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Abstract: Structural health monitoring (SHM) systems using modal- and vibration-based methods,
particularly wireless systems, have been widely investigated in relation to the monitoring of damage
states in civil infrastructures such as bridges and buildings. Unlike many current efforts in developing
wireless sensors, one can instead leverage the suite of sensors, network transmission, data storage,
and embedded processing capabilities built into modern smartphones for SHM. The objective of
this work was to assess and validate the use of smartphones for the monitoring of artificial damage
states in a three-story steel frame model subjected to shaking table-induced earthquake excitations.
The steel frame was a 2D structure with six rotary viscous dampers installed at the beam–column
joints, which were used for simulating different damage states at their respective locations; the
columns were also replaced with ones of reduced cross-sectional areas to further emulate damage. In
addition to instrumenting the frame with conventional tethered sensors, Apple iPhones (pre-loaded
with customized smartphone apps to record acceleration and inter-story displacement) were also
installed. Shaking table tests were then conducted on the undamaged and damaged frames, while
conventional sensors’ and smartphones’ responses were collected and compared. Wavelet packet
decomposition was employed to analyze the acceleration data to detect damage in two different cases.
Structural displacements were also computed from acceleration measurements and compared with
displacement measurements to further validate the quality of smartphone sensor measurements.

Keywords: smartphone; damage detection; monitoring; shaking table tests; buildings; steel frame;
wavelet packet; frequency-domain integration

1. Introduction

Extreme events such as earthquakes can cause severe damage to structures, and
an event can occur at any time during the structure’s operating service lifetime [1,2].
For example, the 2011 Christchurch earthquake caused ~11 to 15 billion US dollars in
economic losses [3,4]. Another example is the 2011 Tohoku earthquake, which caused
nearly 30,000 casualties [2] and ~195 billion US dollars in losses. Similarly, the 2010 Haiti
and 2008 Wenchuan earthquakes also led to massive casualties (i.e., 27,000 [5] and 69,000 [6],
respectively). Hence, the assessment of structural performance, before, during, and after
an extreme event, is critical for ensuring their safe operations and resiliency to natural
hazards such as earthquakes.

In that regard, structural health monitoring (SHM) aims to achieve this goal by inte-
grating sensors, structural response measurements, and algorithms to detect and localize
damage. Damage information can not only help inform decisions for repairs but also
facilitate urban planning and post-earthquake emergency rescue efforts [7]. Maintaining
civil infrastructure systems’ optimal performance is necessary for preventing structural
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failure, which can reduce the number of casualties and property losses incurred following
an extreme event.

SHM using vibration measurements have seen tremendous advancements over the
last few decades [8]. The principle of modal analysis is that modal parameters are functions
of the physical properties of the structure (i.e., mass, damping, and stiffness), which can be
determined using acceleration response time history measurements [9]. Peeters and De
Roeck [10] reviewed system identification methods for operational modal analysis, such as
using the complex mode identification function [11], the instrumental-variable method [12],
and stochastic subspace identification [13,14], among others, and their accuracies in terms
of identifying modal parameters were compared by means of a Monte-Carlo analysis.
Hearn et al. [15] demonstrated a structural inspection method based on modal analysis of
vibration response in experiments on a welded steel frame and on wire rope. Lam et al. [16]
conducted a full-scale ambient vibration test of a 14-story reinforced concrete building,
where six horizontal vibration modes were identified with Bayesian modal analysis and
Markov Chain Monte Carlo-based model updating and when using only limited numbers
of sensor measurements. Worden and Green [17] proposed a machine learning approach
for nonlinear modal analysis and demonstrated their applicability using a number of case
studies based on both simulated and experimental acceleration data. Mirshafiei et al. [18]
introduced an approach for seismic assessment based on experimental modal analysis
using acceleration and velocity measurements. The technique was verified using four
buildings located in Montreal, Canada.

On the other hand, displacement is another particularly important parameter when
nonlinear behavior and permanent deformations occur [19]. Traditionally, displacements
are measured using linear potentiometers and linear variable differential transducers
(LVDTs). However, they measure relative displacements and require a fixed reference
point, which is often unavailable. One solution is to construct a scaffold underneath the
point of interest and use the ground as a stationary reference. This is often impractical
because of costs and considerable time required for field assembly and disassembly of
the scaffold [20]. It should be mentioned that acceleration data can be double integrated
to obtain displacements. Unfortunately, the results are typically erroneous, with large
drifts observed. Frequency-domain integration methods can also be used, but errors are
introduced due to the low-cut-off frequency, and multiple attempts are needed to identify
an optimal frequency range [21]. Despite these limitations, displacement and acceleration
data can be used to compute damage indices for SHM purposes [15,22].

In fact, a variety of different monitoring systems have been implemented in large-scale
structures. In the case of bridges, although tethered monitoring systems have been widely
used in the past [23], the field is transitioning towards the use of wireless sensor networks so
as to avoid the difficulties, high-costs, and degradation issues associated with cables [24–27].
Wireless sensors’ node-to-node communications in this application are suitable since they
operate in an open space environment. Different types of sensors can often be interfaced
with these wireless sensor nodes to realize both acceleration, displacement, temperature,
and wind speed monitoring, among many other parameters. However, wireless signals can
be obstructed by walls and partitions in a building, causing signal reliability issues [28,29],
which make their use in high-rises more difficult. Therefore, there remains a need to
develop rapid, low-cost, and convenient monitoring techniques for structural response
monitoring and rapid damage evaluation.

