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Abstract: According to EIA, the Heating Ventilation and Air Conditioning (HAVC) systems account
for about 25% of the U.S.’s total commercial building’s energy use. Therefore, advanced modeling
and optimization methods of the system components and operation offer great ways to reduce energy
consumption in all types of buildings and mainly commercial buildings. This research introduced
an innovative integrated two-level optimization technique for the HVAC system to reduce the total
energy consumption while improving the indoor thermal comfort level. The process uses actual
system performance data collected for the building automation systems (BAS) to create accurate
component modeling and optimization process as the first level of optimization (MLO). Artificial
neural networks were chosen to be the tool used to serve the process of modeling. The second
optimization level utilizes the whole system-level optimization technique (SLO) using a genetic
algorithm (G.A.). The proposed two-levels optimization technique will optimize the system set-
points, the supply air temperature, duct static pressure, minimum zone air flowrates, and minimum
outdoor air ventilation rate. The proposed technique has contributed to the field of modeling and
optimization of HVAC systems through several new contributions. (1) Implementing the demand
control methodology with the optimization process to modify the electricity consumption power
profile when the demand signal is received. (2) Implement the occupancy schedule inputs into the
optimization process to adjust the ventilation airflow rates accordingly. (3) Implement the real-time
zone occupancy sensor readings and adjust the zone’s ventilation flowrates and minimum flowrates.
(4) Lastly, implementing the method of zone minimum air flowrates setpoint rests to reduce reheat
requirements. The proposed optimization process was tested and validated, resulting in savings in
the total energy consumed by the chilled water VAV system by 13.4%, 22.4 %, followed by 31% for
July, February, and October, respectively.

Keywords: HVAC; chilled water VAV; modeling; optimization; ANN; demand control

1. Introduction

Electricity and natural gas accounted for about 93% of the total energy consumed in
commercial buildings in 2012. Natural gas was the source of 32% of total energy end-use
consumption in commercial buildings. At the same time, electricity’s share of total energy
end-use consumption in commercial buildings increased from 38% in 1979 to 61% in 2012.
Moreover, the heating, ventilation, and air condition systems account for about 25% of the
total commercial building’s energy use in the U.S. [1].

Therefore, advanced modeling and optimization methods of the system components
and operation offer great ways to reduce energy consumption in all types of buildings and
mainly commercial buildings.

Since HVAC systems modeling is a characteristic and challenging process thus, while
developing an HVAC system and component model, close attention should be given to the
accuracy of the model structure, model parameters, and constraints. As a result, the final
selected model can accurately deal with constraints, and uncertainties, control the time-
varying applications and time delays, and handle a broad range of operating conditions.
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This research will introduce an innovative method of modeling and optimizing HVAC
system operation to reduce the total energy consumption while improving the indoor
thermal comfort level. The data-driven two-level optimization technique introduced in this
research will utilize the use of real system performance data collected from the building
automation systems (BAS). The data will be used to create an accurate modeling and
optimization technique to predict the HVAC system components’ performance accurately.
This is the first level of optimization (MLO). This process will automate the model selection
process to deliver more accurate predictions with lower processing time.

The second level of optimization utilizes the whole system-level optimization tech-
nique. Thus, the process will include integrating the first level of optimization (MLO)
and the second level of optimization, a whole system performance optimization (SLO).
The proposed optimization technique will reduce the systems’ energy consumption while
improving the thermal comfort levels of the zones. The optimization tool that was selected
to achieve this goal is the genetic algorithm (G.A.). Figure 1 below shows a schematic for
the proposed integrated whole system model optimization process.
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Figure 1. A schematic of the integrated optimization process.

The proposed two-levels optimization technique will work on optimizing the system
setpoints. The system setpoints that were selected to be optimized are the supply air
temperature, duct static pressure, minimum zone airflow rates, and minimum outdoor air
ventilation rate.

The proposed two-levels optimization technique has contributed to the field of model-
ing and optimization of HVAC systems through several new contributions.

(1) Create accurate modeling and optimization techniques to predict the performance
of HVAC system components accurately. The accurate data-driven modeling and
optimization can be used for more accurate and flexible online implementation for
energy savings predictions than the physical model’s constrained and time-consuming
estimation.

(2) Proposed an integrated optimization process to optimize HVAC system energy con-
sumption performance and improve indoor thermal comfort.
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(3) Implementing the demand response methodology with the optimization process to
modify the electricity consumption power profile by alleviating the peak load demand
when the demand signal is received from the utility-providing companies.

(4) Implement the occupancy schedule and occupancy sensor reading inputs into the
optimization process to account for the number of occupants at each time step and
reduce the ventilation airflow rates to the required amounts. This approach will
enhance the sustainability goals of ASHRAE 62.1 by optimizing the zone level ven-
tilation ratio and fulfilling the gap in this related code, as well as reducing the total
system energy consumption.

