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Abstract: The single-crystal and polycrystalline elastic parameters of paramagnetic
Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu, Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) alloys in the face-centered
cubic (fcc) phase were derived by first-principles electronic structure calculations using the exact
muffin-tin orbitals method. The disordered local magnetic moment approach was used to model
the paramagnetic phase. The theoretical elastic parameters of the present Fe–Cr–Ni-based random
alloys agree with the available experimental data. In general, we found that all alloying elements
have a significant effect on the elastic properties of Fe–Cr–Ni alloy, and the most significant effect
was found for Co. A correlation between the tetragonal shear elastic constant C′ and the structural
energy difference ∆E between fcc and bcc lattices was demonstrated. For all alloys, small changes in
the Poisson’s ratio were obtained. We investigated the brittle/ductile transitions formulated by the
Pugh ratio. We demonstrate that Al, Cu, Mo, Nb, Ti, V, and W dopants enhance the ductility of the
Fe–Cr–Ni system, while Co reduces it. The present theoretical data can be used as a starting point for
modeling the mechanical properties of austenitic stainless steels at low temperatures.

Keywords: exact muffin-tin orbitals method; austenitic stainless steel; elastic constants; random
alloys; density functional theory

1. Introduction

Austenitic stainless steels are paramagnetic alloys having the face-centered cubic (fcc)
crystallographic structure. They are mainly composed of Fe, a minimum of 12 atomic percentage
of chromium, a minimum of 6 atomic percentage of Ni, and low amounts of carbon and nitrogen.
Austenitic stainless steels have excellent corrosion resistance and good mechanical properties such
as ductility, strength, stiffness, and toughness [1]. Austenitic stainless steels have a wide range of
applications, such as kitchen utensils, construction, equipment for the chemical industry and food
processing, heat exchangers, etc. [2].

Single-crystal and polycrystalline elastic parameters are essential in determining the mechanical
properties of the materials, such as hardness, fracture, ductility, and brittleness. These parameters
measure the resistance of materials to external forces, and they determine the bulk modulus B,
shear modulus G, Young’s modulus E, and Poisson’s ratio ν. Alloying is important in tuning the
fundamental properties of materials and in designing advanced engineering materials. Different
alloying elements have specific effects on the materials. In austenitic stainless steels, the major
alloying elements are chromium and nickel. Chromium gives the austenitic stainless steels corrosion
resistance [3], while nickel is added to austenitic stainless steels to promote the austenite microstructure
and to increase the ductility and toughness of steels. Other alloying elements determine the property
profiles of certain grades of austenitic stainless steels. Many experimental studies have investigated
the elastic properties of austenitic stainless steels [4–8]. In contrast to the experimental side, there are
only a few theoretical studies of the elastic properties of austenitic stainless steels [9–11]. The principal
purpose of this first-principles study is to fill this gap and to provide a comprehensive database
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of the alloying effects on the elastic parameters of paramagnetic fcc Fe–20Cr–20Ni–xM. Specifically,
we investigated the changes in the single-crystal and polycrystalline elastic constants caused by adding
small concentrations of M (M = Al, Co, Cu, Mo, Nb, V, and W; 0 ≤ x ≤ 8, where x is in atom %) that are
soluble in the Fe–Cr–Ni system. We chose these alloying elements since they represent simple metal
(Al), as well as nonmagnetic (Cu, Mo, Nb, V, and W) and magnetic (Co) transition metals. We excluded
Cr and Ni from this study, since the effects of these alloying elements on the elastic properties of a
paramagnetic fcc Fe–Cr–Ni system were discussed previously by Vitos et al. [11].

In the present work, all quaternary alloys were treated as substitutional disordered paramagnetic
solid solutions with an ideal fcc structure. The paramagnetic phase was modeled using a disordered
local moment scheme, which describes the systems well above the magnetic transition temperatures.

The rest of the paper includes two sections and conclusions. In Section 2, we describe the ab initio
method, the elastic parameters, and the details of the numerical calculations. We present the results
and the discussion in Section 3.

2. Methodology

2.1. Total Energy Calculations

The calculations in this work are based on density functional theory [12,13] and the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation [14] for the exchange correlation
functional. The exact muffin-tin orbitals (EMTO) method [10,15–19] in combination with the
scalar-relativistic scheme and soft-core approximation was used to solve the Kohn-Sham equations.
The chemical and magnetic substitutional disorder was treated using coherent potential approximation
(CPA) [20,21]. The total energy was computed using full charge density (FCD) approximation [22].
The paramagnetic state of the Fe–Cr–Ni–M alloys was simulated by the disordered local moments
(DLM) model [23]. Within the DLM picture, a paramagnetic Fe–Cr–Ni–M quaternary alloy is described
as an eight-component (Fe↑Fe↓)0.6−x(Cr↑Cr↓)0.2(Ni↑Ni↓)0.2(M↑M↓)x alloy with equal amounts of spin
up (↑) and spin down (↓) components. Using the DLM scheme, the impact of the loss of the magnetic
moment above the Curie temperature on the total energy is properly taken into account, although our
calculations were formally still performed at 0 K.