Recent advances in smartphones offer a unique opportunity for SHM [30], since these
devices host a suite of different sensors, multi-modal wireless communication capabilities,
and computing power, all packaged in a small form factor. In fact, smartphones have
been used for various applications, such as for human monitoring [31], movement recog-
nition [32], and car accident detection [33]. Yu and Zhao [34] proposed the concept for
SHM using smartphones in civil infrastructures, and they have also been investigated, in
the laboratory and field, for SHM of civil infrastructure systems [34–54]. Höpfner and
Morgenthal [35,36] studied the possibilities and limitations of using smartphones for the
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measurement of mechanical oscillations and transient structural displacements. Reilly
et al. [38] developed a mobile app, iShake, to use smartphones as seismographs to measure
and then transmit ground motion data to a central server. The accuracy of the built-in
sensors was validated through shaking table tests. Sharma and Gupta [39] measured
various field parameters, including absolute location with GPS (in terms of latitude and
longitude), distance, area, and perimeter, using an Android app called MAP MEASURE.
Cimellaro et al. [40] proposed a rapid building damage assessment system using mobile
phone technology, which can collect photos of damaged houses with the help of residents
or volunteers situated in disaster-struck areas. Feng et al. [42] and Ozer et al. [43] devel-
oped a crowdsourcing platform for SHM and a post-event damage assessment app. Min
et al. [44] developed a smartphone application called RIRO to measure absolute dynamic
displacements by processing image frames of a color-patterned target. Oraczewski and
Staszewski [45] developed a platform for crack detection based on nonlinear acoustics and
validated the system using a simple example of fatigue crack detection in aluminum plates.
Ozer and Feng [46] proposed a modal identification strategy that integrated spatial and
temporally sparse SHM data collected from smartphones. In addition, Ozer and Feng [47]
also proposed a coordinate system transformation procedure to correct the sensor signal
caused by the improper positioning of smartphone sensors, followed by its validation
using impact hammer testing conducted on a two-story laboratory structural model and a
real bridge. Xie et al. [54] conducted a single-layer frame test and the frame responses were
measured by using smartphones.

It is clear from the aforementioned studies that SHM research based on smartphones
has been developing at a rapid pace with contributions from various countries. These
studies were mostly validated in the laboratory, and a significant amount of attention was
on bridge monitoring, ground motion monitoring, measurement uncertainties, and post-
disaster investigation. Their applications for SHM and damage detection during an event
(e.g., an earthquake), particularly in multi-story buildings and frames, remains limited
and is a main focus of this study. Moreover, the displacement obtained by smartphone
acceleration signals in multi-story buildings has not been studied previously.

In this work, the objective was to assess and validate the use of smartphones in relation
to the monitoring of artificial damage states, by measuring acceleration and inter-story
displacements, in a three-story steel frame structure subjected to shaking table-induced
earthquake excitations. This paper begins with a discussion of the experimental details,
including the test structure, test plan, and damage cases. Second, and upon conducting
the tests, smartphone monitoring capabilities were validated by comparing measured
responses (of undamaged and two damaged cases) to those obtained by conventional
sensors. Third, wavelet packet analysis was employed for damage detection and for
computing a suitable damage index based on energy ratio variation difference (ERVD).
Lastly, as further validation, frequency-domain integration converted raw acceleration
signals to displacements, which was also used for comparison purposes.

2. Experimental Details
2.1. Test Structure

The testbed employed in this study was a planar, three-story, steel frame with six
viscous dampers installed at the beam–column joints (Figure 1). Each story was 400 mm-
tall, and the width of the frame was 500 mm. Each floor consisted of two parts, namely,
the deck (which houses weights) and a removable beam (highlighted by the blue boxes
shown in Figure 1). The beams were thick steel plates and were considered to be axially
and flexurally rigid. On the other hand, the columns were 4 mm-thick, 150 mm-wide, and
400 mm-tall steel plates. The beams and columns were connected by viscous dampers
that were 180 mm in height. The test structure was bolted onto a dual-axis Quanser XY
Shake Table III that could support and excite loads of up to 100 kg. The shake table was
produced by the Canadian company QUANSER. The vibration amplitude reached 20 cm
in one or two directions. It was driven by a linear motor, so the number of vibration parts
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was minimized, which effectively increased the reliability of the vibration and minimized
the noise of the vibration. The shake table could apply a variety of excitations, such as
earthquake wave, sine wave, artificial wave, etc.
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Figure 1. Illustrations and a picture of the three-story steel frame tested are shown. Viscous dampers
are circled in red, and the removable rigid beams are boxed in blue.

The six rotary viscous dampers, which were installed at the beam–column joints
and marked in red, are shown in Figure 1. With the beams installed, the rotary dampers
did not contribute to the frame’s response. However, once the beams were removed, the
dampers allowed one to introduce artificial damage to the frame by simply turning the
notch to different positions. In its initial and undamaged state, the rigid beams emulated
a fixed–fixed beam–column connection. When the rigid beam (i.e., that which is marked
by blue boxes in Figure 1) was removed, and the damper notch was rotated clockwise
to different positions, damping could be gradually increased. The increased damping at
the joints simulated nonlinear structural behavior and damage in the system (i.e., without
having to physically damage the test structure). On the other hand, the columns were
connected with beams by screws, so the intact columns could be replaced by damaged
columns with reduced cross-sectional areas; in this case, the structure consisted of fixed–
fixed beam–column connections with the removable beam installed to introduce minor
artificial damage.

2.2. Instrumentation Layout

The experimental setup is shown in Figure 2. Both conventional cabled monitoring sys-
tems and smartphones were instrumented onto the test structure to measure the structural
responses during testing. First, three Sinocera Piezotronics uniaxial piezoelectric accelerom-
eters (PA) were instrumented on the structure (i.e., one on each floor) and connected to a
data acquisition (DAQ) system. The sensitivity of the accelerometer was 500 mV/g with a
maximum output voltage of 6 V and it required −12 to +24 V direct current (DC) power.
Second, a separate DAQ system was employed for acquiring displacement measurements
from three Keyence KL-300 laser displacement sensors (LDS) (i.e., one on each floor). Each
LDS measured the absolute displacement of each floor; this was achieved by attaching
the LDS to a separate triangular support that was located outside the frame (but still
bolted to the shaking table) and positioned at the same height as each floor. They each
projected a laser beam onto a magnetic bearing mounted onto a customized suspended
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frame connected to each floor. The measurement range of the LDS was 160 to 450 mm
with an output voltage of 0 to 5 V. It should be noted that both DAQ systems featured
100 dB dynamic range and 24-bit analog-to-digital converters (ADC), and the systems were
connected to laptop computers for system control and data storage.
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In addition to the aforementioned accelerometers and LDS, six Apple iPhones were
also installed on the steel frame. Three of the smartphones were for recording the acceler-
ation response of the structure, while the remaining three were for acquiring inter-story
displacements. First, an iPhone 6, iPhone 5s, and iPhone 4s were placed on the first, sec-
ond, and third story of the steel frame, respectively. Smartphones house a plethora of
built-in sensors, along with storage, network connection, and computing power, but access
to these features requires suitable software apps being installed. To that end, previous
studies culminated in the development of two smartphone apps, namely Orion-CC [52]
and D-Viewer [53], specifically for SHM. Here, the phones, preloaded with Orion-CC [52],
were installed alongside the PAs (installed on magnetic bearings), so that both the uniaxial
accelerometers and one axis of measurement of the smartphone’s internal accelerometer
were aligned with the direction of vibration. It should be mentioned that Orion-CC can
access Apple iPhone’s internal accelerometer and gyroscope and store data as commanded
by the user. The mobile app was built for an iOS 7.0 or higher platform. Both the PAs and
smartphones recorded acceleration using a sampling rate of 100 Hz. However, the actual
sampling rates of the smartphones varied due to different built-in sensor performances
and the different platforms; from the collected data, it was found that the actual sampling
rates of the iPhone 6, 5s, and 4s were 100, 96, and 109 Hz, respectively.

