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Abstract: Two robust mutlivariable controllers, H∞ and a decentralized quantitative feedback theory
(QFT), are designed in the frequency domain for the 2 × 2 looper system in a steel hot rolling mill to
keep stability in the presence of parametric uncertainties. The H∞ controller is designed by using the
mixed sensitivity approach, while the multivariable decentralized QFT is designed by the extension of
the sequential loop closing method presented elsewhere. Stability robustness conditions are verified
in the frequency domain, while simulations in time domain are carried out to evaluate the controllers
and compare their performance along with that of proportional + integral (PI) and single input single
output (SISO) QFT controllers designed earlier. The QFT controller shows the best balance among the
performance indicators analyzed here; however, at the expenses of using higher power in one of the
control inputs.

Keywords: robust control; multivariable control; QFT; H∞; hot rolling; looper control; parametric
uncertainties

1. Introduction

A hot strip mill (HSM) is a process that rolls steel slabs into coiled strips. The finishing mill (FM),
where the strip takes the final thickness, is the most critical process in an HSM because of the great
number of variables involved, interactions between them, and hence its modeling complexity and
uncertainty [1,2]. On the other hand, as with many other industrial processes, the environment is
highly noisy.

The FM has to attain desired strip thickness and finishing temperature, therefore, controlling
these variables and those that have an impact on them is highly important. Most FMs are controlled
by proportional + integral (PI) control strategies, which are not designed to compensate for the
above-mentioned difficulties. During the past two decades, control of relevant aspects related to
thickness has been an active research topic in the literature [3–8]. Special attention has been paid to the
looper system variables, tension and looper angular position, owing mainly to their great influence
on strip thickness and finishing temperature [2]. Several control approaches for these variables with
the aim of achieving stability and performance in the presence of uncertainties and interactions have
been proposed.

H∞ control schemes were proposed for thickness and mass flow loops to achieve robustness in the
presence of sensor failures [9]. A 2 × 2 multivariable robust parametric H∞ controller was designed for
thickness and looper angular position [10]. Two H∞ robust controllers for strip tension were presented;
one of them designed using Lyapunov–Krasovskii method and LMIs and the other by the conventional
2-Riccati-equation based method [11]. Chen et al. proposed a discrete-time H∞ robust controller [12];
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while a two nested closed loop scheme, a decoupling decentralized control and an H∞ robust controller,
was presented in [13].

Hearns and Grimble [14] proposed an inferential control designed by the quantitative feedback
theory (QFT) technique for strip tension control. The same authors [15] have presented a control based
on QFT technique for the looper system, however, the standard approach found in the literature [16,17]
was modified for that particular application.

Two single loop QFT parametric robust controllers for strip tension and looper angular position
were designed [18]. Tests under parametric uncertainty have been conducted within a 2 × 2 scheme of
the looper system, comparison with conventional PI controllers have also been carried out. A single
loop parametric robust QFT controller for strip thickness was also designed [19]. It was also tested
in a 2 × 2 scheme together with the looper angular position presented in [18] and performance was
compared with that of PI controllers.

Although the present work is concerned with those techniques using a fixed linear robust controller
in the frequency domain, it is worth mentioning that model based predictive controllers (MPC) [20–23]
as well as non-linear techniques [24,25] have been applied to the looper system.

As shown by the above survey, there is as great concern about achieving robustness and interaction
rejection for the looper system in an HSM by H∞ and QFT control design techniques. Hence, anticipating
potential applications on an actual HSM, it would be worthwhile to evaluate the techniques and
compare their performance using controllers designed by standard approaches commercially available
in control design software tools such as MATLAB. Thus, in this work, two multivariable parametric
robust controllers are designed, QFT and H∞, for the multivariable 2 × 2 looper system. As far as the
author knowledge is concerned, MIMO QFT controllers have not been applied to the looper system in
an HSM. The QFT controller is designed by the decentralized QFT control technique for multivariable
processes (mvQFT) as given in Yaniv [26] using the MATLAB/QFT toolbox; while the H∞ controller
was designed by the mixed sensitivity approach and the standard 2-Riccati-equation solution using
the MATLAB HINF function. The controllers are also compared with PI controllers, which are the
current controllers in most HSMs worldwide, and the two SISO QFT controllers presented in [18], when
applicable; evaluating in this way, the potential benefits of compensating for interactions and parameter
uncertainty. The multivariable linearized HSM model presented and experimentally validated in
Obregon et al. [2] has been built in Simulink to perform time domain tests.

