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Abstract: This study investigated the impact of the design of wall systems, mainly made of compressed
earth blocks (CEB), on the indoor thermal comfort of naturally ventilated housing in hot climates of
Burkina Faso. Conventional housing was modeled and calibrated using the WUFI® Plus dynamic
simulation tool based on typical field surveys and the literature. This allowed testing the ability
of different wall designs to impact thermal comfort. Thermal discomfort was assessed through
an adaptive approach and was based on the annual weighted exceedance hours of overheating.
Six designs of walls made of CEB and other locally available materials were simulated and compared
to those made of classical hollow concrete blocks. The results of the simulation reveal that the profiles
of thermal discomfort vary depending on the wall designs and building spaces. Thus, the wall made,
from the outside toward the inside surface, of plywood of 2 cm, an insulation layer of 5 cm and a CEB
layer of 29 cm thickness is the most suitable for an annual reduction in overheating for the living
room. Regarding the bedroom, the most suitable wall is made of a 14 cm CEB layer, 5 cm insulating
layer and 2 cm wood layer from the outside toward the inside surface.

Keywords: compressed earth block; building thermal simulation; earthen material; thermal comfort;
wall design in hot climate; weighted exceedance hour

1. Introduction

The energy performance of buildings is at the heart of policies in developed countries. Guidelines
and standards are developed for this purpose to help designers and building practitioners reduce
energy consumption at all stages of construction [1]. Indeed, buildings consume 30 to 40% of the
primary energy on the global scale for maintaining a comfortable indoor climate [2]. These percentages
can be much higher in some southern countries. Throughout a case study in Burkina Faso, Coulibaly [3]
showed that nearly 76% of the energy consumption in buildings is used to maintain an acceptable
comfort environment. This reveals the inadequacy between the building design and the climate.
The directives put in place for energy efficiency and savings are generally based on a reduction in the
heat transfer coefficient of the envelope which is suitable for air-conditioned buildings.

In regard to buildings without air conditioning and a mechanical ventilation system, i.e., a naturally
ventilated building—which is the case of most dwellings in Burkina—the bioclimatic approach presents
the thermal mass as a suitable method to reduce thermal discomfort due to excessive temperatures
in a hot climate [4]. Therefore, building materials such as clay bricks, mud bricks, concrete blocks or
compressed earth blocks (CEB), which have a high heat capacity, are recommended. These materials
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absorb heat from solar radiation at a slower rate and are very effective in countering rapid heat
transfer [5].

However, providing the walls with a thermal resistance layer can allow for reducing the energy
demand for cooling and therefore has an impact on the thermal comfort of the occupants [6].
Eben Saleh [7] investigated the effect of insulation material on the thermal performance of a building
in a hot-dry climate and showed that better performance was achieved by locating the insulation layer
on the outer side of the building envelope. Al-Sanea et al. [8] and Meral Ozel [9] reached the same
conclusions. However, depending on parameters such as energy consumption, the reverse construction
system, i.e., placing the thermal mass layer outside and insulation layer inside, can be more effective.
Bojic and Loveday [10] studied the impact of the relative location of the wall layers. Through thermal
simulation on a box with a fixed wall thickness and U-value of 0.142 W-m~2.K~!, the authors showed
that a wall with thermal insulation at the inner side can reduce energy consumption by up to 40%
in the case of intermittent heating. The presence of the insulating layer would not only reduce the
variation of indoor temperatures but also restrain the heat transfer with respect to the outside climate.
Therefore, special attention should be given to walls provided with thermal resistance in order to take
advantage of the cool climate at night in naturally ventilated buildings.

The problem, however, lies in the assessment of an acceptable indoor climate and thermal
discomfort. Theories on thermal comfort have, for a long time, been based on a heat-balance model,
predicted mean vote (PMV) and percentage of people dissatisfied (PPD) index model [11]. The adaptive
theory of thermal comfort, defined in EN 15251 [12] and the ASHRAE 55 standard [13], is developed
to take into consideration the psychological and physiological adaptation of the occupants as well
as the gap found between the expressions of thermal comfort and the PMV model, particularly in
non-air-conditioned buildings [14]. Thus, the present study assesses the performance of the indoor
climate of the different types of walls based on the adaptive theory of thermal comfort, especially on
the weighted exceedance hours (WEH) as recommended by Silva et al. [15].

