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Abstract: Although the linear Mohr–Coulomb criterion is frequently applied to predict the failure of
brittle materials such as cast iron, it can be used for ductile metals too. However, the criterion has some
significant deficiencies which limit its predictive ability. In the present study, the underlying failure
hypotheses of the linear Mohr–Coulomb criterion were thoroughly discussed. Based on Mohr’s
physically meaningful concept of fracture plane, a macroscopic strength criterion was developed to
explain the failure mechanism of isotropic metals. The failure function was expressed as a polynomial
expansion in terms of the stresses acting on the fracture plane, and the quadratic approximation was
employed to describe the non-linear behavior of the failure envelope. With an in-depth understanding
of Mohr’s fracture plane concept, the failure angle was regarded as a generalized strength parameter
in addition to the failure stress (i.e., the conventional basic strength). The undetermined coefficients of
the non-linear failure function were calibrated by the strength parameters obtained from the common
uniaxial tension and compression tests. Theoretical and experimental assessment for different types
of isotropic metals validated the effectiveness of the proposed criterion in predicting material failure.

Keywords: macroscopic strength criterion; isotropic metals; fracture plane; linear Mohr–Coulomb
criterion; failure mechanism

1. Introduction

A considerable number of failure criteria for isotropic materials have been developed since the
establishment of classical mechanics [1]. Among all the proposed criteria, the Mises criterion is
extensively used for ductile metals. However, it cannot be applied to metallic materials which have the
strength difference effect (i.e., the uniaxial tensile strength T is not equal to the uniaxial compressive
strength C). The linear Mohr–Coulomb criterion is very popular due to its simplicity and general
applicability. Although the criterion is frequently used to predict the failure of brittle materials such
as cast iron, it can also be applied to very ductile metals [2]. In the special case of ductile materials
without the strength difference effect, the criterion degenerates into the maximum shear stress criterion
(also known as the Tresca criterion), which is widely-used for conventional ductile metals.

Both Mohr and Coulomb have made an important contribution to the linear Mohr–Coulomb
criterion. Mohr proposed that the fracture limit of a material is determined by the stress components
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σn and τn on the fracture plane [3] (see Figure 1). Coulomb’s assumption is based on a linear failure
envelope to determine the critical combination of σn and τn [4], which gives:

τn + µσn = c. (1)

Under uniaxial loading, material failure occurs when Mohr’s circle for uniaxial tension or compression
is just tangent to the envelope (see Figure 2). Hence the two material-specific parameters µ and c in
Equation (1) can be calibrated by the uniaxial tensile strength T and the uniaxial compressive strength C.
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In the principal stress space (σ1, σ2, σ3), the linear Mohr–Coulomb criterion can be expressed in
an extremely simple form of

σ1

T
−
σ3

C
= 1, (2)

where σ1 and σ3 are the maximum and minimum principal stresses respectively.
Although the classic Mohr–Coulomb criterion has been extensively used in research and

engineering [5], it has several significant deficiencies which limit its predictive ability:
Firstly, the fracture angles predicted by the linear Mohr–Coulomb criterion do not always agree

with the experimental observations. For example, experimental results show that typical brittle metals
such as cast iron with T/C = 1/4 fail in tension on the plane parallel to the action plane of the applied
load, i.e., the tensile fracture angle θT = 90.0◦ (see Figure 3a). However, the criterion predicts the
tensile fracture angle θT = 63.4◦. Under uniaxial compression the fracture angle of cast iron should
be approximately 37.0◦ (see Figure 3b), yet the predicted angle θC = 26.6◦. Moreover, the summation
of the tensile and compressive failure angles is exactly 90◦ for all types of isotropic metals according
to the prediction of the linear Mohr–Coulomb criterion. This conclusion does not correlate with
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the measured data of cast iron (θT = 90.0◦, θC = 37.0◦ (see Figure 3)) and metallic glass (θT = 50.7◦,
θC = 43.0◦ (see Figure 4)).
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Figure 4. Fracture angles of metallic glass under uniaxial tension and compression [7]. (a) Uniaxial
tension, θT = 50.7◦; (b) uniaxial compression, θC = 43.0◦.