The equations of state and elastic parameters of the present Fe-based alloys and transition metal
alloys were calculated using the EMTO method which was used in several former works [9,11,24–31].

2.2. Elastic Constants

The elastic properties of mono-crystalline materials are described by the elements Cij of the
elasticity tensor. There are three independent elastic constants for a cubic lattice C11, C12, and C44 and
they are connected to the tetragonal shear elastic constant C′ = (C11 – C12)/2 and bulk modulus B = (C11

+ 2C12)/3. Dynamical (mechanical) stability requires that C44 > 0, C′ > 0, and B > 0.
The cubic shear elastic constants C′ and C44 were computed by keeping the volume constant

during deformations of the conventional cubic cell. For the tetragonal shear modulus C′, the following
orthorhombic deformation was used: 

1 + δo 0 0
0 1− δo 0
0 0 1

1−δ2
o

.

This leads to the energy change

∆E(δo) = 2VC′δ2
o + O
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δ4
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)
. (1)
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The C44 shear modulus was determined from the monoclinic distortion
1 δm 0
δm 1 0
0 0 1

1−δ2
m


yielding

∆E(δm) = 2VC44δ
2
m + O

(
δ4

m

)
(2)

In the above expressions, δ is the strain parameter.
Figure 1a,b represents an example of polynomial fit carried out for the above two equations

(Equations (1) and (2)) which represent the constant volume (equilibrium volume) total energy change
as functions of orthorhombic and monoclinic deformations, respectively. Panels (c) and (d) in Figure 1
show the standard errors in C′ and C44, respectively, of paramagnetic fcc Fe–Cr–Ni–Al alloys based on
the polynomial fit.
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Figure 1. (a) Total energy change (Equation (1)) as a function of orthorhombic deformation δo of the
fcc structure of a paramagnetic Fe0.59Cr0.2Ni0.2Al0.01 alloy. (b) Total energy change (Equation (2)) as a
function of the monoclinic deformation δm of the fcc structure of a paramagnetic Fe0.59Cr0.2Ni0.2Al0.01

alloy. The red curves in (a) and (b) represent the polynomial fit of the total energy change. (c) The
standard error in C′ and (d) the standard error in C44 of Fe0.6−xCr0.2Ni0.2Alx(x = 0.01, 0.02, 0.03, 0.04)
alloys as a function of x.

In polycrystalline materials, the mono-crystalline grains are misoriented. On a large scale,
these materials can be considered as isotropic materials. The isotropic solids can be described by their
bulk modulus B and shear modulus G. One can establish the ab initio polycrystalline elastic moduli
by transforming single-crystal elastic constants Cij to macroscopic quantities by suitable averaging
methods based on statistical mechanics. For a cubic lattice, the polycrystalline bulk modulus is identical
to the single-crystal bulk modulus. For the shear modulus, there are several different techniques for
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averaging the single-crystal data. Here, we adopted the arithmetic Hill [32] average G = (GV + GR)/2,
where the Voigt [33] and Reuss [34] limits are given in terms of single-crystal elastic constants, namely,

GR = 5(C11 −C12)C44/(4C44 + 3C11 − 3C12) (3)

GV = (C11 −C12 + 3C44)/5 (4)

The Young’s modulus E and Poisson’s ratio ν are related to B and G by the relations

E = 9BG/(3B + G) (5)

ν = (3B− 2G)/(6B + 2G) (6)

In the present study, the single-crystal and polycrystalline elastic constants of the paramagnetic
Fe0.6−xCr0.2Ni0.2Mx (where M = Al, Co, Cu, Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) quaternary alloys
were calculated for fcc lattices. The properties are presented and analyzed as a function of the atomic
concentration x. Different atomic concentrations were used for each alloying element depending on
their real solubility in austenitic Fe0.6−xCr0.2Ni0.2M stainless steel.

2.3. Numerical Details

Green’s function was computed for 16 complex energy points distributed exponentially on a
semicircular contour. The s, p, d, and f orbitals were included in the EMTO basis set and lhmax = 8 was
used in the one-center expansion of the full charge density [10]. The calculations are presented for
paramagnetic fcc alloys. The total energy was evaluated by the shape function technique. The screened
impurity model [35] with a screening parameter of 0.6 was used to describe the electrostatic correction
to the single-site coherent potential approximation. For all components of the alloy, we chose the radii
of the potential spheres to be equal to the corresponding average radii of the atomic spheres.

