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Abstract: A unique nitriding technique with the use of an atmospheric-pressure pulsed-arc plasma
jet has been developed to offer a non-vacuum, easy-to-operate process of nitrogen doping to metal
surfaces. This technique, however, suffered from a problem of excess nitrogen supply due to the
high pressure results in undesirable formation of voids and iron nitrides in the treated metal surface.
To overcome this problem, we have first established a method to control the nitrogen dose amount
supplied to the steel surface in the relevant nitriding technique. When the hydrogen fraction in the
operating gas of nitrogen/hydrogen gas mixture increased from 1% up to 5%, the nitrogen density of
the treated steel surface drastically decreased. As a result, the formation of voids were suppressed
successfully. The controllability of the nitrogen dose amount is likely attributable to the density of
NH radicals existing in the plume of the pulsed-arc plasma jet.

Keywords: plasma nitriding; atmospheric-pressure plasma; nitrogen dose amount; hydrogen
fraction; void

1. Research Background

Plasma nitriding is a surface technology to dope nitrogen atoms into metal surfaces via plasma
chemical reactions to improve wear resistance, and fatigue strength, etc., of materials [1–16]. Plasma
nitriding is now one of the essential surface treatments used in industry, especially in the automobile
industry and die/mold fabrication. Conventional plasma nitriding uses low-pressure DC (or pulsed
DC) plasmas in the abnormal glow discharge mode, where the batch process with a large vacuum
furnace meets the purpose of mass production. In addition, a number of low-pressure plasma modes
have recently been applied to nitriding treatment, e.g., active screen plasmas [4–6], electron cyclotron
resonance plasmas [2,7], and radio-frequency plasmas [8], etc.

As another technological seed, nitriding methods using atmospheric-pressure plasmas have
been developed, where the disuse of vacuum equipment makes the process much quicker and
easier-to-operate. Two types of atmospheric-pressure plasmas are utilized to nitriding, namely the
pulsed-arc (PA) plasma jet [17–22] and the dielectric barrier discharge (DBD) [23,24]. The PA plasma-jet
nitriding has proved to be available to die steel [17,18,22], austenitic stainless steel [20], and titanium
alloy [19,21], where the jet plume is sprayed onto the sample surface to thermally diffuse nitrogen
atoms into it. Note that the nitrogen/hydrogen gas mixture is used as the operating gas. The plasma-jet
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nitriding will offer a drastically economical method to us compared with conventional plasma nitriding,
especially when high-mix low-volume production is targeted.

The plasma-jet nitriding, however, is a relatively new, still developing technology. Thus,
its controllability and reliability has to be improved further for practical application. For example,
we had no methods to control the nitrogen dose amount from the jet plume to the metal surface,
while such a method has been completed for conventional nitriding in which the nitrogen dose
is well-controlled by adjusting the nitriding potential [25]. Due to the lack of dose controllability,
the plasma-jet nitriding suffers from a problem of excess nitrogen supply due to the high pressure
results in undesirable formation of voids and iron nitrides (the compound layer) attributed to nitrogen
gas precipitation in the treated metal surface.

In this paper, a newly developed method is detailed to control nitrogen dose amount in plasma-jet
nitriding to overcome the problem of excess nitrogen supply. A brief introduction of the method is as
follows. The operating gas to generate the plasma jet is a nitrogen/hydrogen gas mixture. The optical
emission spectroscopy proved that NH radical emission is dominant from the jet plume. In general,
the NH emission intensity tends to decrease with increasing hydrogen fraction in the operating gas,
f H2. If NH is the key radical for plasma-jet nitriding and if the decreasing tendency of NH emission
with f H2 indicates decreasing NH density in the jet plume, we could decrease the nitrogen dose amount
to metal surface by increasing f H2. Following this assumption, we addressed to control the nitrogen
dose amount by changing f H2 in this study.