Significant improvement of thermal comfort can be achieved through the design of the wall [16].
Emmanuel et al. [17] performed thermal modeling of a building under the climate of Ouagadougou
(Burkina Faso) and showed that the parameters of thermal inertia such as time shift and wave damping
can be improved using a wall made of double layers and provided with a CEB layer and an air gap.
Coulibaly et al. [18] defined the design of walls according to the climatic zones of Burkina Faso based
on the bioclimatic diagram. The authors prescribed the high thermal inertia of the walls as being
associated with natural ventilation in a dry and semi-desert zone. Rincon et al. [19] showed that the
high-inertia earthbag technique leads to a reduction in thermal discomfort throughout the year.

In previous studies, the design of walls was based on a static model of comfort, did not take into
account the occupancy patterns and did not highlight the advantage of using an alternative sustainable
material instead of conventional hollow concrete blocks (HCB) walls.

The present study aims to investigate the thermal performance of different types of walls and their
ability to improve the indoor climate of houses. For this purpose, a building was monitored in order to
set up a calibrated thermal model. An adaptive index of discomfort and the occupancy profiles of a
building’s occupants are taken into account to assess the thermal performance of walls. The objective
is to identify the wall systems that would improve thermal comfort compared to conventional walls in
urban architecture made of HCB.

2. Case Study Building

The architecture of the modeled building is based on local and widespread building practices and
the architecture found in the urban areas of Burkina Faso. It is a one story house, F2 type, implemented
by local real estate developers and shown in Figure 1. The roof of the building consists, from the
top towards the interior spaces, of a steel sheet, a ventilated attic and a suspended ceiling made of
plywood. Doors and windows are made of metal louvers and are modeled as glazing that is fully
shaded in the simulated software. From the outside to the inside, the walls of the building are made of
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2 cm of a cement coating, 15 cm of hollow concrete blocks and 2 cm of a cement coating. The main
fagade of the building is oriented toward the geographic north.
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Figure 1. Modest and classical urban housing in Ouagadougou: (a) picture of the main facade, (b) plan
and section view.

This type of house, based on hollow concrete blocks, accounts for 65 % of construction in the city
of Ouagadougou, the country’s capital [20]. Although there are no codes on the thermal performance
of buildings in Burkina Faso, vernacular practices emphasize the natural ventilation of inner spaces,
the orientation of the building and a covered terrace (see Figure 1a) as principles of indoor climate
mitigation. Indeed, the hot climate, shown in Figure 2, requires an adapted architecture because the
monthly average temperatures and the maximum temperatures of Ouagadougou vary between 25 and
34 °C and 30 and 40.5 °C, respectively.
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Figure 2. Evolution of air temperatures of Ouagadougou based on TMY?2 data.
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Based on the literature, the thermal properties that have been adopted with regard to the building
envelope are presented in Table 1.

Table 1. Thermal properties of building materials adopted for the modeling [21].

. A c U-Value
m-3 e -
System Material d [cm] [W-m-1.K-1] p [kg-m~3] kg 1-K-1] o; e [-] [Wom-2-K-1]
EXte;‘;rticrfme“t 2.00 1.10 1700 1000 0.40; 0.95
Walls Hollow cor%crete 254
15.00 0.80 1000 1000 -
blocks
Interior cement 2.00 1.10 1700 1000 -
coating

Paint metal sheet
Roof (color between red 0.15 50 7800 450 0.39; 0.95 7.14
and orange)

Doors Modeled as single
- / glazing completely - - - - 0.851 5.002
windows
shaded

3. Methodology

3.1. Experimental Survey

The experimental measurements of the building were performed from 20 March 2014 to 10 June
2014 by Kabore as a part of his thesis [21]. The building was monitored using temperature sensors
type TH from “Waranet Solutions” with accuracies of 0.12 °C. The air temperature was recorded each
hour in the living room and in the bedroom. At the time of monitoring, the building was at the end of
the construction phase. Therefore, it was not occupied during the data collection and there was no
internal heat source. The building was not naturally ventilated (doors and windows were kept closed)
during the measurement periods. External measurements were also taken during the monitoring
period, including: air temperature; relative humidity; wind speed and direction; and global, direct and
diffuse radiation.