Second, three iPhone 6, preloaded with D-Viewer [53], were installed on the test
structure to measure inter-story displacements. D-Viewer is an app (for both the iOS and
Android platforms) that is used for the monitoring of dynamic displacements by using the
built-in camera to recognize and track a moving laser or black circle (i.e., target) so as to
determine relative displacements. In this study, a laser pointer was installed on the beam of
each floor and projected a laser spot, downwards, onto a flat plate that was mounted above
the lower story of the frame. In this manner, the laser source and smartphone would remain
static relative to the floor moving above, and relative displacements could be computed by
tracking the motion of the laser spot projected onto the plate. While the LDS displacement
data were recorded at 100 Hz, the sampling rates of the smartphones were limited by the
sampling rate of video recorded, which, in this case, was 30 frames per second or 30 Hz.



Buildings 2021, 11, 477 6 of 21

It should be mentioned that both Orion-CC and D-Viewer are publicly available and are
described in greater detail in Zhao et al. [52,53].

2.3. Test Plan and Damage Cases

Three cases were considered in this study. The first was the undamaged case, where
all of the viscous dampers were configured in their initial positions, and the beam–column
connections were considered rigid with the rigid beam installed on each floor (Figure 3a).
The second was the damaged case #1 (Figure 3b), where one column in the first floor was
reduced by 30%. The third was the damaged case #2 (Figure 3d), where the rigid beam in
the first floor was removed, while the columns were intact. By removing the rigid beam,
the viscous dampers could begin to affect structural response (Figure 3b). For all three
cases, the shaking table excited the steel frame using the El-Centro earthquake ground
motion (i.e., scaled to 20 mm peak ground displacement). The response of the structure
was monitored by the instrumented sensors and smartphones.
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Figure 3. The pictures show the (a) undamaged steel frame; (b) damaged case 1 with a reduction in the area of the column;
(c) undamaged frame, the same as that shown in (a); (d) damaged case 2, with the rigid beam removed from the first floor.

3. Steel Frame Response Comparison
3.1. Acceleration Response

Upon conducting the shaking table tests, the acceleration (a) time history responses
from the tethered PAs and smartphones were compared. Figure 4 overlays representative
sets of results of each floor, including the undamaged case and two damaged cases. In
order to better visualize the similarities and differences in the data, only 2 s of the recorded
time histories were presented. It can be observed from Figure 4 that the time history results
matched one another closely. By taking a fast Fourier transform of the time-domain data, the
corresponding power spectral density (PSD) (logarithmic scale) functions corresponding to
the cases shown in Figure 4 were obtained and are presented in Figure 5. It can be seen
that, while the frequency-domain results matched closely for all cases, some differences
were observed for the damaged scenarios. It was more likely that differences in sensors
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(i.e., built in different iPhone models) was the primary factor that caused this error. A more
in-depth error analysis will be discussed in Section 5.2.1, but these results suggest that
smartphones can be used for vibration monitoring.
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and two damaged cases, were compared to show good agreement. Representative results from the (a) first, (b) second, and
(c) third floors were overlaid.

Buildings 2021, 11, x FOR PEER REVIEW 7 of 21 
 

data, the corresponding power spectral density (PSD) (logarithmic scale) functions corre-
sponding to the cases shown in Figure 4 were obtained and are presented in Figure 5. It 
can be seen that, while the frequency-domain results matched closely for all cases, some 
differences were observed for the damaged scenarios. It was more likely that differences 
in sensors (i.e., built in different iPhone models) was the primary factor that caused this 
error. A more in-depth error analysis will be discussed in Section 5.2.1, but these results 
suggest that smartphones can be used for vibration monitoring. 

Regardless, the first, second and third modal frequencies of the structure were ob-
tained by processing the results shown in Figure 5 using a peak-picking algorithm. Table 
1 summarizes the modal frequencies identified with the time-histories of each floor. The 
second modal frequency in damaged case #1 was difficult to identify using the data of the 
second floor, since the sensors were installed at the node of the second vibration mode. 
From Table 1, it can be seen that the reductions in the modal frequencies for damaged case 
#1 were not significant, since damage was not severe in this case. However, for damaged 
case #2, the reduction in the first modal frequency was significant, since the removal of 
the rigid beam reduced the overall stiffness of the structure. Except for the first modal 
frequency variation, the increase in the second modal frequency and the reduction in the 
third modal frequency were insignificant. The differences in modal frequencies, as iden-
tified by the tethered system versus the smartphones, were nearly negligible. Therefore, 
the smartphone can be a tool to capture signals for damaged cases. This is the first step in 
the use of smartphones in a frame model; further research will focus on the frequency 
identification method using smartphone signals. 

   

(a) (b) (c) 

Figure 4. The acceleration time history responses as collected by the tethered PAs and smartphones, for both undamaged 
and two damaged cases, were compared to show good agreement. Representative results from the (a) first, (b) second, 
and (c) third floors were overlaid. 

   
(a) (b) (c) 

Figure 5. Using acceleration time history measurements from Figure 4, the power spectral density functions for the (a) 
first, (b) second, and (c) third floors were computed and plotted. 