Prior to explaining our research, let us summarize here key species in various plasma nitriding
techniques. As for low-pressure plasma nitriding methods, a comprehensive and systematic
understanding of key species is not present. For example, several papers suggest the importance of ion
species such as N2+ [2], N+ [9], and NHx

+ [10]. On the other hand, Matsumoto et al. proposed that
neutral species govern the rate-limiting step [11]. For the radical nitriding, one of the low-pressure
plasma nitriding methods using NH3 and H2 gas, NH radicals are considered to play a key role [12,13].
Besides, some other papers mention the importance of NH radicals for plasma nitriding [8,14].
Moreover, in gas nitriding, NH3 dissociates on an iron surface to NH2, NH2 dissociates to NH, and NH
dissociates to N and H, in order, indicating that the presence of NH is essential for gas nitriding [25].
As described above, a number of studies regard NH radicals as species effective to nitriding. Thus,
our expectation that NH is key for plasma-jet nitriding is not peculiar.

2. Experimental Procedure

Experiments were performed with the PA plasma jet system shown in Figure 1a. The jet nozzle
was composed of coaxial cylindrical electrodes. The grounded external electrode measured 35 mm in
inner diameter. The discharge gap was approximately 20 mm. The nitrogen/hydrogen gas mixture was
introduced into the nozzle at the total flow rate of 20 slm, where the hydrogen fraction, and the ratio of
hydrogen flow rate to total flow rate, was f H2. The low-frequency voltage pulse (5 kV in height and
21 kHz in repetition) was applied to the inner electrode, resulting in the maximum of the discharge
current of ca. 1.2 A. The afterglow of the generated PA plasma was spewed out from the orifice and
was 4 mm in diameter, forming the jet plume containing NH radicals.
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Figure 1. Pulsed-arc plasma jet. (a) Schematic of jet nozzle. (b) Photograph of plasma jet. 84 
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and 500 mm in length) at the tip as shown in Figure 1(b) to observe the jet plume generating in the 86 
operating gas. The optical emission of NH (A3Π–X3Σ-) of 336 nm was detected with a spectrometer 87 
(Shamrock SR-500i, Andor, Belfast, UK). We collected the light emitted from the jet plume at the 88 
distance of 10 mm from the nozzle tip. 89 

For the nitriding experiment, the jet nozzle was inserted into a cylindrically shaped cover made of 90 
quartz as shown in Figure 2 to purge residual oxygen from the treatment atmosphere. The height and 91 
diameter of the quartz cover was 85 and 124 mm, respectively. The gas was exhausted through the 92 
1-mm gap between the jet nozzle and the quartz cover. The experimental system was put in a simple 93 
booth (1.0 × 1.2 × 1.8 (height) m3) surrounded by a vinyl curtain to lead the exhaust gas to the 94 
gas-treatment equipment. Prior to generating the plasma jet, residual oxygen inside the cover was 95 
gas-purged by the operating gas introduced through the nozzle. 96 
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Figure 2. Experimental Setup with the quartz cover to purge residual oxygen. (a) Schematic. (b) 98 
Photograph of plasma-jet nitriding. 99 

The steel to be treated was cold roll steel JIS SPCC. The composition was as follows: 0.02% C, 100 
0.09% Mn, 0.017% P, 0.004% S, and the balance was Fe. The sample dimension was 25 × 25 × 1.2 mm3. 101 
The hardness of base material was ca. 150 HV. The surface was mirror finished with alumina powder 102 
(1 µm) and degreased in an ultrasonic acetone bath. 103 

To make the effects of nitrogen dose amount as conspicuous as possible, the surface temperature 104 
was set into the range of 1000 to 1100 K during nitrogen doping and the doped sample was 105 
immediately quenched to invoke iron-nitrogen martensite transformation. Such nitro-quenching 106 
treatment was known to form voids, which can be readily observed with a microscope, in the surface 107 
when excess nitrogen was doped [26]. In addition, the formation of iron-nitrogen martensite indicated 108 

Figure 1. Pulsed-arc plasma jet. (a) Schematic of jet nozzle. (b) Photograph of plasma jet.