In order to avoid the influence of the initial conditions of the model on the predicted results,
the period from 20 to 31 March was not included in the calibration. It is believed that this 12-day
period was sufficient for the thermal model to converge with the actual measurement parameters.
Thus, the calibration used monitoring data from 01 April 2014 to 10 June 2014.

3.2. Thermal Model Calibration Criteria

The climatic parameters measured during the monitoring of the building (Figure 1) are temperature
and relative humidity. The thermal performance of the model, i.e., its ability to predict the real thermal
behavior of the building, is assessed through the normal mean bias error (NMBE), the coefficient of
variation of the root mean squared error (CVRMSE) and the correlation coefficient R? as recommended
by ASHRAE [22,23] (Equations (1)—(3)).

NMBE = —— 7 1)

CVRMSE = \| ——M— )

®)
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where x;;: measured value; xs: simulated value; x;;: average measured value; and X;: average
simulated value.

3.3. Setting of the Thermal Model

In order to assess the impact of the wall design on the indoor climate, a modeling and simulation
tool, namely WUFI® Plus v2.5.1.0 (from Fraunhofer-Institut fur Bauphysik, Stuttgart, Germany), was
used. The WUFI software allowed us to model the heat and moisture transfer and storage in building
components. In addition, it simulates the indoor thermal environment and is therefore suitable
for addressing issues of thermal comfort and energy consumption in buildings. The mathematical
modeling is based on the heat and moisture balance equations described by Kiinzel [24].

With regard to the calibration process, the thermal model was designed with no inner source of
heat (uninhabited spaces) and no ventilation (door and windows closed). Once the thermal model
had been calibrated, the initial thermal parameters were extended to take into account the interaction
between the occupants and the building. The modeled building is now assumed to be occupied
by two adults whose activity type is assumed “Seated, quiet” according to ASHRAE 55 [13], i.e.,
a metabolic rate of 1 met. The thermal insulation of occupants’ clothes is fixed at 0.7 corresponding to
an “underwear, shirt, pants, socks, shoes”. The house is divided into several living spaces, but this
study focused on the living room and the bedroom. The occupancy profiles adopted for both rooms
during the weekdays are shown in Figure 3a, while the occupancy profiles during the weekend days
are shown in Figure 3b,c.

¢] T T T—T—T—T—
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Figure 3. Occupancy schedule of the living room and bedroom of the simulated building (a) during
weekdays, (b) on Saturdays and (c) on Sundays.
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In order to assess the indoor thermal environment of the building over an entire year (instead of
the 2 months during the calibration process), the weather data used are the typical meteorological year
(TMY?2) for the city of Ouagadougou.

In reality, the rates of ventilation and infiltration are governed by the wind and temperature
gradient between the exterior and interior air. For the purpose of the study, it is assumed that the
adopted rates of ventilation and infiltration are fixed and remain constant for all designs of walls.
The rate of air change is set at 0.2 vol-h~! between 8 a.m. and 5 p.m. and 4 vol-h~! between 5 p.m.
and 8 a.m. in the living room and bedroom [19]. It is assumed that during the day (8 a.m. to 5 p.m.),
the windows are closed to avoid exterior hot air. During the nighttime (5 p.m. and 8 a.m.), the strategy
of cooling down the indoor air is based on nocturnal ventilation and therefore the windows are
considered to be completely opened. The rate of air change in the ventilated attic of the roof is set by a
default at 1 vol-h~!. No mechanical ventilation or cooling system is proposed.

3.4. Assessment of Overheating Discomfort

The assessment of thermal discomfort is based on a linear regression of the adaptive theory of
thermal comfort of the ASHRAE 55 standard [13], as indicated in Equations (4)—(6). The adaptive
comfort model is the most suitable theory for the assessment of the indoor climate given that the
simulated building is naturally ventilated [25,26].

TOP/SMP = 031 Tout + 213 (4)
Top,inf = 031 Ty + 14.3 ()
Tour = (1=0.7)[Tegar) + 0.7 Tay + -+ 07T a7 (©)

where T, (;_;): the main daily outdoor temperature for the previous day.