Secondly, the linear Mohr–Coulomb criterion cannot explain the pure shear fracture behavior of
cast iron with T/C = 1/4. The predicted pure shear strength is S = 0.8T with the fracture angle θS =

26.6◦, while the measured strength is S = T with the fracture angle θS = 45◦ (see Figure 5).
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Figure 5. Fracture angle of cast iron under pure shear, θS = 45◦ [8].

Thirdly, the criterion asserts that the equi-triaxial tensile strength Ttri is much stronger than
the uniaxial tensile strength T for brittle materials. This unphysical behavior has no supporting
evidence [9].

Lastly, Christensen [9] gave a simple example which shows the inaccuracy of the linear
Mohr–Coulomb criterion. Take a 3D compressive stress state given by σ1 = σ2 = −σ, σ3 = −2σ.
The criterion predicts that isotropic materials with T/C ≤ 1/2 can sustain unlimited compressive stresses,
which is completely unrealistic.

The above problems reveal the inappropriateness of the linear Mohr–Coulomb criterion for
isotropic metals in certain cases. Much effort has been made to modify the criterion. Paul suggested
combining the linear Mohr–Coulomb criterion with the maximum normal stress criterion [10]. Yu
proposed the twin-shear strength theory to replace the single shear strength theory (i.e., the linear
Mohr–Coulomb criterion) [1]. Bigoni and Piccolroaz generalized the criterion using the invariants of
the stress tensor [11]. However, Mohr’s physically meaningful concept of fracture plane was ignored
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by these researchers, thus the aforementioned contradictions between the predictions and experimental
results cannot be fundamentally solved.

It is worth noting that the concept of critical plane in fatigue analysis is similar to the aforementioned
concept of fracture plane in static failure analysis. There are also a lot of critical plane-based fatigue
failure criteria for metallic materials [12]. Brown and Miller [13] assumed the critical plane is the
plane with maximum shear strain, and proposed that fatigue failure depends on the combination of
the normal and shear strains acting on the critical plane. Glinka et al. [14] applied the normal and
shear strain energy densities on the critical plane instead of the strains, formulating a strain energy
density criterion based on the critical plane approach. The approach has been recently extended to the
nanoscale by Gallo et al. [15,16].

In the present study, the linear Mohr–Coulomb criterion is modified based on an in-depth
understanding of Mohr’s concept of fracture plane. Not only the uniaxial strengths T and C but also
the failure angles θT and θC are used as basic strength parameters to calibrate the unknown coefficients
of the non-linear failure function. The macroscopic strength criterion shows good agreement with the
experimental data of different types of isotropic metals, and has a better predictive ability compared
with the linear Mohr–Coulomb criterion.

2. Discussion of the Linear Mohr–Coulomb Criterion

Since the proposed macroscopic strength criterion is based on Mohr’s fracture plane concept, the
failure hypotheses of the linear Mohr–Coulomb criterion are re-examined at first.

Material failure often originates from a specific plane [17]. Mohr proposed that the fracture limit
of a material is determined by the stress components σn and τn on the fracture plane (see Figure 1).
As shown in Figure 6a,b, both the plane separation driven by the normal tensile stress σn and the
plane sliding driven by the shear stress τn can result in macroscopic material failure. These two
stress components are correlated with the two main failure mechanisms in solids: cleavage and slip,
respectively [18]. The normal compressive stress increases the difficulty of shearing along the plane,
thus suppressing material failure (see Figure 6c). From the microscopic point of view, materials contain
micro defects to varying degrees. The tensile normal stress is expected to open these flaws and cause
them to grow, whereas under the normal compressive stress the flaws tend to have their opposite
sides pressed together [6]. The shear stress drives the dislocation movement of a large number of
planes of atoms [19], leading to macroscopic material distortion. Hence it can be concluded that the
normal tensile stress and the shear stress promote material failure, while the normal compressive stress
inhibits failure.
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The undetermined coefficients of failure criteria are usually calibrated by the maximum sustainable
stresses under certain special loading conditions. The absolute value of the maximum sustainable
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stress is commonly referred to as “basic strength”, which is calculated by dividing the applied load
by the area of its own action plane [3]. The linear Mohr–Coulomb criterion takes the uniaxial tensile
strength T and the uniaxial compressive strength C as the basic strengths.