  

-1

0

1

a 
[g

al
]

 

 

PA Smartphone

-1

0

1

a 
[g

al
]

 

 

PA Smartphone

2 2.5 3 3.5 4-1

0

1

Time [s]

a 
[g

al
]

 

 

PA Smartphone

Undamaged

Damaged 1

Damaged 2

-1

0

1

a 
[g

al
]

 

 

PA Smartphone

-0.5

0

0.5

a 
[g

al
]

 

 

PA Smartphone

2 2.5 3 3.5 4-0.5

0

0.5

Time [s]

a 
[g

al
]

 

 

PA Smartphone

Undamaged

Damaged 2

Damaged 1

-1

0

1

a 
[g

al
]

 

 

PA Smartphone

-1

0

1

a 
[g

al
]

 

 

PA Smartphone

2 2.5 3 3.5 4-1

0

1

Time [s]

a 
[g

al
]

 

 

PA Smartphone

Damaged 2

Damaged 1

Undamaged

0 10 20 30-400

-300

-200

-100

0

100

f [Hz]

PS
D

 [d
B]

0 10 20 30
f [Hz]

 

 

PA Smartphone

0 10 20 30
f [Hz]

Undamaged Damaged 1 Damaged 2

0 10 20 30-400

-300

-200

-100

0

100

f [Hz]

PS
D

 [d
B]

0 10 20 30
f [Hz]

 

 

PA Smartphone

0 10 20 30
f [Hz]

Damaged 1Undamaged Damaged 2

0 10 20 30-400

-300

-200

-100

0

100

f [Hz]

PS
D

 [d
B]

0 10 20 30
f [Hz]

 

 

PA Smartphone

0 10 20 30
f [Hz]

Undamaged Damaged 1 Damaged 2

Figure 5. Using acceleration time history measurements from Figure 4, the power spectral density functions for the (a) first,
(b) second, and (c) third floors were computed and plotted.

Regardless, the first, second and third modal frequencies of the structure were obtained
by processing the results shown in Figure 5 using a peak-picking algorithm. Table 1
summarizes the modal frequencies identified with the time-histories of each floor. The
second modal frequency in damaged case #1 was difficult to identify using the data of the
second floor, since the sensors were installed at the node of the second vibration mode.
From Table 1, it can be seen that the reductions in the modal frequencies for damaged case
#1 were not significant, since damage was not severe in this case. However, for damaged
case #2, the reduction in the first modal frequency was significant, since the removal of
the rigid beam reduced the overall stiffness of the structure. Except for the first modal
frequency variation, the increase in the second modal frequency and the reduction in
the third modal frequency were insignificant. The differences in modal frequencies, as
identified by the tethered system versus the smartphones, were nearly negligible. Therefore,
the smartphone can be a tool to capture signals for damaged cases. This is the first step
in the use of smartphones in a frame model; further research will focus on the frequency
identification method using smartphone signals.
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Table 1. Modal frequency results obtained using the tethered PA and smartphones.

Story Damage Cases First Modal (Hz) Second Modal (Hz) Third Modal (Hz)
Tethered PA Smartphone Tethered PA Smartphone Tethered PA Smartphone

First floor
Undamaged 3.182 3.182 8.9 8.9 12.6 12.5
Damage #1 3 3 8.7 8.7 12.4 12.4
Damage #2 1.545 1.545 9.2 9.1 12.2 12.2

Second floor
Undamaged 3.182 3.182 8.9 9.0 12.5 12.6
Damage #1 3 3 - - 12.4 12.4
Damage #2 1.545 1.545 9.2 9.2 12.2 12.3

Third floor
Undamaged 3.182 3.182 8.9 8.9 12.5 12.5
Damage #1 3 3 8.7 8.6 12.41 12.4
Damage #2 1.545 1.545 9.1 9.1 12.2 12.2

3.2. Displacement Response

According to Section 2.2, inter-story displacements were obtained using an image
processing scheme using video recorded by the smartphones, and reference displacement
measurements were collected using LDS instrumented at each floor. Representative sets of
displacement measurements were compared, for the undamaged and two damaged cases,
and the results are overlaid in Figure 6. It should be noted that the inter-story displacement
of the ith story, as measured by the LDS, was computed by subtracting the LDS data of the
(i − 1)th story from the ith story (i.e., to obtain relative displacements).
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Figure 6. The displacement time history responses as collected by the LDS and smartphones, for the undamaged case and
two damaged cases, were compared to show good agreement, except for the results from the third-floor damaged case.
Representative results from the (a) first, (b) second, and (c) third floors were overlaid.

First, Figure 6 shows that the maximum displacement in the damaged case #2 was
larger than that for the undamaged and damaged case #1 systems. The maximum dis-
placements recorded for all stories, corresponding to the undamaged and damaged cases,
are presented in Table 2. This result makes sense, where the change in displacement of
damaged case #1 was smaller than that of damaged case #2, since the stiffness of the
structure in damaged case #2 was reduced significantly. Second, there is good agreement
between both sets of displacement data, particularly for the first and second stories, as well
as all measurements for the undamaged case and damaged case #1. The displacement time
history of damaged case #1 was similar to that of the undamaged case, but the amplitude
attenuation was slower, since column damage resulted in a reduction in stiffness.

Discrepancies were observed for the third story data relating to damaged case #2
(i.e., the error of the maximum displacement recorded was 23.8%, as shown in Table 2),
which could have been due to two reasons. While the overall stiffness of the structure was
reduced by removing the rigid beam in the first story, rigid beams remained installed at
the top two floors. The increased compliance of the beam–column joints in the first floor
resulted in larger displacements, thereby leading to little displacement in the third floor
compared to the lower floor, which resulted in the low signal-noise ratio for the third story.
It should also be noted that the LDS was mounted on a fairly rigid triangular support frame
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bolted to the shaking table and was also subjected to shaking. Despite assuming that the
position of the LDS moved with the shaking of the table, in reality, the LDS was subjected
to vibrations induced by shaking table excitations. This effect was more significant as
the LDS was mounted higher, which meant that the third floor was most susceptible to
this effect. Future tests will consider this limitation and investigate more reliable sensor
instrumentation techniques.