The operative temperatures outside the upper limit of 80% of acceptability of the model, i.e.,
high temperatures out of the comfort zone, are counted for one year. This is thermal discomfort due
to overheating. It is crucial to assess thermal discomfort only during the occupancy periods of the
building spaces. Therefore, the occupancy profiles are important because they are the main difference
between different building spaces, i.e., living room and bedroom, in the current case. Therefore,
the time during which a room is unoccupied and the operating temperature outside the limits indicated
by the adaptive model are not considered in the evaluation of discomfort. In order to consider the
intensity of the discomfort, i.e., how high the operative temperature is from the upper limit of comfort
acceptability, an index named degree-hour or weighted exceedance hours (WEH) of overheating is
defined [13]. The number of hours during which the operative temperature is out of the comfort
zone (Equations (4)-(6)), namely ti, is counted and weighted by a factor proportional to the gap
between the acceptable limit and the actual operative temperature, Top, sup-Top. The WEH index
of overheating is calculated using Equations (7) and (8). Although episodes of discomfort associated
with low temperatures exist, they are minimal and less problematic in the hot and dry weather of
Ouagadougou and are not considered in this study. The assessment of WEH is directly related to
the occupancy profiles of the building spaces (Figure 3). Indeed, the periods during which a room is
unoccupied were not considered in the assessment of WEH.

WEH = Z wf = Z( Topsup = Top)-ti @)
Top = 0.5-Tair + 0.5-Tiyy ®)

3.5. Walls Design

In regard to the context of Burkina Faso, walls are generally massive and made of adobes, hollow
concrete blocks (HCB), lateritic building stones (LBS) or CEB [27]. Firstly, the wall made of HCB and a
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cement coating is considered as a reference case because it represents 42.6% and 65% of buildings’ walls
in urban zones and in the city of Ouagadougou, respectively [20,28]. Then, six other wall types based on
CEB are considered in order to assess their ability to impact on thermal comfort. The insulating material
combined with CEB is expanded polystyrene. Figure 4 illustrates the different walls considered in
the simulation, while Table 2 provides information on dynamic thermal characteristics. The dynamic
thermal characteristics of walls were calculated [29] but could have been measured through the
procedure given in reference [30].

EXT. INT. EXT. INT EXT INT
o o ‘ | | | ‘ | |
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b= = 1 ]
S § |, ——
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] ] 8 1
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Figure 4. Constructive systems of the walls.

Table 2. Dynamic thermal characteristics of walls.

Periodic Thermal Transmittance [W-m~2-K-1] Time Shift [h]  Decrement Factor [-]

HCB 1.88 4.25 0.74
CEB14 2.29 4.16 0.71
CEB29 0.65 9.05 0.297

CEB14 + Ins 0.29 6.19 0.5
CEB29 + Ins 0.078 11.03 0.15
Ins + CEB14 0.17 6.92 0.3
Ins + CEB29 0.049 11.56 0.09

The mass effect of the walls is assessed through the heat capacity and the insulating effect through
the thermal transmittance values (U-value). Figure 5 presents the values of these two parameters in
comparison to the reference case: the positive and negative values respectively indicate the values
which are greater and lesser than those of the reference case. The mass effect on the thermal comfort
is assessed through the wall made of CEB29 (CEB layer with 29 cm of thickness). The effect of the
improvement in thermal transmittance is assessed through the wall made of CEB14 + Ins (CEB14 +
Insulation) and Ins + CEB14. The coupled mass and thermal transmittance effects are assessed through
the wall made of CEB29 + Ins and Ins + CEB29.
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Figure 5. Relative heat capacity and thermal transmittance of the walls.

The properties of the classical materials (HCB, cement coating, roof, windows, etc.) were considered
from the software database. The review of the literature allowed us to determine the thermal properties
of CEB [31-35]. The thermal conductivity of CEB ranges between 0.8 and 1.2 W-m~1.K~!, while the
density ranges between 1700 and 2200 kg'm~3. However, the adopted thermal properties of CEB,
ie., 1.0 Wm 1K1 and 1920 kg-m_3, were based on local blocks [34,35]. The values of the thermal
properties of the building components remain the same from one design of a wall to another. Only the
position and the thickness of constituent layers vary from one simulation to another.