The bulk moduli of Fe0.6−xCr0.2Ni0.2Mx alloys at their equilibrium volumes estimated from
Equation (7) were derived from an exponential Morse-type function [36] installed with the ab initio
total energies calculated for seven different atomic volumes; these volumes were expressed in terms
of Wigner-Seitz radii w in the range 2.55 Bohr ≤ w ≤ 2.70 Bohr in steps of 0.025 Bohr, including
the equilibrium Wigner-Seitz radius. We considered six orthorhombic and monoclinic distortions
with δ = 0, 0.01, 0.02, 0.03, 0.04, and 0.05. We used 1331–1694 uniformly distributed k-points in the
irreducible wedge of the monoclinic and orthorhombic Brillouin zones to get the accuracy needed for
the calculation of elastic constants.

3. Results and Discussions

3.1. Assessing the Accuracy of the Paramagnetic fcc Fe–20Cr–20Ni Alloy

We started our study by assessing the accuracy of our method with available experimental
methods. In Table 1, we compare our results of single-crystal and polycrystalline elastic constants for
the Fe0.6Cr0.2Ni0.2 alloy with the experimental results [8] for the Fe0.62Cr0.19Ni0.19 alloy, which is the
closest alloy that we found to compare with. All theoretical elastic parameters for the Fe0.6Cr0.2Ni0.2

alloy were calculated at the lattice parameter a = 3.58 Å estimated from Equation (7), and the
experimental elastic parameters for the Fe0.62Cr0.19Ni0.19 alloy were calculated at their experimental
volume a = 3.55 Å [8]. We obtained agreement between our results and the experimental results,
and we found that the theoretical C11, C12, and C′ values were smaller than the experimental values by
13.2%, 6.8%, and 25.1%, respectively. The calculated C44 was larger than the experimental value by
3.9%. We ascribe the worse agreement in the case of C′ to the different experimental volumes used
in both methods and to the small differences in concentrations of alloying elements in both systems.
The theoretical polycrystalline elastic constants B, E, and G were smaller than the experimental values
by 9.4%, 9.2%, and 9.2%, respectively. On the other hand, the B/G ratio and Poisson’s ratio ν were
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accurately reproduced by our method. Compared to the experiment data, they deviated by 0.27% and
0.17%, respectively.

Table 1. Theoretical (exact muffin-tin orbitals, EMTO) and experimental (Exp) [8] elastic constants
(in GPa) for paramagnetic fcc Fe–Cr–Ni alloys. B/G and ν are dimensionless. In the last row, we present
the percentage error between the experimental and theoretical elastic constants.

System C11 C12 C′ C44 B E G B/G ν

Fe0.6Cr0.2Ni0.2 (EMTO) 177 124 26.6 131 142 181 70.1 2.03 0.288

Fe0.62Cr0.19Ni0.19 (Exp) 204 133 35.5 126 157 199 77.2 2.03 0.289

Percentage error (%) 13.2 6.8 25.1 3.9 9.4 9.2 9.2 0.27 0.17

Having demonstrated the accuracy of our method, we expanded our study to Fe–Cr–Ni systems
containing different concentrations of Al, Co, Cu, Mo, Nb, Ti, V, and W and investigated the alloying
effects on the single and polycrystalline elastic constants of the Fe–Cr–Ni system.

3.2. Single-Crystal Elastic Constants

Dyson and Holmes [37] applied X-ray methods to an austenite standard of known lattice
parameter, and they observed predominantly linear variation in the lattice parameter with variation
in the amount of alloying element in the austenite steel. They performed linear multiple regression
analysis. The variation in the lattice parameter of austenite with respect to the atom % values of
alloying elements using regression analysis was

a (Å) = 3.577 + 0.0065C + 0.0010Mn − 0.0002Ni + 0.0006Cr + 0.0056N + 0.0028Al −
0.004Co + 0.0014Cu + 0.0053Mo + 0.0079Nb + 0.0032Ti + 0.0017V + 0.0057W.

(7)

According to Equation (7), Al, Cu, Mo, Nb, Ti, V, and W dopants enlarge the lattice parameter of
austenite steel, while Co deceases it. In Figure 2, using Equation (7), we display the changes in the
equilibrium lattice parameter for paramagnetic fcc Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu, Mo, Nb, Ti, V,
and W; 0 ≤ x ≤ 0.08) quaternary alloys relative to the paramagnetic fcc Fe0.6Cr0.2Ni0.2 ternary alloy
as a function of the atomic concentrations x of alloying elements. The numerical values of the lattice
parameters, based on Equation (7), of the paramagnetic fcc Fe0.6−xCr0.2Ni0.2-based alloys are listed in
Tables 2 and 3.
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Figure 2. Changes in the equilibrium lattice parameters (a(x)), based on Equation (7), of paramagnetic
fcc Fe0.6−xCr0.2Ni0.2Mx (where M = Al, Co, Cu, Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) quaternary alloys
relative to the paramagnetic fcc Fe0.6Cr0.2Ni0.2 ternary alloy as a function of atomic concentration x.
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Table 2. Theoretical (EMTO) single-crystal elastic constants (in GPa) for paramagnetic fcc
Fe–20Cr–20Ni–x%M (M = Al, Co, Cu, Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 8, where x is in atom %)
alloys calculated at their lattice parameter aexp (in Å) estimated from Equation (7).