The paper is organized as follows. Section 2 describes briefly the model used in this work.
Section 3 presents the fundamentals of the QFT and H∞ control techniques. Section 4 deals with
the controllers designed for the looper system. In Section 5 the simulation results are presented and
discussed, and finally, Section 6 presents the conclusions.

2. FM Multivariable Model

Two FM contiguous stands, i and i + 1, and the lopper i between them were represented by a
linear 4 × 4 multivariable model [2]. The assumption of a linear behavior is realistic, since the mill
operates under small signal regime once the steel bar has been threaded.

Figure 1 is a schematic representation of the two modeled stands, while the model block diagram is
shown in Figure 2a. To validate the model, it was built in Simulink and tests were performed with data
from the real mill, concluding that it was a good approximation of the process [2]. To derive the model
some blocks were represented directly in Laplace while the nonlinear static relations involved were
linearized around an operating point. The operating conditions were defined according to the rolling
practice of the most commonly rolled product in stands 3 (i) and 4 (i + 1). In Figure 2a, δ denotes small
perturbation; the symbol Ky

x denotes a static gain obtained from linearization, this being ∂y
∂x evaluated

at the operating conditions; a plus symbol (+) or a minus symbol (−), on either the superscript or the
subscript of Ky

x denote i + 1 and i − 1 stands respectively. The symbology is shown in Table 1.
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Figure 2. (a) Block diagram of the multivariable linear model of two contiguous stands of an FM, and
(b) One-block representation of the model.
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Table 1. Variables and physical parameters.

Variable Symbol Units Parameter Symbol Units

Stand i hydraulic cylinder
position reference Sri m Stand i mill modulus Mi N/m

Stand i + 1 hydraulic cylinder
position reference Sri+1 m Stand i + 1 mill modulus Mi+1 N/m

Stand i roll linear velocity
reference Vri m/s Steel Young’s modulus at

operating temperature Ei N/m2

Looper i torque reference τi Nm Looper i roll radius r m

Stand i exit thickness hi m Distance between stand i and i
+ 1 backup roll centers Li m

Stand i entry thickness Hi m Steel density ρ Kg/m3

Stand i + 1 exit thickness hi+1 m Looper i momentum of inertia Ji Kgm2

Stand i − 1 exit tension σi−1 N Looper i friction Di Nm/rad/s

Stand i roll linear velocity Vi m/s Stand i cylinder position
regulator time constant TGi s

Stand i + 1 roll linear velocity
reference Vri+1 m/s Stand i + 1cylinder position

regulator time constant TGi+1 s

Stand i exit tension σi N
Time constant of delay

approximation between hi y
Hi+1

TDi s

Stand i + 1 exit thickness σi+1 N Stand i work roll speed
regulator time constant TMi s

Looper i length li m Stand i + 1 work roll speed
regulator time constant TMi+1 s

Looper i angular position θi Radians Looper i torque regulator time
constant Tτi s

Stand i roll separation force Pi N Stand i forward slip fi -
Stand i + 1 roll separation

force stand i + 1 Pi+1 N Stand i + 1 backward slip bi+1 -

The four model outputs are: (1) stand i exit strip thickness (hi), (2) stand i + 1 exit strip thickness
(hi+1), (3) strip tension (σi), and (4) looper i angular position (θi). Their corresponding control inputs
according to the conventional coupling are: (1) position reference for stand i hydraulic cylinder (Sri), (2)
position reference for stand i + 1 hydraulic cylinder (Sri+1), (3) torque reference for looper i motor (τri),
and (4) speed reference for stand i motor (Vri). The stand i input thickness (Hi), the speed reference for
stand i + 1 motor (Vri+1), the stand i − 1 tension (σi−1), and the stand i + 1 tension (σi+1) are considered
to be perturbations. A remark is worthwhile here, although Vri+1 is the drive speed reference for the
stand i + 1 motor, it is the control input for θi+1 controlled by the upstream controller; however, it may
cause variations on σi, acting as a perturbation for the looper i controller. Figure 2b shows the model
representation in one block.

