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Abstract: The influence of preaging (PA) treatments on the bake hardening (BH) response of a
AlZnMgCuZr aluminum alloy which served as automotive body structures were studied in this paper.
A novel two-step PA treatment was particularly designed and further employed. The mechanical
properties of the alloy were tested in detail. The microstructure was characterized by optical
microscope (OM), transmission electron microscopy (TEM) and 3D measuring laser microscope
(3D–MLM). Meanwhile, the corrosion behavior was investigated by electrochemical impedance
spectroscopy (EIS) and potentiodynamic polarization. The results indicated that the PA treatment
was beneficial for the improvement of BH response after baking at 180 ◦C immediately after the
solution treatment and the micro-hardness reached the peak value (194 HV) after 10 h holding, which
had a percentage improvement of 110.87% compared to the hardness under the solution condition.
The PA treatments decreased natural aging (NA) adverse effects, while it had the lowest NA effect
and optimal BH response under 120 ◦C/20 min. Such a novel two-step PA treatment was revealed
further to decrease the NA effect and increase the BH response compared to the optimal PA treatment,
in particular, the BH value could reach 168 MPa and was 21.7% higher than that of optimal PA + NA
treatment. The optimal corrosion resistance has been shown up by the combined characterizations of
potentiodynamic polarization curves, EIS Nyquist plots, and 3D–MLM images.

Keywords: Al–Zn–Mg–Cu–Zr aluminum alloy; bake hardening response; two-step preaging
treatment; electrochemical corrosion behavior

1. Introduction

Lightweight has become an important direction for the development of automobiles [1]. The path
to lightweight development is mainly divided into two aspects from the perspective of materials:
Substitution of light material for conventional steel [2–4], such as 6000 series aluminum alloy, which has
low density and a combination of strength and plasticity; and application of advanced high-strength
steels [5,6], such as DP steel, TRIP steel and Q&P steel. In regards to aluminum for lightweight
automotive development, previous studies were mainly focused on the research of 6000 series
aluminum for panels, such as the subduction of detrimental natural aging (NA) effect and the
enhancement of bake hardening (BH) response [7,8]. However, they are not competitive with respect
to current high strength steels for structural components.

In contrast, 7000 series high strength aluminum alloy, which has higher specific strength compared
to advanced high strength steels, has great application potential in lightweight body structures.
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However, its low formability requires multi-step forming processes with intermediate heat treatments.
Previous research on 7000 series aluminum were based on its application in the aerospace field,
comprising the influence of homogenization treatment on crystallization phases [9,10] and the
precipitation behavior of hardening phases, as well as its influence on properties during artificial
aging (AA) treatment [11,12] and multistage artificial aging treatment (RRA) [13,14]. It was found that
the maximum aging strength was achieved under 120 ◦C/24 h or 180 ◦C/12 h, which is not suitable
for production of auto sheet. However, studies on the manufacturing and application properties for
automotive body structures are very rare. Recently, a number of studies were attempted on the warm
forming process to improve formability. Kumar and Ross [15] investigated the warm forming process
of a AlZnMg alloy and found that T4 temper had the best combination of warm formability and high
post-paint baking strength. Huo et.al. [16] found that the peak-aged 7075 alloy exhibited enhanced
formability and maintained high post-forming strength under the appropriate temperature of 200 ◦C,
but the warm process would change the microstructure and further decrease the strength. Furthermore,
some other studies investigated the influence of heat treatment on BH response. Cao et.al. [17] found
that preaging (PA) treatment improved the age hardening response and precipitation behavior of a
novel Al–5.2Mg–0.45Cu–2.0Zn alloy. Lee et.al. [18] studied the effect of PA treatment on BH response
of 7075 aluminum alloy from the angle of the precipitation phase and confirmed the effectiveness of
PA. However, the optimization of heat treatment to eliminate the NA effect and improve BH response
is dramatically demanded, and its influence on corrosion resistance is also needed in order to study
more extensive applications of 7000 series aluminum in automotive body structures.