Figure 6 summarizes the methodology as well as the assumptions adopted.
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Figure 6. Methodological approach of the study.
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4. Results and Discussion

4.1. Calibration of the Model

Figure 7 shows the measured and predicted temperatures of the living room and bedroom on
representative days during the experiment (from 09 to 16 April). The measured temperatures of the
living room in Figure 7a and the bedroom in Figure 7b range from 30.9 to 41.5 °C and from 31.5 to
41.1 °C, respectively, while the simulated temperatures range from 30.7 to 41.7 °C and from 31.3 to
41.1 °C. For both rooms, the predicted temperatures are slightly higher than those measured. However,
the shape of the two curves is similar and the predicted temperature fit to that measured. Table 3
gives the criteria for validating the thermal model as well as the values obtained for NMBE, CVRMSE
and R?. The values of statistical indices fulfil the validation criteria except for the R? of the living
room. The uncertainties of the thermal properties and of the measurements can explain the values of
the statistical indices. Nevertheless, since 0.87 is close to 0.90 and the other statistical indices have
reached the required values, it is believed that the thermal model can be used to compare the thermal
performance of the wall system.

Temperature [°C]

@)
2.
=
2
=
2
g
o
=
25+ttt -ttt
9-Apr  10-Apr 11-Apr 12-Apr 13-Apr 14-Apr 15-Apr 16-Apr 17-Apr
Date [day]
(b)

Figure 7. Evolution of measured and predicted temperatures in the (a) living room and (b) bedroom.
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Table 3. Statistical values of calibration indices.

Required Values Temperature of Temperature of the
for Validation the Living Room Bedroom
NMBE <0.101 0.036 0.025
CVRMSE <0.30 0.048 0.035
R? >0.90 0.87 0.92

4.2. Impact of Wall Design

Figure 8 shows the weighted exceedance hours (WEH) over the year as a function of the walls’
design compared to the reference case made of HCB: positive and negative values in Figure 8 depend
on whether the WEH is higher or lower than that of the reference case, respectively.

- - - CEBsl4 —— CEBs29 - = = CEBsl4+Ins

—— CEBs29+Ins — - - Ins+tCEBs14 —— Ins+CEBs29
200 T T S EE
100 4 T T e S

0

-100

-200

WEH [°C.h]

-300

-400
. . . . 2 Lo . . .
& @v& ?&* @fz?\ & @\“\ v@o%& S %04 o«
Date [months]

(a)
--- CEBsl4  —+—CEBs29  --- CEBsl4+Ins
—+— CEBs29+Ins - - - Ins+CEBs14 —— Ins+CEBs29
200 - - mmememmememsmenomesesooooooeoooo
100

0

°C.h]

-100

[ —

-200

WEH

-300

-400

@ ¢ WP S
Date [months]

(b)

Figure 8. Profiles of thermal discomfort of 6 constructive systems compared to the building made of
hollow concrete blocks (HCB) for (a) the living room and (b) the bedroom.
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When considering the building space occupied during the day time, i.e., the living room,
the increase in wall thermal mass leads to the global reduction in the WEH compared to the building
made of HCB walls as illustrated by the graph of CEB29 in Figure 8a. Indeed, the U-value of the wall
made of CEB29 and those made of HCB is almost identical (2.17 and 2.21 W-m~2-K~!, respectively),
while the thermal mass (estimated by multiplying the density, the specific heat and the wall thickness)
are 558 and 310 kJ]-m~2-K~!, respectively. Therefore, the improvement in thermal comfort is only due
to the thermal mass effect. When considering the wall made of CEB, having a thickness of 14 cm,
the indoor climate is more uncomfortable compared to that of the HCB. The addition of an insulating
layer to the CEB layer, i.e., an increase in the thermal resistance of the walls, has a beneficial effect on
the level of overheating. However, the best opportunities to reduce the WEH are obtained when the
CEB layer is placed at the interior side of the wall. Thus, the wall made, from the outside toward the
inside surface, of plywood of 2 cm, an insulation layer of 5 cm and a CEB layer of 29 cm thickness is
the most suitable for an annual reduction in overheating for the living room. The results on the room
occupied during daytime are similar to those prescribed by the bioclimatic approach [18].