In this work, two robust controllers for the 2 × 2 looper system will be designed. The reduced
2 × 2 plant is a 5th order matrix transfer function (TFM) with one pair of complex poles. The TFM G(s)
of the linearized system is given by: [

σi
θi

]
= G(s)

[
τi
Vri

]
, (1)

where

G(s) =
[

g11(s) g12(s)
g21(s) g22(s)

]
and
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g11(s) = −107.8s2
−52.83s

s5+9.129s4+1939s3+1.124×104s2+8495s+1336

g21(s) = 12.12s2+49.4s+16.45
s5+9.129s4+1939s3+1.124×104s2+8495s+1336

g12(s) = 81.59s3+44.32s2+1.606×104s+7873
s5+9.129s4+1939s3+1.124×104s2+8495s+1336

g22(s) = 1.578×104s−7737
s5+9.129s4+1939s3+1.124×104s2+8495s+1336

Six parameters are considered to be uncertain, owing to the huge complexities involved on
the parameter uncertainty identification, being generally subject to measurement uncertainties and
noise, the uncertainty regions will be assumed to have a given size depending on each parameter as
explained below.

A large uncertainty was assumed to be of ±20% around the operating value. This was assigned
to two physical parameters Ei and D due to the following reasons. In [2], Ei was taken from the
ASM manual [27], however, only values up to 400 ◦C are provided. The strip temperature between
stands 3 and 4 in the HSM of study is approximately 800 ◦C, Ei value was extrapolated by using the
slope between the last two points provided. Notwithstanding, since Ei decreases more rapidly above
400 ◦C [27], the slope should be steeper and hence a large uncertainty was assumed. On the other
hand, D was experimentally tuned, assuming as well to have a large uncertainty. Ji was calculated
from the looper geometry and it was considered to have a medium size uncertainty of ±10%. The gains
KLi
θi

, Kτi
σi

, and Kτi
θi

were calculated from linearization of well-established nonlinear relations as well as
rolling practices long-accepted in the real-life mills; therefore, they were considered to be bounded
within a small uncertainty region of ±5%.

Figure 3a shows the largest and the smallest singular values in the frequency domain of the TFM
G(s), denoted by σ(G(s)) and σ(G(s)) respectively. σ(G(s)) and σ(G(s)) are the largest and smallest
possible gains for all input directions at each frequency. Five values uniformly distributed within each
parameter uncertainty region were considered; given the six uncertain parameters aforementioned 56

different plants are obtained. Figure 3b shows σ for all the 56 plants. It can be seen that the largest
behavior deviation is between 30 and 70 rad/s.
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3. Methodology

3.1. Multivariable Decentralized Robust QFT Controller

The QFT robust control technique was originally proposed for single-input single-output
(SISO) systems and it is aimed to keep stability and performance in the presence of parametric
uncertainties [16,17]. The parametric uncertainty is modeled as a set of plants {

∏
} in which every

particular plant G(s)∈
∏

is generated by a given set of parameter values.
A finite and sufficiently large number of plants G(s)∈

∏
is plotted in the frequency domain by

using the Nichols chart for some determined working frequencies. A collection of points represents
the frequency response of the plotted plants at any given working frequency. The outer points delimit
an uncertainty area on the Nichols chart called “templates”. Considering the two-degrees of freedom
unity feedback closed loop scheme of Figure 4, assuming the scalar case, the closed loop transfer
function can be expressed as:

T(s) =
G(s)K(s)

1 + G(s)K(s)
F(s)

where K(s) and F(s) are the controller and the prefilter transfer functions respectively, and T(s) should
remain stable for all G(s)∈

∏
.

Metals 2019, 9, x FOR PEER REVIEW 7 of 20 

 

an uncertainty area on the Nichols chart called “templates”. Considering the two-degrees of freedom 

unity feedback closed loop scheme of Figure 4, assuming the scalar case, the closed loop transfer 

function can be expressed as: 

�(�) =
�(�)�(�)

1 + �(�)�(�)
�(�) 

where K(s) and F(s) are the controller and the prefilter transfer functions respectively, and T(s) 

should remain stable for all G(s). 

 

Figure 4. Two-degrees of freedom close loop system. 

The closed loop system should also satisfy the following conditions: 

1. for tracking specifications: 

�(�) ≤ |�(��)|≤ �(�),  ω and G(s) (2) 

where 0 ≤ a(ω)< b(ω)  ω. 