System aexp C11 C12 C′ C44

Fe–20Cr–20Ni 3.583 177 124 26.6 131

Fe–20Cr–20Ni–1.0Al 3.588 176 125 25.4 130

Fe–20Cr–20Ni–2.0Al 3.591 176 127 24.6 129

Fe–20Cr–20Ni–3.0Al 3.593 176 129 23.2 129

Fe–20Cr–20Ni–4.0Al 3.596 177 131 22.8 128

Fe–20Cr–20Ni–2.0Co 3.577 183 125 28.7 136

Fe–20Cr–20Ni–4.0Co 3.569 190 128 30.8 140

Fe–20Cr–20Ni–6.0Co 3.561 197 131 32.7 145

Fe–20Cr–20Ni–8.0Co 3.553 204 134 34.9 149

Fe–20Cr–20Ni–0.5Cu 3.586 177 124 26.5 130

Fe–20Cr–20Ni–1.0Cu 3.586 177 125 26.1 130

Fe–20Cr–20Ni–1.5Cu 3.587 178 126 25.9 129

Fe–20Cr–20Ni–2.0Cu 3.588 178 127 25.6 129

Fe–20Cr–20Ni–0.5Mo 3.588 181 128 26.3 130

Fe–20Cr–20Ni–1.0Mo 3.590 181 129 25.9 130

Fe–20Cr–20Ni–1.5Mo 3.593 181 130 25.4 130

Fe–20Cr–20Ni–2.0Mo 3.596 180 130 25.0 130

Fe–20Cr–20Ni–0.5Nb 3.589 176 124 25.9 130

Fe–20Cr–20Ni–1.0Nb 3.593 176 126 24.8 129

Fe–20Cr–20Ni–1.5Nb 3.597 175 127 24.0 128

Fe–20Cr–20Ni–2.0Nb 3.601 176 129 23.2 127

Fe–20Cr–20Ni–0.5Ti 3.587 177 126 25.8 130

Fe–20Cr–20Ni–1.0Ti 3.588 176 126 24.9 129

Fe–20Cr–20Ni–1.5Ti 3.590 177 128 24.2 128

Fe–20Cr–20Ni–2.0Ti 3.591 176 129 23.4 128

Fe–20Cr–20Ni–1.0V 3.587 176 124 25.8 130

Fe–20Cr–20Ni–2.0V 3.588 177 127 24.8 129

Fe–20Cr–20Ni–3.0V 3.590 177 128 24.0 128

Fe–20Cr–20Ni–4.0V 3.592 177 130 23.5 127

Fe–20Cr–20Ni–0.5W 3.588 179 126 26.3 131

Fe–20Cr–20Ni–1.0W 3.591 181 129 26.0 131

Fe–20Cr–20Ni–1.5W 3.594 182 131 25.5 131

Fe–20Cr–20Ni–2.0W 3.596 184 134 25.0 131
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Table 3. Theoretical (EMTO) polycrystalline elastic constants B, G, and E (in GPa); Poisson’s ratio
ν; and B/G ratio for paramagnetic fcc Fe–20Cr–20Ni–x%M (M = Al, Co, Cu, Mo, Nb, Ti, V, and W;
0 ≤ x ≤ 8, where x is in atom %) calculated at their experimental lattice parameter aexp [37] (in Å).