Table 2. Maximum displacements as recorded by the laser displacement sensors and smartphones.

Damage Cases Sensors First Floor (mm) Second Floor
(mm)

Third Floor
(mm)

Undamaged
LDS 5.904 6.433 4.534

Smartphone 5.121 5.578 3.961
Error 13.3% 13.3% 12.6%

Damaged #1
LDS 5.453 4.439 2.976

Smartphone 4.852 4.053 2.906
Error 11.02% 8.70% 2.35%

Damaged #2 LDS 11.81 12.85 1.919
Smartphone 11.06 11.82 1.463

Error 6.35% 8.02% 23.8%

As Table 2 shows, the maximum inter-story displacement for the undamaged case
occurred in the second story. This behavior is atypical of shear structures, where the cause
could be due to the complex beam–column joints and the use of the removable beams for
this three-story steel frame. In addition, the maximum inter-story displacement errors
were relatively high. The first reason is the influence of sampling rate, where the sampling
rate of the LDS was 100 Hz versus 30 Hz for smartphones equipped with D-Viewer. The
difference in sampling rates could have led to measurement errors. The second reason
may be due to the limited performance of D-Viewer in which its accuracy was highly
influenced by ambient lighting conditions, the target (i.e., laser spot), and installation
method. On the other hand, the maximum inter-story displacements of the first and second
stories corresponding to damaged case #2 were much greater than those recorded for the
undamaged system due to the presence of dampers and the removal of the rigid beam
in the first floor. While some errors were observed (particularly for the third story in
damaged case #2), the difference between the smartphone and LDS were small, so the
results validated that smartphones provided high quality data and could potentially be
used for the monitoring of inter-story displacements.

4. Damage Detection Results and Discussion
4.1. Wavelet Packet Analysis Background

At present, many structural damage identification methods, based on vibration data,
have been developed [55,56]. The wavelet packet analysis method is used in this pa-
per. Wavelet packets are a generalization of orthonormal and compactly supported
waves [57,58]. Pioneered by Coifman and Wickerhauser [59,60], wavelet packet analy-
sis (WPA) methods were successfully used for data compression [61]. A detailed discussion
of WPA is omitted due their widespread use, and the specifics of this technique could be
found in, for example, Ding et al. [62].

According to Parseval’s theorem, the energy in the time-domain is equal to that
of the frequency-domain. When damage occurs, the energy corresponding to each fre-
quency would be redistributed, and the structural response, f, of each frequency band
would change. Here, f can be decomposed to several individual frequency bands using
WPA. The energy of f for each frequency band can be used as a characteristic to describe
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damage [63,64]. After decomposing f, 2i sub-frequency bands will be obtained. The re-
sponse, f, can be expressed as:

f =
2i−1

∑
j=0

fi,j = fi,0 + fi,1 + · · ·+ fi,2i−1(j = 0, 1, 2, · · · , 2i − 1) (1)

where fi,j are the component signals, and i indicates the wavelet packet decomposition
level. The number of terms of j used refers to the order of WPA. Suppose that the lowest
frequency is 0, and the highest frequency is ωm, then the bandwidth of each frequency
band is ωm /2i. The energy (Ei,j) of fi,j for each frequency band can be computed by:

Ei,j = ∑
∣∣ fi,j
∣∣2 (2)

In this study, a damage index based on the energy ratio variation difference (ERVD)
was employed and was formulated as follows [65]:

Ip =
Ei,p

2i−1
∑

j=0
Ei.j/2i

(3)

ERVp =
∣∣Ip − Îp

∣∣ (4)

ERVD =

√√√√2i−1

∑
p=0

ERVD2
p =

√√√√2i−1

∑
p=0

(ERVp − ERVp)
2 (5)

where Ip is the ratio between Ei,j and the mean energy of all frequency energies for the
undamaged case, and Îp is the Ip for the damaged case. ERV is defined as the energy ratio
variation, while ERV is the mean energy ratio variation.

4.2. Wavelet Packet Decomposition of Acceleration Time Histories

De-noising of acceleration results was achieved by decomposing the data using three-
order WPA with ‘db20′ (i.e., the Daubechies wavelet function with a length of 20) to obtain
eight frequency bands. Ip was computed using acceleration data as measured by the
PAs and smartphones, and the results for the undamaged and two damaged cases are
summarized in Figure 7. In order to compute ERVD for the undamaged case relative to
another undamaged case, different datasets for which the pristine structure was subjected
to the same earthquake excitation were used. Table 3 shows ERVD for the different cases
and for each story. From Table 3, it can be seen that the mean ERVD for the undamaged
case is less than that of damaged case #1 and far less than that of damaged case #2. This
result means that damaged case #2 was characterized by a larger energy ratio variation
as compared to the undamaged system, and the damage of damaged case #2 was more
severe than that of damaged case #1. Furthermore, the ERVD differences between the
PAs and smartphones were small. These results demonstrated the feasibility of using
smartphones, coupled with damage index methods such as ERVD, for damage detection.
The objective of this section is to verify the feasibility of performing damage detection
using smartphones, and the results proved it. Further research studies will focus on the
selected WPT parameters, for example, the level of decomposition and wavelet mother for
smartphone signals.
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Table 3. ERVD for different cases and for each story.

Damage Cases Sensors First Story Second Story Third Story Mean ERVD

Undamaged Tethered PA 0.1414 0.1403 0.0802 0.1206
Smartphone 0.1464 0.1262 0.1592 0.1439

Damaged#1 Tethered PA 0.5189 0.4973 0.2564 0.4242
Smartphone 0.3775 0.2608 0.1644 0.2676

Damaged#2 Tethered PA 1.411 2.636 2.260 2.102
Smartphone 1.328 2.455 2.168 1.983

5. Displacement by Integration of Acceleration Data

As mentioned earlier, displacement measurements are much more difficult to ob-
tain than acceleration measurements. Therefore, the goal of this section is to validate
the displacement measurement performance of smartphones. Validation of smartphone
displacement measurements was performed by using integration techniques to compute
displacement results from raw acceleration data. Data obtained from both PAs and smart-
phones, for both undamaged and damaged test cases, were used, and the results are
compared. This was undertaken to further assess the quality of smartphone acceleration
measurements.