2. and for disturbance rejection specifications: 

|�(��)|≤ �(�),  ω and G(s) (3) 

where S is the sensitivity function to output disturbances. 

A nominal plant G0(s) is arbitrarily chosen, then, by using the so-called M-circles, 

specification boundaries are obtained for the nominal open loop (L0(jω)) at each working frequency. 

The controller K(s) is designed by loopshaping such that the nominal plant is above the boundaries; 

however, the technique ensures all the possible open loops conformed by K(s) and all the plants 

within the template (L(jω)) fulfill conditions given in Equations (1) and (2). 

For an n × n multi-input multi-output (MIMO) system, assuming a diagonal controller, the 

problem was replaced by n × n single loops [16,17]. The method was further developed using 

iteratively the sequential loop closing technique [26]. In this work, this method is used to design a 

decentralized mvQFT controller for the looper system. 

Given a multivariable two-degrees of freedom closed loop scheme (Figure 4) with G the plant 

TFM,  the set of uncertain MIMO plants, and K and F the controller and prefilter TFMs respectively, 

the complementary sensitivity TFM is given by: 

� = ��(�+ ��)���, (4) 

should remain stable  G. 

Assuming a square n × n plant G, the conditions given in Equations (1) and (2) are extended for 

multivariable systems as follows: 

���(�) ≤ ����(��)�≤ ���(�),  ω and G(s), (5) 

and 

|1 + ��
�|≥ ��(�),  ω and G(s), (6) 

where i = 1, …, n, j = 1, …, n, tij is the (i, j) element of T, and Lni is the i-loop transfer when only the i-

loop is open. 

- +

d

r y
u

K GF
e

Figure 4. Two-degrees of freedom close loop system.

The closed loop system should also satisfy the following conditions:
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1. for tracking specifications:

a(ω) ≤
∣∣∣T( jω)

∣∣∣ ≤ b(ω), ∀ ω and G(s) ∈
∏

(2)

where 0 ≤ |a(ω)|< |b(ω)| ∀ ω.
2. and for disturbance rejection specifications:∣∣∣S( jω)

∣∣∣ ≤ d(ω), ∀ ω and G(s) ∈
∏

(3)

where S is the sensitivity function to output disturbances.

A nominal plant G0(s)∈
∏

is arbitrarily chosen, then, by using the so-called M-circles, specification
boundaries are obtained for the nominal open loop (L0(jω)) at each working frequency. The controller
K(s) is designed by loopshaping such that the nominal plant is above the boundaries; however, the
technique ensures all the possible open loops conformed by K(s) and all the plants within the template
(L(jω)) fulfill conditions given in Equations (1) and (2).

For an n× n multi-input multi-output (MIMO) system, assuming a diagonal controller, the problem
was replaced by n × n single loops [16,17]. The method was further developed using iteratively the
sequential loop closing technique [26]. In this work, this method is used to design a decentralized
mvQFT controller for the looper system.

Given a multivariable two-degrees of freedom closed loop scheme (Figure 4) with G∈
∏

the plant
TFM,

∏
the set of uncertain MIMO plants, and K and F the controller and prefilter TFMs respectively,

the complementary sensitivity TFM is given by:

T = GK(I + GK)−1F, (4)

should remain stable ∀ G∈
∏

.
Assuming a square n × n plant G, the conditions given in Equations (1) and (2) are extended for

multivariable systems as follows:

ai j(ω) ≤
∣∣∣ti j( jω)

∣∣∣ ≤ bi j(ω), ∀ ω and G(s) ∈
∏

, (5)

and ∣∣∣1 + Ln
i

∣∣∣ ≥ Di(ω), ∀ ω and G(s) ∈
∏

, (6)

where i = 1, . . . , n, j = 1, . . . , n, tij is the (i, j) element of T, and Ln
i is the i-loop transfer when only the

i-loop is open.
It has been shown that by using the sequential loop closing method, condition (5) is fulfilled, and

for condition (6) to be satisfied, the recursive procedure proposed in [26] is sufficient. Such procedure
was used in this work.