It can be inferred from Mohr’s fracture hypothesis that the maximum sustainable stresses actually
should be the stress components acting on the fracture plane. Nevertheless, the action plane of the
applied load may not be parallel to the fracture plane. For example, as observed in the uniaxial
tension test, the fracture of metallic glass occurs on an inclined plane of θT = 50.7◦ (see Figure 4a).
The uniaxial tensile strength T is defined as the value of the tensile failure stress (i.e., the uniaxial
tensile failure load divided by the area of its action plane). However, it is the normal tensile stress
component σn = T

2 (1− cos 2θT) and the shear stress component τn = T
2 sin 2θT on the fracture plane

that lead to material failure. Similarly, the fracture of metallic glass occurs on an inclined plane of θC =

43.0◦ under the uniaxial compressive loading (see Figure 4b). The compressive fracture behavior of
metallic glass is actually determined by the normal compressive stress component σn = C

2 (cos 2θC − 1)
and the shear stress component τn = C

2 sin 2θC on the fracture plane. Therefore, it is insufficient to
characterize Mohr’s concept solely by the conventional basic strength. Only by both the failure stress
(i.e., the basic strength) and the failure angle, can the maximum sustainable stresses on the fracture
plane be determined. It indicates that in strict accordance with Mohr’s fracture plane concept, both the
conventional strength value and the failure angle should be measured in a uniaxial test [20].

Although Coulomb’s linear failure envelope is able to distinguish the different effects of the normal
tensile and compressive stresses on material failure, the experimentally-determined envelopes often
exhibit non-linear behavior [21]. Thus, the linear strength response is regarded as a major limitation
of the classic Mohr–Coulomb criterion [19], and a non-linear form of the envelope is supposed to fit
the experimental data better. Nevertheless, besides the common uniaxial tension and compression
tests, additional experiments are usually required in order to determine the unknown parameters of
the non-linear failure function. For example, the pure torsion test is needed in our previous research
work [22]; equi-biaxial tension, equi-biaxial compression or other combined stress state tests are needed
in the criterion proposed by Hu and Wang [23].

3. Formulation of the Strength Criterion

In this section, we propose a feasible method to modify the linear Mohr–Coulomb criterion. Only
two common types of tests (i.e., the uniaxial tension and compression tests) are required in order to
use the present criterion.

3.1. Mathematical Expression of the Failure Function

The mathematical expression of the failure function is constructed using the general approach put
forward by us [22,24], which is briefly described below:

According to Mohr’s fracture hypothesis, the failure function, F, should be the function of the
stress components (σn, τn) on the fracture plane. Material failure occurs when F(σn, τn) reaches the
failure index 1. Expanding F into a polynomial in terms of (σn, τn), we get:

F(σn, τn) = ασn + βσ2
n + γσnτn + λτn +ωτ2

n + . . . = 1, (3)

where . . . represents the terms of cubic and higher orders.
The quadratic form is frequently chosen as the non-linear failure function for isotropic materials

due to its relatively good curve-fitting results [7,22,25,26]. In addition, much more experimental
data are required to determine the unknown coefficients if cubic or higher order approximations are
employed. Therefore, in the present study the failure function F is truncated at the quadratic order, i.e.,

F(σn, τn) = ασn + βσ2
n + γσnτn + λτn +ωτ2

n = 1. (4)
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Whether the shear stress component is positive or negative, it always makes an identical
contribution to material failure. Hence the linear terms of the shear stress component, namely σnτn

and τn, shall be vanished in Equation (4), leaving

F(σn, τn) = ασn + βσ2
n +ωτ2

n = 1. (5)

The normal tensile stress on the fracture plane promotes material failure, while the normal
compressive stress inhibits failure. It has been demonstrated that the normal tensile stress has much
more pronounced effect on material failure than the normal compressive stress [7]. Therefore, unlike
the linear Mohr–Coulomb criterion, the failure behaviors under the normal tensile and compressive
stresses are treated separately in the present theory:

F(σn, τn) = αCσn + βCσ
2
n +ωτ2

n = 1 for σn ≤ 0, (6)

F(σn, τn) = αTσn + βTσ
2
n +ωτ2

n = 1 for σn > 0, (7)

where αC,βC,αT,βT and ω are the undetermined parameters.