System aexp B G B/G E ν

Fe–20Cr–20Ni 3.583 142 70.1 2.03 181 0.288

Fe–20Cr–20Ni–1.0Al 3.588 142 68.6 2.06 177 0.292

Fe–20Cr–20Ni–2.0Al 3.591 143 67.6 2.12 175 0.296

Fe–20Cr–20Ni–3.0Al 3.593 145 66.0 2.19 172 0.302

Fe–20Cr–20Ni–4.0Al 3.596 146 65.4 2.24 171 0.305

Fe–20Cr–20Ni–2.0Co 3.577 145 73.7 1.96 189 0.282

Fe–20Cr–20Ni–4.0Co 3.569 149 77.1 1.93 197 0.279

Fe–20Cr–20Ni–6.0Co 3.561 153 80.5 1.90 206 0.276

Fe–20Cr–20Ni–8.0Co 3.553 157 84.1 1.87 214 0.273

Fe–20Cr–20Ni–0.5Cu 3.586 141 69.8 2.03 180 0.288

Fe–20Cr–20Ni–1.0Cu 3.586 142 69.3 2.05 179 0.290

Fe–20Cr–20Ni–1.5Cu 3.587 143 68.9 2.07 178 0.292

Fe–20Cr–20Ni–2.0Cu 3.588 144 68.5 2.10 177 0.295

Fe–20Cr–20Ni–0.5Mo 3.588 146 69.6 2.10 180 0.294

Fe–20Cr–20Ni–1.0Mo 3.590 147 69.2 2.12 180 0.296

Fe–20Cr–20Ni–1.5Mo 3.593 147 68.6 2.14 178 0.298

Fe–20Cr–20Ni–2.0Mo 3.596 147 68.2 2.15 177 0.299

Fe–20Cr–20Ni–0.5Nb 3.589 141 69.0 2.04 178 0.290

Fe–20Cr–20Ni–1.0Nb 3.593 143 67.7 2.10 175 0.295

Fe–20Cr–20Ni–1.5Nb 3.597 143 66.5 2.16 173 0.299

Fe–20Cr–20Ni–2.0Nb 3.601 145 65.4 2.22 171 0.304

Fe–20Cr–20Ni–0.5Ti 3.587 143 69.1 2.07 178 0.292

Fe–20Cr–20Ni–1.0Ti 3.588 142 68.0 2.09 176 0.294

Fe–20Cr–20Ni–1.5Ti 3.590 144 66.9 2.16 174 0.299

Fe–20Cr–20Ni–2.0Ti 3.591 145 65.9 2.20 172 0.303

Fe–20Cr–20Ni–1.0V 3.587 142 69.0 2.05 178 0.290

Fe–20Cr–20Ni–2.0V 3.588 144 67.8 2.12 176 0.297

Fe–20Cr–20Ni–3.0V 3.590 145 66.6 2.18 173 0.301

Fe–20Cr–20Ni–4.0V 3.592 146 65.8 2.22 172 0.304

Fe–20Cr–20Ni–0.5W 3.588 144 69.7 2.06 180 0.291

Fe–20Cr–20Ni–1.0W 3.591 146 69.6 2.10 180 0.295

Fe–20Cr–20Ni–1.5W 3.594 148 69.1 2.15 179 0.298

Fe–20Cr–20Ni–2.0W 3.596 151 68.7 2.20 179 0.302

Figure 3 represents the theoretical changes in single-crystal elastic constants (i.e., ∆Cij(x) =

Cij(Fe0.6−xCr0.2Ni0.2Mx) − Cij(Fe0.6Cr0.2Ni0.2)) of paramagnetic fcc Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu,
Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) random alloys relative to the paramagnetic fcc Fe0.6Cr0.2Ni0.2

random alloy. In Table 2, we list the numerical values for C11, C12, C′, and C44 of paramagnetic fcc
Fe0.6−xCr0.2Ni0.2-based alloys calculated at their corresponding equilibrium lattice parameter aexp.
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Figure 3. Theoretical changes in single-crystal elastic constants (a) ∆C11(x), (b) ∆C12(x), (c) ∆C′(x),
and (d) ∆C44(x) of paramagnetic fcc Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu, Mo, Nb, Ti, V, and W;
0 ≤ x ≤ 0.08) quaternary alloys relative to the paramagnetic fcc Fe0.6Cr0.2Ni0.2 ternary alloy as a
function of atomic concentration x.

Investigating Figure 3 and Table 2, we observe that when adding 2.0 (0.5), 4.0 (1.0), 6.0 (1.5),
and 8.0 (2.0) atom % of Co (W) to the paramagnetic fcc Fe–Cr–Ni alloy, the theoretical C11 increases by
5.5 (1.5), 12.6 (3.6), 19.4 (4.9), and 53.6 (7.0) GPa, respectively. Aluminum, copper, niobium, titanium,
and vanadium were found to have negligible effects on the C11 value of the paramagnetic fcc Fe–Cr–Ni
alloy. It is interesting to note that when substituting 0.5 atom % of Mo for Fe in the Fe0.6Cr0.2Ni0.2 alloy,
the C11 increases by 3.7 GPa, but further substitution of Mo (1.0, 1.5, and 2.0 atom %) for Fe has no
effect on the C11 of the Fe0.6Cr0.2Ni0.2 alloy.