3.2. H∞ Robust Controller

The H∞ controller is designed by the mixed-sensitivity approach, which is based on the general
control problem scheme depicted in Figure 5a. The general control problem scheme is built from the
conventional control scheme given in Figure 4, assuming F = I. In Figure 5a, w represents the external
inputs, z is the output vector with the functions to be minimized, P is the generalized or augmented
plant TFM, K is the controller TFM and ∆ is a block diagonal matrix representing the uncertainties
with ‖∆‖∞≤1. Assuming again a square n × n MIMO plant G(s), the dimensions of P are multiples of n.
The structure of P greatly depends on the particular control problem definition, a typical definition
would be as follows. w and z are usually taken as w = [r d]T and z = [e u y]T, since r, d, e, u and y, are all
vectors of dimension n, w is a vector of dimension 2n and z is a vector of dimension 3n. Note that u is
the plant (G) input and it might be, as in this case, both, input and output of P, see Figures 4 and 5a.
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On the other hand, v is the controller (K) input, which is e, hence it is a vector of dimension n. Now
assuming q sources of uncertainties, u∆ and y∆ are vectors of dimension qn. With this considerations, P
would be a matrix of (q + 3 + 1)n × (q + 2 + 1)n. P, in general, is an array of n × n blocks expressed in
terms of G, 0n×n or In×n, depending on the particular input/output relations [28].
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Figure 5. (a) General control configuration, (b) N-∆ structure, and (c) M-∆ structure.

The problem is to find a controller that minimizes the H∞ norm of the closed-loop transfer
function from w to z. For analysis purposes the controller can be incorporated and the scheme shown
in Figure 5b is obtained. The closed loop transfer function is given by:

Fzw(N, ∆) = N22 + N21∆(I−N11∆)−1N12, (7)
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For stable nominal open loop system and ∆, the only source of instability in Equation (10) is
the term (I-N11∆)−1, therefore, for robust stability in the presence of unstructured uncertainties, it
is sufficient to analyzed the so-called “M-∆ structure” with M = N11, and depicted in Figure 5c.The
condition for robust stability in the presence of unstructured uncertainties [28] is given by:

‖M‖∞<1 with ‖∆‖∞≤1, (8)

In this work, the parametric uncertainty will be represented by an unstructured output
multiplicative uncertainty, then Equation (8) becomes:

‖W1TW2‖∞<1 with ‖∆‖∞≤1, (9)

where W1 and W2 are the uncertainty weights.
The H∞ mixed-sensitivity problem is to find a controller such that:∥∥∥∥∥∥∥∥∥

WPS
WUKS
WTT

∥∥∥∥∥∥∥∥∥
∞

< 1, (10)

with W2 = I and W1 = WT, WP is the nominal performance specification and WU is the plant
input weight.

4. Controller Designed

The controllers will be designed to attain stability in the presence of parametric uncertainties for the
2 × 2 looper system assuming null inputs on Sri and Sri+1, see Figure 2b; note that the feedback blocks
from σi to Vi are still taken into account, see Figure 2a. Six parameters will be considered to be uncertain,
as mentioned in Section 2, however, bounded within a region around the parameter operating value. It
is worth noting that the design methods used here assume uncertain time-invariant parameters.

The QFT technique models the parametric uncertainty in the frequency domain; hence, to allow a
straight comparison, the parametric uncertainty will be modeled in the frequency domain as well for
the H∞ controller design. On the other hand, the controllers will be designed separately searching for
the best performance that can possibly be achieved with each technique.

In this work, as in most works on looper control, it is assumed that tension measurement is available,
even though it is not usually the case [21,25]. Nonetheless, the parametric uncertainty as modeled
here, the plant templates in QFT and a diagonal output multiplicative uncertainty in H∞ compensate,
until certain extent, for the uncertainties introduced by the lack of tension measurements [14,27,29];
representing this a progress with respect to the currents controllers (PI) in the actual mills. Further
study on this topic is left for future work.

4.1. mvQFT Robust Controller Design for the Looper System

As mentioned, QFT is a frequency domain design technique based on Nichols charts. The design
procedure is iterative, and it is usually given in five steps.