5.1. Acceleration Integration Methods

A direct approach to acquire displacement from acceleration is to make use of the
inherent relations between displacement, velocity, and acceleration in the time domain [66].
However, in cases in which the initial displacement is not 0, and those in which the initial
displacement is not considered, the estimated displacement response will result in critical
errors. For example, the trend-term caused by zero-shift and noise will result in serious
displacement drifts when applying time-domain integration [67]. Therefore, integration
methods, such as integration in the frequency domain, are necessary for acquiring accurate
displacement results. Specific methods of acceleration integration in the frequency domain
were previously reported [68], and thus, are omitted in this paper. In general, it was shown that
integration performed in the frequency domain is more sensitive to low frequencies [69,70].

In practical applications, however, the acceleration response of civil structures typically
always contains rich low-frequency components. During the pre- or post-processing
response measurements, if the low-frequency cut-off is set too high, the actual response of
the structure may be filtered inappropriately. Subsequent applications of integration in the
frequency domain could lead to erroneous results, such as obtaining smaller displacements
than those that actually occurred. In addition, the displacement time history result will
show distinct oscillations. Therefore, selecting an appropriate cut-off frequency is critical for
ensuring integration accuracy [21]. While the high-frequency cut-off could also influence
the accuracy of integrated displacements to some extent, their impact is less severe, as
mentioned earlier. Regardless, a challenge that remains is that the determination of the
cut-off frequency is difficult simply because the actual response is unknown [71]. In the
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next section, the selection of cut-off frequency and its influence on integrated displacement
results will be discussed.

5.2. Experimental Investigation

Using the acceleration time history data obtained from the shaking table tests pre-
sented in Section 3, inter-story displacements were computed via integration. In general, in
order to obtain the inter-story displacements, inter-story acceleration should be used. This
was obtained by subtracting the acceleration (at every instant of time) of the immediate
lower story from that of the story being considered. For example, the first inter-story accel-
eration was calculated by subtracting the measured ground excitation from the acceleration
time history, as recorded by the sensor mounted on the first story.

The cut-off frequency is defined as the frequency either above or below which the
power output of a circuit, such as a line, amplifier, or electronic filter, has decreased to a
predefined ratio of the power in the passband. Most frequently, this proportion is one half
of the passband power, which is also referred to as the 3 dB point, since a drop of 3 dB
corresponds to approximately half of the power.

Suppose that fc1 and fc2 are frequency components of the signal, then the magnitude
transfer function of a bandpass filter with a lower 3 dB cut-off frequency of fc1 and f 1, and
an upper 3 dB cut-off frequency of fc2 and f 2, is:

20 log
(

f1
fc1

)
= −3

20 log
(

f2
fc2

)
= 3

(6)

In that regard, the lower and upper cut-off frequencies are related to fc, where f 1 ≈
f1 ≈

√
2 fc1/2 and f2 ≈

√
2 fc2. During the inter-story displacement integration process,

the center frequency needed to be determined first. Three bandwidths were selected to
integrate the acceleration to observe the influence of the cut-off frequency. First, the first
modal frequency of a structure was an important characteristic frequency component
of the system and was thus taken as the center frequency for f c1 and f c2. Second, the
first modal frequency was taken as f c1 to determine the low cut-off frequency, while the
third modal frequency was taken as f c2 to determine the high cutoff frequency in order
to include all modes in the integrated displacement. The first, second and third modal
frequencies were taken as f c1 and f c2 to determine the low and high cut-off frequency,
respectively. A comparison with the measured displacement was conducted to investigate
the accuracy of these cut-off frequency selections. From Figures 5 and 6, it can be seen
that the acceleration and displacement time histories of damaged case #1 were similar to
those of the undamaged case. Given this similarity, the undamaged and damaged case #2
datasets, which have strong distinctions, were selected for this investigation.

5.2.1. Undamaged Case

From Table 1, it can be seen that the first, second, and third modal frequencies of
the undamaged frame were found to be 3.182 Hz, 8.9 Hz and 12.6Hz. According to
Equation (6), three bandwidths (2.25 Hz, 4.5 Hz), (2.25 Hz, 17.82 Hz) and (6.692 Hz,
17.82 Hz) were determined for the examination of the integration performance. Figure 8
shows comparisons of integrated displacement (ID), using both the acceleration time
history records obtained using PAs and smartphones, and the measured LDS inter-story
displacements of the first story. From Figure 8a,b, it can be seen that the integrated
displacement time histories were similar to the LDS measurements (i.e., when the (2.25 Hz,
4.5 Hz) and (2.25 Hz, 17.82 Hz) cut-off frequencies were used). However, Figure 8c shows
that the differences between IDs and the measurements were significant with the bandwidth
of (6.692 Hz, 17.82 Hz). The bottom-most subplots of Figure 8 also show that the IDs
obtained using tethered accelerometers versus smartphones are also very similar.
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Figure 8. The comparisons between integrated and measured displacements of the first story (using
data from PAs, LDS, and smartphones) for the undamaged case are shown.

To further quantify the errors, three parameters are proposed, namely, the cross-
correlation coefficient (CC), the mean maximum relative error (MMRE), and the sum of
squares error (SSE).
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CC is used to describe the cross-correlation between the two results. MMRE examines
how the positive and negative peaks compare with the measured displacement data and is
computed using Equation (7):

MMRE =
1
2
(
|max(x(t)− s(t))|
|max(s(t))| +

|min(x(t)− s(t))|
|min(s(t))| ) (7)

where x(t) is the integrated displacement, and s(t) is the measured displacement. Since a
comparison of only the peak value differences is insufficient for evaluating the accuracy of
the integrated displacements, SSE is defined to describe the energy difference between the
integrated and measured displacements.

SSE =

∣∣∣∣∣∣∣∣∣
N
∑

i=1
|x(i)|2 −

N
∑

i=1
|s(i)|2

N
∑

i=1
|s(i)|2

∣∣∣∣∣∣∣∣∣ (8)

where x(i) and s(i) are the displacement samples of x(t) and s(t), respectively, and N is the
number of samples or data points considered. The closer MMRE and SSE are to 0, the more
accurate the results.