The calculated C12 of the fcc Fe–Cr–Ni alloy increased with all alloying elements considered.
Namely, the addition of 1.0, 2.0, 3.0, and 4.0 atom % of Al (V) to the Fe0.6Cr0.2Ni0.2 alloy enhanced
the C12 value by 0.6 (0.2), 2.7 (3.2), 5.2 (4.7), and 6.8 (6) GPa, respectively. Cobalt and tungsten had
pronounced effects on the C12 value: adding 2.0 (0.5), 4.0 (1.0), 6.0 (1.5), and 8.0 (2.0) atom % of Co (W)
to Fe0.6Cr0.2Ni0.2 alloy yielded ∆C12 = 1.2 (2), 4.1 (4.8), 7 (6.9), and 9.8 (10) GPa. Substituting 0.5 atom
% to 2.0 atom % of Cu, Mo, Nb, and Ti for Fe in the Fe0.6Cr0.2Ni0.2 alloy increased C12 from ~1.2 GPa to
~4.4 GPa.

We then investigated the alloying effects on the shear elastic constant C44 of the Fe0.6Cr0.2Ni0.2

alloy, and we found that Co is the only alloying element that enhanced C44. Adding 2.0, 4.0, 6.0,
and 8.0 atom % of Co to the Fe0.6Cr0.2Ni0.2 alloy increased the C44 value by 4.5, 9.0, 13.7, and 18.3 GPa,
respectively. Negative alloying effects on C44 of the fcc Fe–Cr–Ni alloy occurred for Al, Cu, Mo, Nb, Ti,
and V. Substituting 1.0, 2.0, 3.0, and 4.0 atom % of Al (V) for Fe in the Fe0.6Cr0.2Ni0.2 alloy reduced the
C44 value by 1.0 (1.0), 1.8 (2.0), 2.5 (3.0), and 3.2 (4.0) GPa, respectively. On the other hand, adding
0.5 atom % to 2 atom % of Cu, Mo, Nb, and Ti changed ∆C44 from approximately −0.6 GPa to −3.4 GPa.
Tungsten was found to have a negligible effect on C44.

The tetragonal shear elastic constant C′ is often used to describe the stability of cubic solids. Positive
(negative) values of C′ indicate a stable (unstable) structure. Investigating Figure 3, we observed that
Co addition increased the C′ value of paramagnetic fcc Fe–Cr–Ni alloy, while Al, Cu, Mo, Nb, Ti, V,
and W additions decreased it. Adding 2.0, 4.0, 6.0, and 8.0 atom % of Co to Fe0.6Cr0.2Ni0.2 enhanced
C′ by 2.1, 3.5, 6.1, and 8.3 GPa, while substituting 1.0, 2.0, 3.0, and 4.0 atom % of Al (V) for Fe in the
Fe0.6Cr0.2Ni0.2 alloy reduced the C′ value by 1.2 (0.8), 2 (1.8), 3.4 (2.6), and 3.8 (3.1) GPa. The effects of
the other alloying elements were similar to those of Al and V. Adding 0.5 atom % to 2 atom % of Cu, Mo,
Nb, Ti, or W to the Fe–Cr–Ni alloy changed the ∆C′ from approximately −0.1 GPa to approximately
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−3.4 GPa, respectively. According to our calculations of C′, we may conclude that the paramagnetic fcc
Fe–Cr–Ni alloy becomes dynamically more stable with Co addition and less stable with Al, Cu, Nb,
Mo, Ti, V, and W dopants.

The tetragonal shear elastic constant C′ is connected to the structural energy difference ∆E (i.e.,
∆E = Ebcc − Efcc) between the bcc and fcc lattices. The values of C′ can be obtained from the curvature
around the energy minimum along a constant-volume Bain path. In fact, the Bain path [38] is a
martensitic path that connects the fcc and bcc lattices which can be described as a body-centered
tetragonal (bct) structure; when the c/a ratio of the bct structure is 1, the structure is bcc, while when
the c/a ratio reaches

√
2, the structure is called an fcc structure. We can understand the trends of the C′

elastic constants by understanding the trends of ∆E. In Figure 4, we plot the C′ of fcc (solid symbols)
and bcc (open symbols) lattices of paramagnetic Fe–Cr–Ni-based alloys and ∆E (i.e., ∆E = Ebcc − Efcc).
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Figure 4. (a) Calculated fcc (solid symbols) and bcc (open symbols) tetragonal shear constant C′ values
and (b) the calculated total energy difference ∆E (∆E = Ebcc − Efcc) between the bcc and fcc structures
of paramagnetic Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu, Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) quaternary
alloys as a function of atomic concentration x.