Step #1. Specification definition.
The stability robustness specifications are given as follows:

0 ≤ t11 ≤ 2 and 0 ≤ t22 ≤ 1.9, (11)

While the performance specifications that produced the best results given in terms of S were the
following:

S(s) ≤

 0.03 s3+64s2+748s+2400
s2+14.4s+169 0.75

5.2 0.045 s3+64s2+748s+2400
s2+14.4s+169

, (12)
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Note that Equation (6) may be obtained from Equation (12).
Step #2. Template generation.
The working frequencies are first selected to plot the frequency response of gl

uu(jω), which is the
diagonal element of Gl

∈
∏

, where Gl is is a square TFM as assumed in [26], l is a finite integer (1, 2, 3,
. . . , v) denoting a given set of parameter values, see Section 2 and Figure 3b, and v is the total number
of sets. This method does not guaranty the worst-case plant to be included; hence it was decided to use
an exhaustive number of sets. As mentioned, five values uniformly distributed within each parameter
uncertainty region were considered; given the six uncertain parameters aforementioned, v is equal to
56. Therefore, a template is the plot of 15,625 points, corresponding each to every particular Gl

∈
∏

at any given working frequency. Only the templates for gl
uu(jω) are needed, hence, for the sake of

briefness, the plots are not shown here, however they can be found in [18], where it can be seen that
the largest templates, meaning the largest uncertainty regions are consistent with Figure 3b. Since the
procedure is iterative, the working frequencies were readjusted, the final selected working frequencies
in rad/s were: 0.1, 2, 7, 36, 43, 45, 68, 105, 1000, and 3000.

Step #3. Specification boundaries generation.
The specifications boundaries for stability robustness and disturbance rejection are generated in

this step; global boundaries are obtained, which are the union of all the particular boundaries for every
specification at every working frequency. They are shown in Figure 6, for the sake of briefness they are
shown along with L0u (u = 1, 2, in this case) designed in the next step.
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Step #4. Controller Design.
The controller has been designed by loop-shaping in the Nichols Chart by adding poles and/or

zeros such that the close-loop system is stable and L0 is above the specification boundaries at each
frequency. In this step the recursive design procedure, mentioned in Section 3.1 and given in [26], is
executed assuming F = I. L01 and L02 for the final design are shown in Figure 6.

Step #5. Specification fulfillment verification.
Specification fulfillment is verified in the frequency domain. In Figure 7a,b plots of |tii(jω)| and

|sij(jω)| are shown. As can be seen in the plots, the specifications are met.Metals 2019, 9, x FOR PEER REVIEW 12 of 20 
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4.2. H∞ Robust Controller Design for the Looper System

As mentioned, since the mvQFT technique models the parametric uncertainty in the frequency
domain, they will also be modeled in the frequency domain for the application of the H∞ technique to
allow a more direct comparison. The uncertainty will be modeled as unstructured output multiplicative
uncertainty with a scalar weight, assuming a disk shape uncertainty region. Using this method, the
H∞ technique has some disadvantage since only the radius magnitude is required, while QFT is taking
into account the specific uncertainty shape, being thus the uncertainty modeling method used here for
the H∞ technique more conservative.

The disk shape uncertainty region radius magnitude can be expressed as:

l0(ω) = max
Gl
∈π
σ
[(

Gl( jω) −G0( jω)
)
G0( jω)−1

]
where Gl is as defined above.

The scalar uncertainty weight should be chosen such that:

wO(jω) ≥ ιO(ω); ∀ ω

Figure 8a shows the plot of ιO(ω) and wO(jω) used for the design, it can be noticed that they are
consistent with Figure 3b. Because a scalar weight is used, in Equations (9) and (10) WT = W1 = I2×2wO,
thus, condition (9) can be expressed as

σ(T) <
1∣∣∣wo( jω)

∣∣∣ , ∀ ω with ‖∆‖∞ ≤ 1, (13)

while in Equation (10), WP would be given as:

WP(s) =


4×103

s
0.01+1

0

0 2.24× 103 2.5s+1
s

0.01+1


and WU = I2×2wU(jω), where

wU(s) = 2× 103
s

10 + 1
s

1×103+1

Several designs with different wO(s), WP(s), and wU(s) were performed trying to get the best
results. WP(s), and wU(s) were kept simple to get simpler controllers. It is worth mentioning that
using Equation (12) in WP(s) did not produce a stabilizing H∞ controller. As can be seen in Figure 8b,
condition (13) is not fulfilled. Notwithstanding, in order to get the best response, the design was taken
to the limits of 1

|ιO(ω)|
, instead of wO, which would be a more realistic representation of the uncertainty

set. The controller obtained was a 26th order TFM; however, it was possible to reduce the order to 13th
applying balred MATLAB© (R2017a, MathWorks, Natick, MA, USA) function without a noticeable
detriment on performance.
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5. Simulation Results and Discussion