For the spectroscopic experiment, the jet nozzle was fitted with a quartz pipe (30 mm in diameter
and 500 mm in length) at the tip as shown in Figure 1b to observe the jet plume generating in the
operating gas. The optical emission of NH (A3Π–X3Σ−) of 336 nm was detected with a spectrometer
(Shamrock SR-500i, Andor, Belfast, UK). We collected the light emitted from the jet plume at the
distance of 10 mm from the nozzle tip.

For the nitriding experiment, the jet nozzle was inserted into a cylindrically shaped cover made
of quartz as shown in Figure 2 to purge residual oxygen from the treatment atmosphere. The height
and diameter of the quartz cover was 85 and 124 mm, respectively. The gas was exhausted through
the 1-mm gap between the jet nozzle and the quartz cover. The experimental system was put in a
simple booth (1.0 × 1.2 × 1.8 (height) m3) surrounded by a vinyl curtain to lead the exhaust gas to the
gas-treatment equipment. Prior to generating the plasma jet, residual oxygen inside the cover was
gas-purged by the operating gas introduced through the nozzle.
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Figure 2. Experimental Setup with the quartz cover to purge residual oxygen. (a) Schematic.
(b) Photograph of plasma-jet nitriding.

The steel to be treated was cold roll steel JIS SPCC. The composition was as follows: 0.02% C,
0.09% Mn, 0.017% P, 0.004% S, and the balance was Fe. The sample dimension was 25 × 25 × 1.2 mm3.
The hardness of base material was ca. 150 HV. The surface was mirror finished with alumina powder
(1 µm) and degreased in an ultrasonic acetone bath.

To make the effects of nitrogen dose amount as conspicuous as possible, the surface temperature
was set into the range of 1000 to 1100 K during nitrogen doping and the doped sample was immediately
quenched to invoke iron-nitrogen martensite transformation. Such nitro-quenching treatment was
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known to form voids, which can be readily observed with a microscope, in the surface when excess
nitrogen was doped [26]. In addition, the formation of iron-nitrogen martensite indicated to us the
answer as to whether or not a non-trivial amount of nitrogen had been doped even when the nitrogen
dose amount was intently reduced to suppress the formation of voids. The surface temperature of
ca. 1000–1100 K was maintained by the plasma-jet spraying itself, where the distance between the
nozzle tip to the surface was set to 7 mm. The treatment temperature was measured by spraying the
jet plume to a dummy sample with a thermocouple on the surface. The doping duration was 900 to
1800 s. The doped steel was quenched by water cooling, where tap water was poured onto the opposite
surface through the hole bored in the center of the sample stage.

The doped nitrogen concentration in the steel surface was detected by an electron probe micro
analyzer (EPMA, JXA-8200SP, JEOL, Tokyo, Japan). The void formation and the metallographic
structure were observed with an optical microscope (VHX-5000, KEYENCE, Osaka, Japan) to a
cross-section of doped steel surface. The sample surface was etched in nital solution (3%) for observing
the metallographic structure. The formation of iron nitrides was detected by X-ray diffraction (XRD,
SmartLab, Rigaku, Tokyo, Japan) using Co Kα radiation (λ = 0.179 nm). The hardness profile of the
cross-section was measured with a Vickers microhardness tester (FM-300, FUTURE-TECH, Kawasaki,
Japan), where the indenter load was 0.098 N and the loading time was 10 s.

3. Results and Discussions

3.1. NH Emission Intensity

Figure 3 shows the f H2 dependence of the emission intensity of NH radicals from the jet plume.
The NH emission intensity increased with increasing f H2 up to 0.25%. On the contrary, the NH emission
intensity turned to decrease with increasing f H2 over 0.25% up to 5%. The decreasing tendency of
the emission intensity suggested the likely possibility that the density of NH radical existing in the
jet plume decreased with increasing f H2 in the range more than 0.25%. Following this suggestion,
we increased f H2 for the purpose of decreasing the nitrogen dose amount. Incidentally, the minimum
f H2 was set to 1% in this study because by our previous work, f H2 was less than 1% proved to result in
oxidization of the steel surface due to the lack of reduction performance against residual oxygen [18].
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Figure 3. Emission intensity of NH radicals (336 nm) in jet plume vs H2 fraction in the operating gas.