Lacking experimental volume data for the paramagnetic bcc Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu,
Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) random alloys, the C′fcc and C′bcc values and the total energies Ebcc

and Efcc in Figure 4 were calculated at their theoretical equilibrium volumes.
Investigating Figure 4a, we find that the C′ values of all fcc paramagnetic Fe–Cr–Ni–M alloys are

larger than those of the bcc lattices, which means that for all alloys considered, the fcc structure is more
stable than the bcc structure. On the other hand, alloying has an impact on increasing or decreasing the
fcc and bcc tetragonal elastic constants. We observe that the C′fcc (C′bcc) value of the Fe–Cr–Ni system
increases (decreases) by addition of Co, while other alloying elements (Al, Cu, Mo, Nb, Ti, V, and W)
reduce (enhance) the C′fcc (C′bcc) value of the Fe–Cr–Ni system. The structural energy difference ∆E
(Figure 4b) has a similar (opposite) trend to that of C′fcc (C′bcc), with larger (smaller) values of ∆E
corresponding to larger (smaller) values of C′fcc (C′bcc) of the Fe–Cr–Ni system. The scaling between
C′fcc (C′bcc) and ∆E for Fe–Cr–Ni-based alloys holds. Our observations on the correlation between C′

and ∆E are in line with those obtained by [39–44].
In summary, according to our calculations, the most significant effect on the C11, C12, C44, and C′

values of paramagnetic fcc Fe–Cr–Ni alloy was found for Co. The correlation between C′ and
the structural energy difference ∆E between the bcc and fcc lattices of the paramagnetic Fe–Cr–Ni
system holds.
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3.3. Polycrystalline Elastic Constants

Theoretical changes in the polycrystalline elastic constants (∆B(x), ∆G(x), ∆E(x)) of paramagnetic
fcc Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu, Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08, where x is in atom %)
random alloys relative to the paramagnetic fcc Fe0.6Cr0.2Ni0.2 random alloy and B/G ratio are plotted
in Figure 5. The numerical values of the polycrystalline elastic constants (B(x), G(x), E(x)), B/G(x) ratio,
and Poisson ratio ν(x) for paramagnetic fcc Fe–Cr–Ni-based alloys calculated at their experimental
lattice parameters aexp are listed in Table 3.Metals 2019, 9, x FOR PEER REVIEW 10 of 13 
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Figure 5. Theoretical changes in polycrystalline elastic constants (a) ∆B(x), (b) ∆G(x), and (c) ∆E(x) of
paramagnetic fcc Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu, Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) quaternary
alloys relative to those of the paramagnetic fcc Fe0.6Cr0.2Ni0.2 ternary alloy, and (d) the B/G ratio as a
function of atomic concentration x.

In Figure 5, we observe that all alloying elements enhanced the bulk modulus of the Fe–Cr–Ni
system. The greatest alloying effect was found for Co, which increased the B(x) of the Fe–Cr–Ni alloy
to 3.6, 6.9, 11.2, and 15.4 GPa when adding 2.0, 4.0, 6.0, and 8.0 atom %. Aluminum and vanadium had
an almost similar effect on the bulk modulus of the Fe–Cr–Ni system. Substituting 1.0, 2.0, 3.0, and 4.0
atom % of Al (V) for Fe in the Fe0.6Cr0.2Ni0.2 alloy enhanced the bulk modulus by −0.2 (−0.3), 1.4 (2.0),
2.9 (3.0), and 4.3 (3.9) GPa, respectively. Tungsten had a significant effect on the bulk modulus. Namely,
adding 0.5, 1.0, 1.5, and 2 atom % of W to the Fe–Cr–Ni alloy enhanced the bulk modulus by 1.8, 4.4,
6.2, and 9 GPa, respectively. Other alloying elements (Cu, Mo, Nb, Ti) enhanced the bulk modulus
by small amounts ranging from approximately −0.8 GPa to approximately 5.0 GPa depending on the
alloying elements’ atomic concentrations. We attribute the increase of the bulk modulus when adding
transition metals (Co, Cu, Mo, Nb, Ti, V, W) to the Fe–Cr–Ni alloy to the cohesion in d metals using the
Friedel model [45,46], and also to the bond increase when going from 3d (Co, Cu, Ti, V) to 4d (Mo, Nb)
and 5d (W) metals [47].

From Figure 5 and Table 3, we see that ∆G(x) and ∆E(x) have similar behavior. The variation of
the shear modulus G(x) and Young’s modulus E(x) increased when adding Co to the Fe–Cr–Ni alloy:
adding 2.0–8.0 atom % of Co raised the G value (E value) of the Fe–Cr–Ni alloy by 3.6 (8.4) to 14.0
(33.6) GPa. On the other hand, Al, Cu, Mo, Nb, Ti, V, and W dopants reduced the G(x) and E(x) of the
Fe–Cr–Ni alloy. The largest effect on G(x) and E(x) of Fe–Cr–Ni–M was produced by Co.
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Investigating Figures 3 and 5, we note that the trends of ∆C′(x), ∆C44(x), ∆G(x), and ∆E(x) are
similar but are opposite to that of ∆a(x) from Figure 2. These trends can be explained using the
following assumption based on the volume effect: Since Co addition decreases the average volume
per atom in Fe–Cr–Ni (see Figure 2), it is also increasing the average bond strength and, therefore,
the ability of the alloy to resist shear, while additions of Al, Cu, Nb, Mo, Ti, V, and W have the opposite
effect. The addition of Al, Cu, Nb, Mo, Ti, V, or W to the fcc Fe–Cr–Ni alloy enlarges the lattice
parameter and thus weakens the average bond strength between atoms; therefore, the ability of the
alloy to resist shear decreases.