3.2. Failure Function for σn ≤ 0

We first consider the equi-triaxial compressive strength condition σ1 = σ2 = σ3 = −Ctri. The stress
components on any section plane are given by (σn = −Ctri, τn = 0) under hydrostatic compression.
Substituting (σn = −Ctri, τn = 0) into Equation (6), we get:

βC =
1

C2
tri

+
αC
Ctri

. (8)

Experiments have shown that isotropic materials can be loaded to very high values of hydrostatic
pressure without failure [19], i.e., Ctri→∞. Hence βC can be approximated by

βC = 0. (9)

Additional information can be obtained from the uniaxial compression test. As is discussed in
Section 2, both the uniaxial compressive strength C and the corresponding failure angle θC are used as
generalized strength parameters in the present theory. As shown in Figure 7, the stress components on
the potential failure plane under uniaxial compression are given by:

σn =
C
2
(cos 2θ− 1), (10)

τn =
C
2

sin 2θ. (11)
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where Cα , Cβ , Tα , Tβ and ω are the undetermined parameters. 

3.2. Failure Function for σn ≤ 0 

We first consider the equi-triaxial compressive strength condition σ1 = σ2 = σ3 = −Ctri. The stress 
components on any section plane are given by (σn = −Ctri, τn = 0) under hydrostatic compression. 
Substituting (σn = −Ctri, τn = 0) into Equation (6), we get: 

= +2

1 .C
C

tritri

α
β

CC
 (8) 
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( )cos 2θ 1 ,
2n
Cσ = −  (10) 

sin 2θ.
2n
Cτ =  (11) 
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( ) ( )
2

θ  = cos 2θ 1 s .in 2θ
2 2

− +  
 
 

C
C CF α ω  (12) 

Figure 7. Failure envelope and Mohr’s circles for uniaxial tension and compression.
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Substituting Equations (9)–(11) into the failure function F in Equation (6), we get:

F(θ) = αC
C
2
(cos 2θ− 1) +ω

(C
2

sin 2θ
)2

. (12)

The failure function F reaches the maximum value 1 when failure occurs on the action plane
oriented at θ = θC:

F(θC) = αC
C
2
(cos 2θC − 1) +ω

(C
2

sin 2θC

)2
= 1, (13)

dF
dθ

∣∣∣∣∣
θ=θC

=
(
−αCC +ωC2 cos 2θC

)
sin 2θC = 0. (14)

As shown in Figure 7, there is no stress component on the plane oriented at θ = 0◦, and only
the normal compressive stress which inhibits material failure acts on the plane oriented at θ = 90◦.
Therefore, sin2θC, 0 always holds. Solving Equation (14), we get

− αC + C cos 2θCω = 0. (15)

The coefficients αC and ω can be determined by solving Equations (13) and (15) together:

αC =
4 cos 2θC

C(cos 2θC − 1)2 , (16)

ω =
4

C2(cos 2θC − 1)2 . (17)

3.3. Failure Function for σn > 0

The uniaxial tensile strength T and the corresponding failure angle θT are used to calibrate the
undetermined parameters of the failure function for σn > 0. As shown in Figure 7, the stress components
on the potential failure plane under uniaxial tension are given by:

σn =
T
2
(1− cos 2θ), (18)

τn =
T
2

sin 2θ. (19)

Substituting Equations (18) and (19) into the failure function F in Equation (7), we obtain:

F(θ) = αT
T
2
(1− cos 2θ) + βT

[T
2
(1− cos 2θ)

]2
+ω

(T
2

sin 2θ
)2

. (20)

The failure function F reaches the maximum value 1 when failure occurs on the action plane
oriented at θ = θT:

F(θT) = αT
T
2
(1− cos 2θT) + βT

[T
2
(1− cos 2θT)