3.2. Nitrogen Density of Treated Steel Surface

Figure 4a,b shows the cross-sectional mapping and depth profile of nitrogen concentration,
respectively, where the observation point was at the center of plasma-jet spraying. For f H2 of
1%, nitrogen was considerably condensed in the surface. In the vicinity of the outermost surface,
the nitrogen concentration reached ca. 12 at% and monotonically decreased in the depth direction.
The concentration gradient was a typical characteristic in such a diffusion treatment. On the other
hand, the nitrogen concentration in the vicinity of the surface became obviously less for f H2 of 2.5%
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even though the gradient tendency was analogous. The maximum concentration was merely 4 at% in
this case. Moreover, further decreases in nitrogen concentration was seen for f H2 of 5%, where the
maximum value was reduced down to 2 at%. In summary, the nitrogen concentration in the doped
steel surface monotonically decreased with increasing f H2, while it maintained the gradient tendency
in the depth direction. This result indicates that the nitrogen dose amount was successfully controlled
by changing f H2.
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3.3. Formation of Voids

Figure 5 shows cross-sectional micrographs of doped steels observed in the vicinity of the center
of plasma-jet spraying. For f H2 of 1%, a number of black dots were seen, which corresponded to the
voids due to excess nitrogen doping. The existence of such voids would have made the material surface
extremely brittle. On the other hand, the number of voids tended to decrease with increasing f H2 and
as a consequence, they become invisible in the optical microscopic scale for f H2 of 5%. This result
indicates that increasing f H2 can suppress the void formation in the steel surface. From the tendency of
nitrogen concentration described in Section 3.2, it follows that decreasing the nitrogen dose amount
was the cause of the suppression of void formation.
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Figure 5. Micrographs of sample cross-section. The dots appearing in the vicinity of surface correspond
to voids. The doping duration was 900 s.

3.4. Formation of Compound Layer

Figure 6 shows XRD spectra of the treated steel surface, where the observation point was the
sample surface in the vicinity of the center of plasma-jet spraying. For f H2 of 1%, the treated surface
obviously contained iron nitrides, namely Fe4N (γ’ phase) and Fe2–3N (ε phase). On the other hand, the
spectral intensities of the iron nitrides suddenly decreased with increasing f H2 and as a consequence,
they became less than the detection limit for f H2 over 2%. This result indicated that increasing f H2

reduced the formation of iron nitrides in the steel surface. From the tendency of nitrogen concentration
described in Section 3.2, it follows that the formation of iron nitrides was suppressed owing to a
decreasing nitrogen dose amount.
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In addition, the XRD peaks of the retained austenite (γ phase) were clearly seen. The formation of
the retained austenite was attributed to the austenitic transformation over the critical temperature A1

and an excess solution of nitrogen. The formation of retained austenite can be regarded as another
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negative effect of excess nitrogen supply as well as the voids and iron nitrides. However, Figure 6
exhibits that the peak intensity of γ tended to decrease with increasing f H2, indicating that the amount
of retained austenite was reduced. Moreover, the γ peak shifts toward high theta with f H2, that resulted
from decreasing the lattice constant due to decreasing dissolved nitrogen concentration. From the
relationship between the austenitic lattice constant a and the dissolved nitrogen concentration XN in
atomic percentage (a/nm = 0.3564 + 0.00077XN) [26], we obtained the dependence of XN on f H2 as
shown in Figure 7. For f H2 = 1%, XN = 9.6 at%. Increasing f H2 monotonically decreased XN and for
f H2 = 4%, XN was reduced down to 0.26 at%. These characteristics of retained austenite are additional
evidence for the controllability of nitrogen dose amount.
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3.5. Hardness Profile

Figure 8 shows the two-dimensional hardness profiles of the cross-section of treated steels.
The horizontal axis is the surface position of sample, the origin of which corresponds to the center
of plasma-jet spraying. The vertical axis is the depth from surface. Here the micro-Vickers hardness
was measured at intervals of 2 mm in the horizontal direction and 10 µm in the vertical direction.
The hardness is displayed by gray scale.
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Figure 8. Two-dimensional hardness profiles of sample cross-section. The micro-Vickers hardness is
displayed by gray scale. The doping duration was 900 s.