In our present study, an Al–Zn–Mg–Cu–Zr 7000 series plate was systematically investigated based
on the application requirement of automotive body structures, including the influence of PA treatment
on NA adverse effect, BH response, and other related properties. A novel two-step PA treatment that
was properly aimed at changing the occurrence state of alloying elements and improving the BH
response, was especially designed. The corrosion behavior was fully characterized by potentiodynamic
polarization curves, electrochemical impedance spectroscopy (EIS), Nyquist plots and 3D measuring
laser microscope (3D–MLM) images.

2. Materials and Experimental Methods

2.1. Materials and Heat Treatment

The Al–5.36Zn–2.42Mg–1.78Cu–0.12Zr–0.15Fe (wt%) 7000 series aluminum alloy was used in
this experiment. The heat treatments were performed using a salt bath furnace (Huadong Furnace
Co., Jiangsu, China). The casting slab was homogenized at 460 ◦C for 24 h to eliminate the ingot
defects such as coarse grains and sharpened phases, and then hot and cold rolled to a final thickness of
1.2 mm. The solution treatments were performed at 470 ◦C for 5 min and then water cooled to room
temperature. The following heat treatments were carried out in a chamber electric furnace immediately:
(1) AA at 180 ◦C for 1, 2, 4, 6, 8, 10, 24, 48, 60 and 72 h; (2) PA at 60, 90 and 120 ◦C for 10, 20 and 40 min
respectively, then storage at room temperature for 14 days, and finally baked at 180 ◦C for 20 min (as
shown in Figure 1a); (3) novel two-step PA treatment, first PA at 120 ◦C for 10 min, and then holding at
160 ◦C for 10 min (as shown in Figure 1b).
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Figure 1. Schematic diagram of heat treatment (a) preaging (PA) treatment; (b) novel two-step PA 
treatment. 

2.2. Mechanical Testing 

The uniaxial tensile tests were carried out on a CMT5105 multifunctional tensile testing machine 
(SANS Testing Machine Co., Shenzhen, China) using a displacement rate of 0.25 mm min-1 based on 
GB/T228.1–2010. The A25 sample gauge length was used. A minimum of three tests were performed 
for each condition. Real time hardness tests after different heat treatments were carried on a HV–1000 
tester (Haoxinda Ltd Co., Shenzhen, China) with 500 g force and 10 s dwell time. Nine indentations 
were performed and evaluated and the average value was obtained after removal of the maximum 
and minimum ones. 

2.3. Electrochemical Measurement 

The electrochemical measurements were carried out in a three electrode cell system using a 
RST5100 electrochemical workstation (Centome Ltd Co., Chengdu, China). The specimens after 
different heat treatments were designed for working electrodes and immersed in 3.4 wt% NaCl 
aqueous solution at room temperature. The Pt foil and saturated calomel electrode were utilized as 
the counter electrode and reference electrode, respectively. 

Both the potentiodynamic polarization curves and EIS were conducted to investigate the 
corrosion behavior. The open circuit potential reached stable after immersion for 1200 s, and the EIS 
measurement was performed under the frequency range of 100 kHz to 0.01 Hz and sinusoidal voltage 

Figure 1. Schematic diagram of heat treatment (a) preaging (PA) treatment; (b) novel two-step
PA treatment.

2.2. Mechanical Testing

The uniaxial tensile tests were carried out on a CMT5105 multifunctional tensile testing machine
(SANS Testing Machine Co., Shenzhen, China) using a displacement rate of 0.25 mm min−1 based on
GB/T228.1–2010. The A25 sample gauge length was used. A minimum of three tests were performed
for each condition. Real time hardness tests after different heat treatments were carried on a HV–1000
tester (Haoxinda Ltd Co., Shenzhen, China) with 500 g force and 10 s dwell time. Nine indentations
were performed and evaluated and the average value was obtained after removal of the maximum and
minimum ones.