]2
+ω

(T
2

sin 2θT

)2
= 1, (21)

dF
dθ

∣∣∣∣∣
θ=θT

= [αT + βTT(1− cos 2θT) +ωT cos 2θT]T sin 2θT = 0. (22)

As shown in Figure 7, since there is no stress component on the plane oriented at θ = 0◦, θT , 0◦

always holds. If θT , 90◦, from Equation (22) we obtain:

αT + βTT(1− cos 2θT) +ωT cos 2θT = 0. (23)
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The coefficients αT and βT can be determined by solving Equations (17), (21), and (23) together:

αT =
4

T(1− cos 2θT)
−

4T

C2(1− cos 2θC)
2 , (24)

βT =
4

C2(1− cos 2θC)
2 −

4

T2(1− cos 2θT)
2 . (25)

If θT = 90◦, from Equation (21) we get:

αTT + βTT2 = 1. (26)

However, Equation (22) is naturally satisfied if θT = 90◦. Therefore, in this case the uniaxial tension
test actually provides only one equation for determination of the two unknown coefficients αT and βT.
No supplementary information is available from the uniaxial tension test to establish another equation.
Since extra experiments may be difficult, time-consuming, and expensive, an alternative method is
proposed to construct an additional equation.

The failure envelope is commonly expected to be as smooth as possible considering the
implementation of numerical methods [19]. The left derivative of the failure envelope at σn = 0
can be derived from Equation (6):

dτn

dσn

∣∣∣∣∣
σn=0−

= −
αC

2ωτn|σn=0
, (27)

and the right derivative of the failure envelope at σn = 0 can be derived from Equation (7):

dτn

dσn

∣∣∣∣∣
σn=0+

= −
αT

2ωτn|σn=0
. (28)

Applying the smooth condition, we get:

αC = αT. (29)

The coefficients αT and βT can be determined by solving Equations (17), (26) and (29) together:

αT =
4 cos 2θC

C(cos 2θC − 1)2 , (30)

βT =
1

T2 −
4 cos 2θC

TC(cos 2θC − 1)2 . (31)

3.4. Function of the Failure Envelope

To sum up, the function of the failure envelope is expressed as

F(σn, τn) =

{
αCσn +ωτ2

n = 1 for σn ≤ 0
αTσn + βTσ2

n +ωτ2
n = 1 for σn > 0

, (32)

where
αC =

4 cos 2θC

C(cos 2θC − 1)2 , (33)

ω =
4

C2(cos 2θC − 1)2 , (34)
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αT =


4

T(1−cos 2θT)
−

4T
C2(1−cos 2θC)

2 if θT , 90◦

4 cos 2θC

C(cos 2θC−1)2 if θT = 90◦
, (35)

βT =


4

C2(1−cos 2θC)
2 −

4
T2(1−cos 2θT)

2 if θT , 90◦

1
T2 −

4 cos 2θC

TC(cos 2θC−1)2 if θT = 90◦
. (36)

The terms αCσn, ωτ2
n, and αTσn + βTσ2

n in Equation (32) represent the contribution of the normal
compressive stress, the normal tensile stress, and the shear stress to material failure respectively.

4. Theoretical and Experimental Evaluation

4.1. Failure Modes under Uniaxial Tension and Compression

The uniaxial tension and compression tests were conducted on three different types of isotropic
metals, namely the ductile metallic material, metallic glass, and brittle cast iron. The specimens were
elaborately designed to avoid either material damage near the clamping end under uniaxial tension, or
buckling and end effects under uniaxial compression. The tensile and compressive specimens were
tested at a constant strain rate using the universal testing machine, and the failure strengths and failure
angles were measured carefully. Further details about the experiments can be found in [6,7,27]. The
strength parameters of the isotropic metals are listed in Table 1, while the failure angles θT and θC
predicted by the linear Mohr–Coulomb criterion are listed in Table 2. Comparison between Tables 1
and 2 shows that the predicted failure angles of the three tested materials are not entirely consistent
with the measured values, especially in the case of brittle cast iron.

Table 1. Strength parameters of three different types of isotropic metals.