The results of error analysis are summarized in Table 4. Similar to before, the displace-
ment reference was based on LDS measurements. In the rows of Table 4, CC, MMRE, and
SSE correspond to the three error metrics defined earlier. This is followed by ‘S’ or ‘PA’,
where ‘S’ corresponds to data from the smartphone and ‘PA’ for the tethered accelerometer.
From Table 4, it can be seen that, when the low cut-off frequency was selected based on
the first modal frequency of the test structure, and according to Equation (6), no matter
what the high cut-off frequency was, the cross-correlation coefficient between the measured
displacements and IDs was larger than 0.9 in the first and second stories, indicating strong
correlation. It can also be seen from Table 4 that the result obtained with the low cut-off
frequencies set to 2.25 Hz was, overall, better than when 6.292 Hz was used, which demon-
strated the validity of using the first identified modal frequency as the low cut-off center
frequency. Furthermore, the difference was not significant between (2.25 Hz, 4.5 Hz) and
(2.25 Hz, 17.82 Hz). Thus, ID was sensitive to the low cut-off frequency but less sensitive to
the high cut-off frequency. On the other hand, the CC was relatively low for the third story;
this may have been due to problems associated with sensor instrumentation, which were
mentioned earlier, that ultimately affected the accuracy of the LDS displacement measure-
ments. Since the third-story LDS measurements were compromised, the discussions herein
will omit that case. The results are presented in Table 4 for the sake of completeness.

Table 4. Error analysis of IDs versus LDS for the undamaged case.

Story Bandwidth CC_S CC_PA MMRE_S MMRE_PA SSE_S SSE_PA

First story
(2.25, 4.5) 0.9159 0.9293 0.5048 0.5007 0.0112 0.1374

(2.25, 17.82) 0.9150 0.9249 0.6233 0.5578 0.0409 0.1140
(6.292, 17.82) 0.0611 0.0362 1.0876 1.0665 0.9741 0.9796

Second story
(2.25, 4.5) 0.9099 0.9256 0.4980 0.4810 0.0975 0.1037

(2.25, 17.82) 0.8848 0.9057 0.5865 0.6093 0.0398 0.0626
(6.292, 17.82) 0.0249 0.0031 1.0133 1.0175 0.9524 0.9650

Third story
(2.25, 4.5) 0.5795 0.7235 1.3305 1.0244 0.3778 2.93 × 10−5

(2.25, 17.82) 0.4864 0.6322 1.7785 1.3443 0.7571 0.3711
(6.292,17.82) 0.0455 0.0154 1.8920 1.7525 0.6380 0.6896

Table 5 shows the comparison of IDs for the PA versus the smartphones, where it can
be seen that the IDs coincide well with one another for all sets of cut-off frequency bands.
Overall, these results confirm that the quality of smartphone acceleration measurements
are sufficient for extracting inter-story displacements using the proposed technique. It
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should be mentioned, however, that the CC was relatively low for the third story (Table 5),
and, similar to before, this may have been due to errors during testing and the use of an
older iPhone model in the third story.

Table 5. Error comparison of PA versus smartphone for the undamaged case.

Story Bandwidth CC MMRE_S SSE_S

First story
(2.25, 4.5) 0.9958 0.1414 0.1723

(2.25, 17.82) 0.9950 0.1589 0.1748
(6.292, 17.82) 0.9669 0.3344 0.2694

Second story
(2.25, 4.5) 0.9915 0.1410 0.0007

(2.25, 17.82) 0.9875 0.2138 0.0243
(6.292, 17.82) 0.9443 0.3294 0.3614

Third story
(2.25, 4.5) 0.8021 0.8275 0.3543

(2.25, 17.82) 0.8221 0.5763 0.3335
(6.292, 17.82) 0.9484 0.2462 0.1661

It was mentioned earlier that different models of smartphones sampled acceleration
data at slightly different sampling rates, even though they were commanded to record at
100 Hz (i.e., a time step of 0.01 s). The sampling rate of the iPhone 6 was 100 Hz, that of
the iPhone 5s was 96 Hz, and that of the iPhone 4s was 109 Hz. However, these sampling
rates were average sampling rates for a set measurement period. To further investigate
how each iPhone sampled acceleration data, ~2 s of acceleration data are overlaid in
Figure 9. It can be observed from Figure 9 that, overall, the stability of the iPhone 6 was
best, except for a few data points; the stability of the iPhone 5s and 4s were comparatively
worse, which can be observed as jumps in the measurement results shown in Figure 9.
There are instances where the 0.01 s time step grew to over 0.05 s. This was equivalent to
missing four or five measurement points. This represents a flaw in the use of smartphones
to obtain vibration data. To mitigate these issues, these tests suggest that choosing the
newest version of smartphones for monitoring will likely yield the best performance,
especially considering both hardware and software enhancements in the newer models.
In order to mitigate the sampling rate differences between different iPhone models, the
raw data were interpolated so that error analysis could be performed with respect to the
LDS measurements. However, any variations in time step would have resulted in errors by
virtue of relying on interpolation.
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Figure 9. The time step between acceleration measurements as obtained by Orion-CC and the three
different iPhone models show the relative stability of each system.

5.2.2. Damaged Case

Similar to Section 5.2.1, the same analyses were also performed using the test results
of damaged case #2. From Table 3, the first, second, and the third modal frequencies
were identified as 1.545 Hz, 9.2 Hz and 12.2 Hz. According to Equation (6), the cut-off
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frequency limits, f 1 and f 2, could be calculated. The three bandwidths were (1.09 Hz,
2.18 Hz), (1.09 Hz, 17.25 Hz) and (6.504 Hz, 17.25 Hz). Figure 10 shows a comparison of the
IDs for the first story, using data from PAs and smartphones, versus LDS measurements,
as well as the ID comparisons of PAs versus smartphones. From the top two subplots in
Figure 10a,b (i.e., the same low cut-off frequency but a different high cut-off frequency), it
can be seen that some differences were observed for IDs versus the LDS measurements. In
contrast, the bottom-most subplot of Figure 10a,b) shows that the IDs obtained using PA
and smartphone acceleration data nearly coincided with one another.
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Figure 10. The comparisons between integrated and measured displacements of the first story (using
data from PAs, LDS, and smartphones) for the damaged case are shown.