2.3. Electrochemical Measurement

The electrochemical measurements were carried out in a three electrode cell system using a
RST5100 electrochemical workstation (Centome Ltd Co., Chengdu, China). The specimens after
different heat treatments were designed for working electrodes and immersed in 3.4 wt% NaCl aqueous
solution at room temperature. The Pt foil and saturated calomel electrode were utilized as the counter
electrode and reference electrode, respectively.

Both the potentiodynamic polarization curves and EIS were conducted to investigate the corrosion
behavior. The open circuit potential reached stable after immersion for 1200 s, and the EIS measurement
was performed under the frequency range of 100 kHz to 0.01 Hz and sinusoidal voltage amplitude
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of 5 mV. Then, the potentiodynamic polarization measurements proceeded in the voltage range of
−0.9~0.6 V.

2.4. Microstructure Investigation

The characterization of metallurgical microstructure was performed with an Axio Imager M2m
Zeiss microscope (Zeiss Co., Oberkochen, Germany). The specimens were etched for 60 s in HBF4

(4 mL) + H2O (200 mL) solution. Transmission electron microscopy (TEM, JEM-2010F, Hillsboro, OR,
USA) measurements were carried out at an acceleration voltage of 200 kV. The selected area electron
diffraction (SAED) technique was used to characterize the precipitation phase. The specimens were
mechanically grounded to 40 µm thickness and punched out into a diameter of 3 mm, and then etched
by double-jet polishing using a solution of 1000 mL methanol and 500 mL HNO3 at 12 V voltage and
243 K temperature. The three dimensional height map of the corroded surface was characterized using
an Olympus OLS4100 3D-MLM (Olympus Co., Tokyo, Japan) with semiconductor laser.

3. Results and Discussions

3.1. Metallurgical Microstructure

Figure 2 gives the metallurgical microstructures of the experimental aluminum alloy under
different conditions. Compared to the as-cast structure, the grain sizes became fine and the coarse
sharpened AlZnMgCu quaternary crystallization phases became rounded after homogenization
treatment. After being hot rolled, the microstructure had elongated band tissue because of the low
finishing rolling temperature, which reduced the recrystallization behavior. The grains changed into
equiaxial based on the recrystallization mechanism during the solution treatment, and had an average
size value of 15 µm.
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3.2. BH Response at 180 °C after Solution Treatment 

Figure 3 presents the evolution behavior of micro-hardness and TEM fine microstructure after 
holding at 180 °C for different times. With the increasing of holding time, the micro-hardness 
increased sharply first and reached the peak value (194 HV) after 10 h holding, which was a 

Figure 2. Metallurgical microstructure under different conditions: (a) As-cast; (b) homogenization;
(c) hot rolled; (d) solution treatment.

3.2. BH Response at 180 ◦C after Solution Treatment

Figure 3 presents the evolution behavior of micro-hardness and TEM fine microstructure after
holding at 180 ◦C for different times. With the increasing of holding time, the micro-hardness
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increased sharply first and reached the peak value (194 HV) after 10 h holding, which was a percentage
improvement of 110.87% compared to the hardness (92 HV) under solution condition, then it had a
decreasing trend and tended to become steady after 60 h.
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Figure 3. Micro-hardness and microstructure after baking at 180 ◦C for different times (a) micro-hardness
evolution; (b) TEM graphs at point b; (c) point c; (d) point d; (e) point e.

The TEM graphs show the microcosmic change during the bake process. The precipitation process
of experimental aluminum was as follows:

SSSS (supersaturated solid solution)→GP zones (Guinier Preston)→η′→η (MgZn2).
The sample was under aged after 1 h holding, and a large number of nano η’ hardening phases

were precipitated in the matrix. η’ phase was the main strengthening phase of the under aged samples,
which was coherent with the matrix, and had an orientation relationship of (001)η′‖{111}Al; [11–20]

η′‖<111>Al; (10-10)η′‖{110}Al [19,20]. There exists different viewpoints of the formation and evolution
of η’ phase. Mondolfo et al. [21] think that η’ phase was formed at the stacking fault of solution
samples, while Graf [22] believes that it could be precipitated directly. The precipitation-free zone
(PFZ) with 40~70 nm width was observed near the grain boundary after holding for 10 h and the grain
boundary was decorated with 50~80 nm precipitation phase. The specimen was over aged after 60 h
holding, when the lath-type and rod-like η phases existed in the grain, which were incoherent with the
matrix and decreased the hardness [23].