Material Type C/T θT θC

Ductile metallic material [7] 1.00 45.0◦ 45.0◦

Metallic glass [7] 1.11 50.7◦ 43.0◦

Brittle cast iron [6] 4.00 90.0◦ 37.0◦

Table 2. Failure angles θT and θC predicted by the linear Mohr–Coulomb criterion

Material Type C/T θT (Predicted) θC (Predicted)

Ductile metallic material 1.00 45.0◦ 45.0◦

Metallic glass 1.11 46.5◦ 43.5◦

Brittle cast iron 4.00 63.4◦ 26.6◦

As shown in Table 3, since the normal compressive stress σn suppresses material failure under
uniaxial compression, αCσn ≤ 0 always holds. Hence all types of isotropic metals fail in the shear
mode under uniaxial compression. Under uniaxial tension, because both the normal tensile stress and
the shear stress promote material failure, the terms related to σn and τn are always non-negative (see
Table 4). With the increase of material brittleness, the failure mode gradually transfers from shear to
tension under the uniaxial tensile loading.

Table 3. Failure modes under uniaxial compression

Material Type αCσn ωτ2
n Failure Index Failure Mode

Ductile metallic material 0.00 1.00
1.00

Shear
Metallic glass −0.15 1.15 Shear

Brittle cast iron −0.76 1.76 Shear
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Table 4. Failure modes under uniaxial tension

Material Type αTσn+βTσ2
n ωτ2

n Failure Index Failure Mode

Ductile metallic material 0.00 1.00
1.00

Shear
Metallic glass 0.10 0.90 Combination of shear and tension

Brittle cast iron 1.00 0.00 Tension

4.2. Ductile Metallic Material

For conventional ductile metallic materials such as Al-alloy, Ti-alloy and steels, material failure
is usually specified by yielding. Therefore, the measured strength and failure plane actually should
be the yield strength and slip plane of ductile metals. Nearly no difference between the tensile and
compressive strengths can be observed for these materials [7]. In the ductile limiting case T = C, θT =

θC = 45◦, both the present criterion and the linear Mohr–Coulomb criterion degenerate into the form of

τn =
σ1 − σ3

2
=

T
2

, (37)

see Figure 8. Equation (37) is the exact form of the Tresca criterion, which is suitable for typical
ductile materials.
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4.3. Metallic Glass with Moderate Ductility

Metallic glass is a kind of high-strength isotropic material, yet with relatively lower ductility
than conventional ductile metallic materials. The linear Mohr–Coulomb criterion has been applied
to describe the fracture behavior of metallic glass due to its ability to characterize the T–C strength
asymmetry [28]. However, as shown in Figure 9, obviously the present criterion fits the experimental
data better than the linear Mohr–Coulomb criterion in the high normal tensile stress range. In the
normal compressive stress range, the envelope predicted by the present criterion is similar to that
predicted by the linear Mohr–Coulomb criterion. It is worth noting that the proposed failure envelope
is non-smooth at the transition location σn = 0. This is because the proposed function of the failure
envelope, Equation (32), is only an acceptable, but not perfect approximation to the “true” or “ideal”
failure function.Metals 2019, 9, x FOR PEER REVIEW 11 of 14 
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4.4. Brittle Cast Iron

Cast iron is a typical brittle metal with the measured fracture angles θT = 90.0◦ and θC = 37.0◦ [6].
The failure envelopes predicted by the present criterion and the linear Mohr–Coulomb criterion are
plotted in Figure 10, and Mohr’s circles for uniaxial tension, uniaxial compression and pure shear are
also depicted. The envelope given by the present criterion agrees with the experimental observation
that fracture occurs on the plane with maximum tensile stress under uniaxial tension, i.e., θT = 90◦

(point B in Figure 10), whereas the fracture plane predicted by the linear Mohr–Coulomb criterion
is incorrect. The present criterion also successfully predicts that under pure shear failure stress S,
fracture occurs on the plane where the normal tensile stress σn = S reaches its maximum value T (point
B in Figure 10), i.e., S = T. However, the linear Mohr–Coulomb criterion fails to describe this brittle
behavior. Besides, the linear Mohr–Coulomb criterion results in the over-valued equi-triaxial tensile
strength Ttri = 1.33T, while Ttri = T according to the present criterion.