Figure 10c shows the significant error between IDs and measured displacements.
These results illustrate that ID is sensitive to low cut-off frequencies, which again points
to the importance of selecting the first modal frequency as the center frequency. These
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results also reveal that the IDs computed using PA and smartphone acceleration data
for the damaged system were not as accurate as the IDs for the undamaged case, where
strong non-linearity may have been the reason for this lower performance. On the other
hand, the LDS measurements may contain some experimental errors, perhaps due to
the vibration of the LDS support truss during shaking table excitations, which has been
demonstrated before.

Error analyses were also performed by computing and comparing CC, MMRE, and
SSE, similarly to the undamaged case. Table 6 summarizes the error analysis results, com-
paring IDs versus LDS measurements. From Table 6, it can be seen that the error analyses
in the first and second stories yielded similar quantities as Table 4 for the undamaged
case; however, this was not the case for the third story. The error appeared to be smaller
when the second mode was taken as the center frequency. In this case, the rigid beam
was removed to create damage for this scenario. The dampers affected the structures and
led to large displacements in the first and second story and smaller displacements in the
third story, which can be seen in Figure 6c. The response contained more high frequency
content for the third story, and its vibration behavior was not the same as the lower stories
due to severe damage introduced to the first story. Again, the third-story results are not
considered due to errors experienced during testing but are shown here solely for the sake
of completeness. It should be noted that, for the first and second stories, the CC values
were all greater than 0.78, which suggests that the correlation was satisfactory but not great.

Table 6. Error analysis of IDs versus LDS for the damaged case.

Story Bandwidth CC_S CC_PA MMRE_S MMRE_PA SSE_S SSE_PA

First story
(1.09, 2.18) 0.8718 0.8461 0.5109 0.5671 0.2314 0.0794

(1.09, 17.25) 0.8539 0.8261 0.5502 0.5904 0.2737 0.1191
(6.504, 17.25) 0.0393 0.0331 1.0235 1.0235 0.9896 0.9907

Second story
(1.09, 2.18) 0.7946 0.8411 0.5278 0.4390 0.1724 0.3404

(1.09, 17.25) 0.7889 0.8273 0.5577 0.4518 0.2000 0.2863
(6.292, 17.25) 0.0466 0.0531 0.9561 0.9626 0.9859 0.9894

Third story
(1.09, 2.18) 0.1255 0.1258 2.0081 1.2036 9.2530 0.4096

(1.09, 17.25) 0.2272 0.3341 2.2226 1.1585 10.859 1.5911
(6.504, 17.25) 0.4848 0.5094 0.8616 0.8682 0.5862 0.6301

Table 7 summarizes the error analyses results comparing PA versus smartphone per-
formance for data corresponding to the damaged structure. The results are comparable to
Table 5, where the first and second stories performed well. However, greater discrepancies
were observed for the third story (as is evident from the low CC values in Table 7) for
reasons already mentioned. Overall, from the results presented in Tables 4–7, it can be
concluded that the quality of acceleration measurements, as recorded by smartphones, are
comparable to those acquired by conventional tethered accelerometers.

Table 7. Error analysis of PA versus smartphone for the damaged case.

Story Bandwidth CC MMRE SSE

First story
(1.09, 2.18) 0.9714 0.1869 0.1408
(1.09, 17.25) 0.9715 0.1822 0.1382

(6.504, 17.25) 0.9724 0.3374 0.1210

Second story
(1.09, 2.18) 0.9352 0.4653 0.7001
(1.09, 17.25) 0.9337 0.4363 0.6813

(6.504, 17.25) 0.9330 0.4284 0.3260

Third story
(1.09, 2.18) 0.6314 2.7805 6.2735
(1.09, 17.25) 0.2051 1.5749 3.5765

(6.504, 17.25) 0.8267 0.7472 0.1187
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6. Conclusions

In this paper, shaking table tests of a three-story steel frame, instrumented with
conventional transducers and smartphones equipped to measure acceleration and inter-
story displacement, were conducted. Smartphones preloaded with Orion-CC and D-Viewer
were employed to enable these devices to record acceleration and displacement (i.e., using
video recordings). After exciting the undamaged structure using the El-Centro earthquake
ground motion record, damage was introduced to the system. Here, damaged case #1
was introduced by reducing the column cross-sectional area, and damage case #2 was
introduced by removing a rigid beam in the first floor of the system to engage rotary
dampers installed at the beam–column connections. First, this study compared smartphone
acceleration and inter-story displacement measurements with data obtained using tethered
accelerometers and laser displacement sensors. The acceleration response compared fairly
well, as did the inter-story displacement measurements; however, more significant errors
in inter-story displacements were observed for data corresponding to the third story,
especially in damaged case #2. This could have been due to experimental errors caused by
vibrations of the LDS mounting frame, significant damage to the column-beam joint in the
first story, measurement errors from smartphones, and the minor displacement in the third
story. Second, wavelet packet analysis was employed for the analysis of acceleration data,
and a damage index based on ERVD was computed for the different cases. The results
demonstrated the feasibility of performing damage detection using smartphones. Last, to
further validate the quality of smartphone measurements, inter-story displacement was
computed by means of frequency-domain integration of the acceleration measurements.
The cut-off frequency band was selected according to the first, second, and third modal
frequencies identified for comparing the integration accuracies. The results showed that
the integrated displacements compared well with the measured displacement when the
low cut-off frequency was based on the first modal frequency. The quality of integrated
displacements (i.e., using smartphone and conventional accelerometer data) compared
well with one another.

Overall, this study demonstrated the feasibility of using smartphones for the dynamic
monitoring of structural systems (e.g., frames) subjected to earthquake excitations. One
advantage of using smartphones is that smartphones house a diverse suite of sensors in
one compact form factor. While displacement and acceleration data were collected using
different smartphones in this study, in principle, both apps could be installed on a single
smartphone where collocated acceleration and displacement data could be acquired, which
would be convenient. In contrast, conventional instrumentation strategies would require
two separate sensors (as in the case of using an accelerometer and an LDS) to acquire
these two different sets of data. More realistic experiments for the monitoring of buildings’
responses will be conducted in the future.
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