The ductile/brittle behavior of structural materials is important to their performance. Pugh [48]
suggested a criterion that tests the ductility and brittleness of materials based on their bulk and shear
moduli values: a material that has a B/G ratio less than 1.75 is in the brittle regime; otherwise, it is in
the ductile regime. From Figure 5 and Table 3, we observed that the paramagnetic fcc Fe0.6Cr0.2Ni0.2

alloy is in the ductile regime with B/G = 2.0253. Our calculations show that Al, Cu, Mo, Nb, Ti, V,
or W addition to the paramagnetic fcc Fe–Cr–Ni system enhances B/G and increases the ductility of
the system. Niobium and vanadium have the largest impact on the ductility of the Fe–Cr–Ni system:
adding 2.0 (4.0) atom % of Nb (V) raised the B/G to 2.2161 (2.2167). Cobalt reduced the B/G value and
therefore decreased the ductility of the Fe–Cr–Ni system.

In Figure 6, we plot the theoretical Poisson’s ratio ν(x) for paramagnetic fcc Fe0.6−xCr0.2Ni0.2Mx

(M = Al, Co, Cu, Mo, Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) random alloys as a function of atomic concentration
x. We obtained the result that the Poisson’s ratio has a similar trend to B/G. Adding Al, Cu, Mo, Nb, Ti,
V, or W to the Fe–Cr–Ni alloy enhanced the value of ν(x), while Co addition decreased the ν(x) value of
the Fe–Cr–Ni alloy. The most significant effects on the ν(x) value of paramagnetic fcc Fe–Cr–Ni alloy
were produced by Al and V.Metals 2019, 9, x FOR PEER REVIEW 11 of 13 
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Figure 6. Theoretical Poisson’s ratio ν(x) of paramagnetic fcc Fe0.6−xCr0.2Ni0.2Mx (M = Al, Co, Cu, Mo,
Nb, Ti, V, and W; 0 ≤ x ≤ 0.08) quaternary alloys as a function of the atomic concentration x.

Our results on the polycrystalline elastic constants for Fe–Cr–Ni–Mo alloys are in line with
those obtained by Ledbetter et al. [5], who produced ultrasonic measurements of the polycrystalline
elastic constants of six fcc Fe–19Cr–12Ni (atom %) alloys with Mo content ranging up to 2.4 atom %.
They found that Mo reduced the G and E moduli and raised the B and ν ratio.

4. Conclusions

Using the exact muffin-tin orbital method with coherent potential approximation and
Perdew-Burke-Ernzerhof generalized gradient approximation, we investigated the single-crystal



Metals 2019, 9, 792 12 of 14

and polycrystalline elastic parameters of paramagnetic fcc Fe0.6−x–Cr–Ni–Mx(M = Al, Co, Cu, Mo, Nb,
Ti, V, and W; 0 ≤ x ≤ 0.08) random alloys. We demonstrated that all alloying elements enhanced the
elastic constant C12 of the Fe–Cr–Ni system. Cobalt and tungsten increased the C11 elastic constant
of the Fe–Cr–Ni ternary alloy, while other alloying elements had a negligible effect. Furthermore,
we found that the C′, C44, E, and G moduli of the Fe–Cr–Ni alloy were increased by Co addition and
reduced by Al, Cu, Mo, Nb, Ti, V, and W dopants. Tungsten had a negligible effect on C44. We obtained
a correlation between C′ and the structural energy difference ∆E between fcc and bcc lattices, wherein
large C′ corresponds to large ∆E. The brittle/ductile transitions formulated by the Pugh ratio B/G were
also discussed. It was shown that Al, Cu, Mo, Nb, Ti, V, and W dopants enhanced the ductility of
the Fe–Cr–Ni system, while Co enhanced the brittleness of the Fe–Cr–Ni alloy. The Poisson’s ratio ν
showed the same trend as the B/G ratio, with small variations obtained in ν when adding alloying
elements to the Fe–Cr–Ni system. Our calculations provide consistent data on the elastic properties
of paramagnetic fcc Fe–Cr–Ni-based alloys at low temperature and call for experimental studies on
these alloys.
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