Metals 2019, 9, x FOR PEER REVIEW 11 of 14 

 

 
Figure 9. Failure envelopes and the experimental data of metallic glass [7]. T = 1660 MPa, C = 1843 
MPa, θT = 50.7°, and θC = 43.0°. 

4.4. Brittle Cast Iron 

Cast iron is a typical brittle metal with the measured fracture angles θT = 90.0° and θC = 37.0° [6]. 
The failure envelopes predicted by the present criterion and the linear Mohr–Coulomb criterion are 
plotted in Figure 10, and Mohr’s circles for uniaxial tension, uniaxial compression and pure shear are 
also depicted. The envelope given by the present criterion agrees with the experimental observation 
that fracture occurs on the plane with maximum tensile stress under uniaxial tension, i.e., θT = 90° 
(point B in Figure 10), whereas the fracture plane predicted by the linear Mohr–Coulomb criterion is 
incorrect. The present criterion also successfully predicts that under pure shear failure stress S, 
fracture occurs on the plane where the normal tensile stress σn = S reaches its maximum value T (point 
B in Figure 10), i.e., S = T. However, the linear Mohr–Coulomb criterion fails to describe this brittle 
behavior. Besides, the linear Mohr–Coulomb criterion results in the over-valued equi-triaxial tensile 
strength Ttri = 1.33T, while Ttri = T according to the present criterion. 

 
Figure 10. Failure envelopes and Mohr’s stress circles of cast iron. C/T = 4, θT = 90.0°, and θC = 37.0°. 

As shown in Figure 11, a limited maximum Mohr’s circle is predicted by the present criterion 
under the stress state σ1 = σ2 = −σ, σ3 = −2σ, indicating the failure stress σ is a finite value for cast iron 
with C/T = 4. Nevertheless, since Coulomb’s linear envelope overestimates the material strength 
greatly in the normal compressive stress range, it results in the unrealistic prediction of infinite 
strength under this specific loading condition [9]. 

 
Figure 11. Maximum Mohr’s stress circle under the stress state σ1 = σ2 = −σ, σ3 = −2σ. C/T = 4, θT = 90.0°, 
and θC = 37.0°. 

Figure 10. Failure envelopes and Mohr’s stress circles of cast iron. C/T = 4, θT = 90.0◦, and θC = 37.0◦.

As shown in Figure 11, a limited maximum Mohr’s circle is predicted by the present criterion
under the stress state σ1 = σ2 = −σ, σ3 = −2σ, indicating the failure stress σ is a finite value for cast
iron with C/T = 4. Nevertheless, since Coulomb’s linear envelope overestimates the material strength
greatly in the normal compressive stress range, it results in the unrealistic prediction of infinite strength
under this specific loading condition [9].
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A series of experiments have been performed on cast irons subjected to combined stress loadings.
As shown in Figures 12 and 13, the results predicted by the proposed criterion show good agreement
with the test data, while the fit of the linear Mohr–Coulomb criterion is relatively poor.
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5. Conclusions

In the present study, a macroscopic strength criterion for isotropic metals has been proposed
to modify the linear Mohr–Coulomb criterion. It is developed on the basis of Mohr’s physically
meaningful concept of fracture plane, and the most notable features of the present criterion are
as follows:
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(1) Based on the observation that experimentally-determined envelopes often exhibit non-linear
behavior, the quadratic approximation of the failure function is adopted to replace Coulomb’s
linear form.

(2) With an in-depth understanding of the concept of fracture plane, both the failure stress and the
failure angle are used as generalized strength parameters to calibrate the undetermined coefficients
of the non-linear failure function. Only two common types of tests (i.e., the uniaxial tension and
compression tests) are required in order to use the criterion.

The validity of the proposed strength criterion was verified by comparing with the linear
Mohr–Coulomb criterion and the experimental results of different kinds of isotropic metals. The
macroscopic strength criterion has good accuracy and wide applicability.
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