We see that for every f H2, the hardness beneath the center of plasma-jet spraying was increased
significantly beyond the original hardness. Here the area of ca. 5 mm in diameter was locally hardened.
The local hardening was most likely due to the limited heating ability of the plasma jet only to a
narrow area, not due to local nitrogen supply because of the following fact. It has already been
proved that nitrogen can be supplied to the circular area as large as 20 mm in diameter by identical
plasma-jet spraying, where the steel sample was heated up to ca. 800 K with the assistance of an
external heater [18]. The highest hardness was 815, 755, 815, 822, and 606 HV for f H2 = 1%, 2%, 3%,
4%, and 5%, respectively. Such hardness cannot be obtained without nitrogen doping because the
original carbon content was too low in the sample to invoke iron-carbon martensite transformation.
Although the hardness was relatively low when f H2 = 5%, the drastic increase in hardness proved that
the nitrogen dose amount was still appropriate.

Figure 9 shows the depth profile of hardness averaged within the range of ±2.5 mm of the surface
position. The error bar corresponds to the standard deviation of each of the three data sets. We can see
the typical trend of hardness gradient for every f H2. Note that for f H2 = 1%, obvious softening occurs in
the outermost surface within the depth profile from 10 to 30 µm. (This is clearly seen also in Figure 8.)
This softening was possibly due to the considerable amount of retained austenite. For f H2 = 2%,
the softening effect became much weaker and for more f H2 it was not seen any more. The dependence
of the softening effect on f H2 is consistent with the peak intensity of γ shown in Figure 6. The outermost
hardness of f H2 = 3% and 4% reached the largest value of ca. 800 HV. For f H2 = 5% it became lesser,
likely due to a lower nitrogen dose amount.
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3.6. Metallographic Structure

Figure 10 shows the metallographic micrographs of sample cross-section in the vicinity of the
surface. Here the martensite layer and the compound layer are denoted by m and c, respectively.
For f H2 = 1%, the compound layer was clearly seen as a discontinuous thin layer. However, no
discontinuous layer appeared for more f H2, being consistent with the behavior of γ’ and ε peaks shown
in Figure 6.
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The thickness of the martensite layer depended on f H2. That is, the thickness increased with
increasing f H2 up to 2%, and turned to a decrease from 2% to 4%, and then kept constant for more f H2.
We consider that the thickness change was caused by a shift of the surface temperature. The temperature
of jet plume tended to increase with increasing f H2 owing to the high thermal conductivity of hydrogen,
transporting the thermal energy from the pulsed arc to the jet plume. The sample temperature
(measured with a dummy sample) was ca. 1000 K for f H2 = 1% but increased up to ca. 1100 K for more
f H2. From this fact, it follows that the increase in the thickness from f H2 = 1% to 2% was caused by the
enhanced thermal diffusion and the subsequent decrease was caused by the decrease in nitrogen dose
amount. The change in the layer thickness can be seen also in Figures 8 and 9.
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4. Conclusions

To overcome the problem of excess nitrogen supply in the PA plasma-jet nitriding, a controlling
method of nitrogen dose amount was proposed on the basis of NH radical emission and was addressed
to experimentally performed. Consequently, we have demonstrated that the nitrogen dose amount to
the steel surface can be controlled by changing the hydrogen fraction in the operating gas. As a result of
nitrogen dose control, undesirable formation of voids and iron nitrides were successfully suppressed,
while a nitrogen dose enough to invoke martensite transformation was simultaneously achieved.

This achievement means that we have first obtained the technique to control “the nitriding
potential” even in the new plasma-jet nitriding. We believe that the upgraded controllability presented
here was of great help for future practical applications of the plasma-jet nitriding, especially for
applications to high-mix low-volume production of mechanical and medical fabrications. Note that
although the treatable area in this study seems too small for practical use, we can practically treat the
circular area of at least 20 mm in diameter for the ordinary nitriding temperature at ca. 800 K [18].
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