In this section, simulation results in the time domain are presented and discussed. The controllers
designed in previous section are tested, their performance is compared with each other and with that
of SISO PI and SISO QFT [18] controllers designed earlier. Three close loop control systems were
created in Simulink with the implementation of the model of Figure 3a built earlier [2] as the plant.
Step responses of the MIMO 2 × 2 closed loop systems for the controllers above designed are simulated,
Sri and Sri+1 were set to zero. Although the controllers would operate under a small signal regime in
a real HSM, they are tested by step responses since these are standard test signals. The step inputs
applied were equal in magnitude to the operating value of the corresponding input variables; while the
outputs were normalized to the operating value of the corresponding output variable. Five scenarios
are considered for the simulation tests:
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• Nominal Condition Test (N-test). Step responses of the nominal closed loop systems are obtained.
• Decupling Test (D-test). A step is applied on one reference input while the other remains zero,

thus the impact of each reference input on the cross-coupling output is tested. The cross-coupling
output response provides a measure of the column diagonal dominance of the closed loop system,
i.e., the decoupling capabilities. Here, the value of such a response is referred to as “interaction
level” (IL) and it is expected to be low. IL from θiref to σi is denoted as θi→σi, while σi→θi denotes
that from σiref to θi. The nominal plant is used for this test. Although, in practice there are no
standard limits for IL, in this work, an IL above 10% is considered to be undesirable.

• Parametric Uncertainty Test (U-test). Initially, each parameter takes a random value within its
uncertainty region, changing randomly every 2s during the simulation time to allow the response
to settle and confirm convergence. The methods used above to model the parametric uncertainties
do not guarantee stability for the worst case; therefore, the parameters change randomly to test the
system stability under the largest possible number of parameter value combinations (not under
parameter variation, since the control techniques used here assume time-invariant uncertain
parameters). During these tests, the perturbations inputs remain zero.

• Perturbation Test (P-test). This test is performed with the perturbation signals enabled, while the
parameters remain constant on their operating values. Real signals of σi−1 and σi+1 were collected
from the HSM and used for these tests. Hi and Vri+1 were not available, hence sinusoidal signals
are used to simulate them, taking each one a random frequency value between 0 Hz and 7 Hz
independently. Their frequencies remain constant during the simulation time.

• Uncertainty and Perturbation Test (P+U-test). The conditions of U-test and P-test are combined.

For the sake of briefness, results for the N-test, D-test and P+U-test are shown only. The P+U-test
was run a number of times due to its random nature and some of the results with the most critical
responses were selected to be shown.

As mentioned, real signals of σi−1 and σi+1 were collected from the HSM, since the mill operates
under small perturbation, some small perturbation tests were also run using the real σi-1 and σi+1
and simulated Hi and Vri+1, obtaining similar results to those shown here. The perturbation signal
frequency range for the P-tests and P+U-test was selected based on a Fourier analysis of several signals
collected from the real mill, including σi−1 and σi+1.

Figure 9a,b shows the N-test responses. Table 2 shows the step response characteristics for each
controller, the best characteristic by column is highlighted in bold characters. In Table 2, Mp is the
maximum overshoot, tp the time at which the maximum overshoot is presented, and ts is the settling
time using the 2% criterion. As can be seen, the best system in terms of Mp and tp is that with the
H∞ controller, while in terms of ts the mvQFT controller is the best. Note that the mvQFT controller
presents a very short duration overshoot. It should be mentioned as well that the PI controllers were
designed for the SISO loops, showing better responses when tested as such. In [18] the SISO QFT
controller responses for the N-test are not presented, however they showed slower responses with
larger Mp than H∞ and mvQFT controllers. SISO QFT controllers also showed better responses when
tested under SISO conditions.
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Figure 9. N-Test results (a) σi, and (b) θi.

Table 2. N-test step response characteristics.