3.3. Influence of PA on Hardness and Microstructures

The influence of PA treatment on adverse NA effect is shown in Figure 4. PA time and temperature
have great effect on micro-hardness evolution during the NA process. After the given PA treatment
under different temperatures for different times, the micro-hardness increased for all specimens during
the NA process, with the difference lying in the increments. The specimen after PA under 90 ◦C/10 min
had the maximum NA increment, which reached 23 HV, while the one after 120 ◦C/20 min had the
minimum increment of 14 HV, which was considered as the optimal PA process.
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Figure 4. Influence of PA temperature and time on natural aging (NA) effect.

Figure 5 shows the TEM graphs and corresponding SAED of NA, NA + BH, optimal PA + NA,
and PA + NA + BH. It can be seen that the size, morphology and quantity of precipitates were different.
The main strengthening phases were the GP zones before BH treatment, whereas η’ were the dominant
hardening phases after BH treatment.
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3.4. Novel Two-Step PA Treatment and Influence on Properties

The evolution behavior of mechanical properties after different heat treatments are shown in
Figure 6. The strength of the sample without PA treatment was decreased after bake treatment, and
the yield strength and tension strength had a decreasing value of 40 MPa and 67 MPa, respectively.
PA treatment increased the BH response, especially the two-step PA treatment, which had a BH value
of 168 MPa and was 21.7% higher than that of optimal PA treatment. However, the elongation of the
two-step sample was slightly lower than PA.
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The true stresses of the experimental aluminum alloy varied almost linearly with the true strain
during the plastic deformation stage. Through differential of true strain, the work hardening rate
was obtained.

Θ =
dσ
dε

(1)

where Θ is the work hardening rate, σ is true stress, ε is true strain.
The evolution of the work hardening rate with true strain had three stages for all the specimens:

(1) Stage I, in which the hardening rate decreased sharply with strain because of the low dislocation
density and their weak interaction; (2) stage II, in which the work hardening rate decreased slowly
due to the increase of boundaries and dislocation multiplication; (3) stage III, the formation rate of
dislocations were very slow and the hardening rate decreased sharply until cracking.

In order to characterize the strain hardening exponent explicitly, the modified Crussard–Jaoul
(C–J) equation, based on the Swift equation [24] was used.

ln
(

dσ
dε

)
= (1− nSwift) ln σ− ln(CnSwift) (2)

where σ is true stress; ε is true strain; C is material constant; nSwift is the strain hardening exponent and
the smaller the nSwift value is, the higher the hardening ability.
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Through calculation of ln(dσ/dε) and lnσ, the modified C–J curves were obtained as shown in
Figure 7. The slopes of the curves represent the value of 1–nSwift, and the nSwift and εt are gathered in
Table 1. NSwift1, nSwift2 and nSwift3 are strain hardening exponents at different deformation stages, and
εtr1 and εtr2 are strain of the turning point of the slope.
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Table 1. C–J parameters of different heat treatments.