When considering the building space occupied during the night, i.e., the bedroom, all constructive
systems performed better than the HCB wall in terms of a reduction in WEH. The least efficient design
of a wall is CEB29 and the most efficient are CEB14 + Ins and CEB29 + Ins. Indeed, the only increase in
thermal mass (CEB29) is insufficient when the room is occupied during the night but the addition of a
thermal resistance layer in contact with the indoor environment allows improving the indoor climate.
Thus, the most suitable wall is made of 14 or 29 cm of a CEB layer, 5 cm of an insulating layer and 2 cm
of a wood layer from the outside toward the inside surface.

These results show that the constructive systems implemented for the building envelope
have an impact on the indoor climate and on the risk of overheating in the hot-dry climate
of Ouagadougou. Although the buildings made of HCB have many advantages such as easy
implementation, a constructive process well-known by local population, durability and low cost, in
terms of indoor climate performance, there are some alternatives based on earth materials. The design
of the exterior walls of the building’s rooms must consider the occupancy periods and hence should
not be unique for the entire envelope of the building. On the one hand, the thermal capacity of the
wall, especially when it allows to store the heat from the indoor ambiance, is suitable for the rooms
mainly used during the day. Indeed, the thermal mass is an opportunity to store the overheating
during the day, especially when it has been efficiently cooled during the night (nocturnal ventilation).
This explains why the constructive systems CEB29, Ins + CEB14 and Ins + CEB29 performed better
than the HCB walls. On the other hand, when the thermal resistance prevents the heat stored in the
thermal capacity layer to reach the indoor environment, this gives opportunities to increase the thermal
comfort of the rooms occupied during the night, especially since the cold air brought by the nocturnal
ventilation is not used to cool the thermal mass but it is directly available to lower the temperature of
the indoor air.

These findings also highlight the complementarity of the thermal resistance and thermal mass
of exterior walls in houses without air conditioning systems. Provided with proper ventilation,
double-layer walls give more opportunities to improve the indoor climate than the conventional
HCB walls.

Research on earthen materials for construction must therefore be directed toward these two
properties, i.e., finding materials with high thermal resistance or high thermal mass, instead of materials
with both properties. This study also raises the question of the suitable thermal mass layer to be
provided in double walls since the improvement of the indoor climate between Ins + CEB14 and Ins +
CEB29 or between CEB14 + Ins and CEB29 + Ins is weak.

5. Conclusions

The aim of this study was to improve the thermal comfort of houses in a hot-dry climate by using
compressed earth blocks instead of hollow concrete blocks in the design of exterior walls. A computer
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simulation investigation was carried out in order to assess the weighted exceedance hours of discomfort
of six designs of walls, compared to the wall made of hollow concrete blocks. The following conclusions
were drawn from this study:

e  The thermal comfort of buildings can be improved by the use of alternative sustainable materials
such as compressed earth blocks instead of the conventional material used for walls, i.e., hollow
concrete blocks;

e  Double-layer walls, in terms of thermal properties (i.e., thermal mass and a thermal resistance
layer), must be considered in naturally ventilated buildings. They give more opportunity to
improve the indoor climate than the hollow concrete blocks walls;

e The appropriate location of the compressed earth blocks layer (i.e., the thermal mass) in
double-layer walls depends on the occupancy periods of the rooms. The CEB layer must
be placed at the interior side of the wall when the room is mainly occupied during the day and at
the exterior side when the room is mainly occupied at night.

For further development, the simulation model should be extended to industrial and administrative
buildings. This prospect will allow the evaluation of the performance of the model in terms of energy
saving with a defined set point temperature (imposed internal temperature of 28 ° C, for example).
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Nomenclature

T temperature [°C]
ti time step [h]
WEH weighted exceedance hour [°C-h]
wi weighted factor [-]
Subscripts

air related to air

int related to interior surface of wall

inf related to the lower limit of acceptability

sup related to the upper limit of acceptability

op related to operative temperature

out related to mean outdoor temperature
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