient temperature,
−50 ◦C, −125 ◦C and −196 ◦C was studied herein. The following conclusions can be drawn from this
study:

• Exposure to hydrogen increased the hydrogen concentration of the samples collected at the
specimen surface. After 24 h of charging, the hydrogen concentration in the charged specimens
reached a saturation point.

• Hydrogen charging resulted in a slight reduction in the absorbed energy and ductility of 316L
stainless steel at most of the tested specimens. The drop in absorbed energy varied from 0.23% to
16.6%.

• The surface morphology of the uncharged specimens was more ductile than that of the pre-charged
specimens impacted at ambient temperature, −125 ◦C and −196 ◦C. While the differences for
specimens impacted at −50 ◦C were negligible.

• Another academic insight obtained herein is that low temperature decreased the ductility of the
V-notched specimens in the CVN impact test. The loss of ductility caused by the ductile to brittle
transformation was attributed to the lowering of the temperature in the CVN impact tests.

Therefore, the impact properties of 316L stainless steel have a high resistance against HE and this
material can be a possible candidate as material for the hydrogen containment system. However, using
316L stainless steel at low temperature should be carefully considered because of the losses in ductility
and fracture resistance caused by this low temperature. Former studies investigated the effect of HE
on the mechanical properties of materials. A standard for the absorbed energy of hydrogen-exposed
materials in specific temperature ranges must be surveyed and created. The results of this study could
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contribute to the research database for hydrogen tanks, hydrogen pipelines and fuel cell vehicles
containing 316L stainless steel.
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