Heat Treatment

Stage Stage I Stage II Stage III

nSwift1 εtr1 nSwift2 εtr2 nSwift3

NA 3.239 0.01189 3.912 0.09691 29.303
NA + BH 2.756 0.04187 5.412 0.09049 62.158

PA 2.744 0.04038 4.409 0.15059 63.115
PA + BH 6.108 0.06277 8.877 0.10948 150.413

Two-step PA 3.285 0.07753 5.276 0.15436 370.775
Two-step PA + BH 4.566 0.04899 9.464 0.0958 777.251

Compared to the characterization of work hardening behavior shown in Figure 6d, the combination
of Figure 7 and Table 1 could represent the strain hardening exponent more explicitly under different
deformation stages. During Stage I, the nSwift1 value ranged from 2.75 to 6.11 and the εtr1 value had a
range of 0.011~0.078 for the specimens after different heat treatments. For specimens after PA + NA
treatment, the bake process reduced the strain hardening ability. The nSwift2 value of stage II had a range
of 3.91~9.47, which represents the decreasing of hardening ability quantitatively. For the specimens
after PA+BH and two-step PA + BH treatments, stage III arrived, during which the hardening exponent
decreased sharply, while the εtr2 value arrived at the range of 0.09~0.16, and the materials began to fail.

The good improvements of the two-step PA treatment were discussed in the above study, and
then the electrochemical corrosion behavior after different heat treatments were characterized, as
shown in Figure 8. The polarization curve (Figure 8a) was obtained by taking the electrode potential as
the vertical coordinate and the current as the horizontal coordinate, which represents the functional
relationship between the impulse potential and the logarithm of the reaction rate current. The electrode
reaction occured during electrochemical corrosion. There was little current passed through the electrode
when a reversible cell reacts. Each electrode reaction was in equilibrium. However, as the current
increased to 10−4.8 A/cm2, the electrode balance was destroyed and the electrode potential deviated
from the equilibrium value. The irreversible degree of electrode reaction increased with the current
density. The potential of the sample after the two-step + NA + BH treatment was the highest, which
had a value of −1.035 v, followed by the PA + NA + BH sample (−1.055 v), and the NA + BH specimen
had the lowest potential (−1.105 v). The passivation region in which the corrosion current was mild
and almost kept the same appeared in all these three samples. The samples after PA treatments were
not easy to be corroded, especially the two-step PA sample. In the Nyquist plots (Figure 8b), the high
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frequency region of the impedance plot shows a semicircle, which is related to the redox reaction
and the semicircle diameter is equal to the electron-transfer resistance. The resistance value could be
estimated from the diameter of the semicircle part at higher frequencies, and decreased in the order of
Rtwo-step PA > RPA > RNA. The EIS results further confirmed the results of the polarization curve.
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Figure 8. Electrochemical corrosion behavior after different heat treatments: (a) potentiodynamic
polarization curve; (b) electrochemical impedance spectroscopy (EIS) Nyquist plots.

Figure 9 gives the 3D–MLM images of different heat treatments after the potentiodynamic
polarization measurements in 3.5 wt% NaCl solution. The maximum depth of corrosion pit is decreased
in the order of Dtwo-step (33.425 µm) < DPA (38.917 µm) < DNA (49.484 µm), which suggests that the
two-step specimen has a superior corrosion resistance.
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Figure 9. 3D–measuring laser microscope (MLM) images of the exposed surfaces: (a) NA + BH; (b) PA
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4. Conclusions

(1) While baking at 180 ◦C immediately after solution treatment, the micro-hardness increased
sharply first and reached the peak value (194 HV) after 10 h holding, which was a percentage
improvement of 110.87% compared to the hardness under the solution condition, then had a
decreasing trend and tended to become steady after 60 h.

(2) The PA treatments decreased NA adverse effect. The main strengthening phases were GP
zones before BH treatment, whereas η’ were the dominant hardening phases after BH treatment.
The specimen after PA under 120 ◦C/20 min had the lowest NA adverse effect and optimal
BH response.

(3) A novel two-step PA treatment, which further decreases the NA effect and increases the BH
response compared to the optimal PA treatment, was designed. The BH value after two-step PA +

NA treatment reached 168 MPa and was 21.7% higher than that of optimal PA + NA treatment.
The characterizations of potentiodynamic polarization curves, EIS Nyquist plots, and 3D–MLM
images showed its optimal corrosion resistance.
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