Controller
σi θi

Mp tp ts Mp tp ts

PI 43.4% 0.52 s 1.97 s 23.5% 0.56 s 1.364 s
H∞ null null 1.012 s null null 0.55 s

mvQFT 42% 3.5 × 10−3 s 0.23 s 1.4% 0.075 s 0.32 s

The D-test responses are depicted in Figure 10a,b. Figure 10a shows θi→σi and Figure 10b shows
σi→θi. Table 3 shows the largest IL of each response during the transient and in steady state. The
best IL by column is in bold characters. As can be seen, the H∞ controller shows better decoupling
capabilities than the mvQFT and PI, as expected since it is a full matrix MIMO TFM; however, the
ILs with the mvQFT are satisfactory, less than 0.1 (10%). On the other hand, IL θi→σi with the PI
controller is 1.066 pu (106.6%), which is unacceptable. The SISO QFT controllers in [18] showed higher
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interaction levels than H∞ and mvQFT controllers, while in the case of θi→σi was even larger than
that presented by PI controllers.
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Table 3. Interaction levels.

Controller
σi→θi θi→σi

Transient Steady State Transient Steady State

PI −0.042 1.5 × 10−3 1.066 −0.5 × 10−3

H∞ 0.8 × 10−3 null 0.24 null
mvQFT −0.051 0.83 × 10−3 0.33 −0.03

Figure 11 shows one of the most representative results of the P+U-Test. As can be seen, the
responses with PI and H∞ controllers show oscillations caused by the perturbation signals; the
amplitudes are 130% and 87% larger with the PI controllers, for σi and θi respectively. The mvQFT
have considerably better perturbation rejections. In Figure 11, the influence of the parameter changes
can only be appreciated in σi response as some smaller and faster oscillations than those caused by the
perturbations. This is consistent with the U-Test (not shown), the impact of the parameter changes is
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larger for σi than for θi. As can be seen in [18] the results for the P+U-Test are improved by the H∞ and
mvQFT controllers with respect to the response of the SISO QFT controllers.
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In general, the controllers provide absolute stability robustness for the parameter combinations
tested. However, the relative stability margins are significantly better for the mvQFT controllers, while
the PI controllers showed the worst ones. In fact, in some tests run with PI controllers, the σi loop
responses showed Mp values as high as 50%. For the parameter combinations tested here, the mvQFT
controller showed better balance between Mp, tp, ts, IL and robustness than H∞, PI, and SISO QFT [18]
controllers; however, this is at the expenses of using greater power. The control signal power values
for the three controllers are shown on Table 4. As can be seen, the power of τrefi with mvQFT controller
is significantly higher than the other control signals. This makes evident the need for the introduction
of some control input power limitation criteria in the mvQFT controller designed in future.
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Table 4. Control input power.

Controller τri Vri

PI 4.5 × 10−12 3.6 × 10−9

H∞ 4.5 × 10−12 5.4 × 10−9

mvQFT 3.7 6.8 × 10−9

A great disadvantage of the H∞ control designed method used here is that a high order full matrix
multivariable controller is produced, while the mvQFT is a diagonal TFM of 3rd order. As mentioned,
different designs using different weighting function were tested, however there was not a significant
impact on the H∞ control order neither in the power requested by the mvQFT controller. Therefore,
these problems should be particularly study in future.

6. Conclusions

Two multivariable robust controllers in the presence of parametric uncertainties for the 2× 2 looper
system were designed. These were a decentralized MIMO QFT and an H∞ controllers, the former
had not been applied before for the looper system. The parametric uncertainty was modeled in the
frequency domain for both methodologies. The robustness conditions were verified in the frequency
domain and time domain simulations were carried out. The performance of the design controllers was
compared with each other and along with that of a PI controller and SISO QFT controllers designed
earlier. In general, all controllers provided absolute stability robustness. The MIMO QFT controller
showed the best balance among all performance indicators analyzed here: maximum overshoot,
settling time, disturbance rejection, and interaction levels for different parameter sets; however, at
the expense of using greater power on the looper torque control input. The results presented here
showed the potential benefits brought by considering uncertainty and systems interactions during the
controller designed stage, in this case by MIMO QFT and an H∞ control techniques. There are some
issues to addressed in future: (i) the design of H∞ controllers of lower order than those designed here,
(ii) to limit the power of the plant input for QFT technique, (iii) to study and overcome the problem of
lack of tension measurement, and (iv) comparison with other techniques such as MPC and LMIs.
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