(5) Implement the real-time zones occupancy sensor readings. This approach will cru-
cially affect the zones’ ventilation flowrates and zones minimum flowrates.

(6) Lastly, this research has implemented the method of zone minimum air flowrates
setpoint rests. This approach will allow this setpoint to be adjusted over the operation
time instead of using the constant design minimum values. This method is crucial to
balance between the ventilation airflow rate and the reheat energy consumption.

The proposed optimization process was tested and validated, and the system energy
savings and cost savings were calculated. This research has validated the use of the
proposed optimization technique in improving the energy efficiency of exciting systems.
As well as the capability of this method to be successfully implemented in online HVAC
system applications.

2. Research Background

Modeling and simulation of building system performance have a significant impact
on energy consumption through identifying ways for energy savings. Another way to
minimize the building’s embodied energy and operational energy is the life cycle energy
assessment (LCEA) approach [2].

Both modeling and life cycle assessment approaches have some drawbacks. For
example, the trend in LCEA application in residential buildings nowadays shows that
the application is suffering from inaccuracy due to an incomplete definition of the sys-
tem boundary and the lack of consensus on measurements of operational and embodied
energies [3].

One drawback of component performance predictions that are being used now is using
physical-based estimated data built on the rule of thumb approximation or experienced
estimation. Estimated data does not correctly evaluate the component performance because
it does not account for many factors, such as building occupants. Therefore, using actual
performance data for component modeling approaches will give more accurate results [4].
It will account for occupant behavior, operational inefficiencies, and interactive effects such
as the thermal interactions, such as convective heat transfer, between the zones that are
difficult or costly to account for in building energy models [5].

On the other hand, using energy simulation software to generate data used for the
LCEA applications provides less accurate results. These software packages can produce
detailed data on the annual energy consumption of buildings, but they can still be im-
proved. To improve the LCEA application in buildings nowadays, using existing buildings’
performance data is recommended and taking the users’ behaviors energy usage into
consideration [3].

A study compared the design stage estimated data vs. the building’s actual perfor-
mance using NBI’s (new buildings institute) database of LEED-certified buildings. The
study has found that the measured use intensity for 50% of the buildings deviated by about
25% from the projected performance, with 30% significantly better and 25% significantly
worse [6].

The simulated data or actual performance data can be used to develop data-driven
algorithms that can be used for more accurate and flexible predictions than the physical
model’s estimation data [7]. For example, most of the buildings in the United States are
now equipped with BAS (building automation system) to provide us with an outstanding
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amount of actual building operation data [8]. However, most of the researchers do not use
those data for modeling systems’ energy consumption. Instead, they tend to use estimation
data based on physical models and estimations, resulting in less accurate models.

An adequately identified model that correctly identifies the model parameters can
provide accurate or close to accurate results and, at the same time, may require minimum
calculations time [9]. Therefore, creating an accurate model through accurately identify-
ing their parameters became crucial. Parameter identification, influenced by input data,
excitation signals, and model structure, is essential in system identification accuracy and
efficiency [10]. However, even though parametric testing methods are crucial to determin-
ing the system order, there is still a lack of a methodical approach for the model structure
selection, order determination, and parameter identification [11]. Nowadays, the use of
the trial-and-error approach is favorable in the literature to decide on the model structure,
order, and parameters [9]. While the HVAC system, such as many other types of process
controls in certain features such as nonlinearity, time-dependent, time-varying system
dynamics, insufficient data, complex interactions between the components, and limited
supervisory controls, the HVAC systems modeling is a very characteristic challenging
process [12]. Thus, developing models that can accurately deal with constraints, and
uncertainties, control the time-varying applications and time delays, and handle a broad
range of operating conditions became crucial.

As previously stated, the HVAC components are complex nonlinear components,
and every component is different. Therefore, we cannot propose one model to fit that
specified component in all systems. Furthermore, choosing the best model structure is a
time-consuming process. Thus, an optimization process needs to be implemented to select
the best model and choose between several models to reduce energy consumption [13].

Also, most researchers nowadays are utilizing models in their simulated work. How-
ever, this approach’s drawback is when implementing a created model to simulated work
does not account for occupants’ influence, time, schedule, and interaction with the indoor
environment [14]. The occupant’s presence can be used as an input in most models and
directly influences the building’s energy consumption [15] have conducted a study show-
ing the influence of occupants on the buildings by stochastic models that emphasize the
occupants. In addition, [16] have developed models for overtime occupancy based on
measured occupancy data from an office building. The study shows that the presented
model can be used to generate occupant schedules to be used as an input for building
energy simulations.

Very few models have used actual performance data collected over a long performance
span that is more than three months [17]. Instead, some researchers have trained their
models using simulation data or a limited set of data collected in a short period, resulting
in less accurate results [14].

For example, a study conducted by [18] modeled the building systems using MATLAB.
They considered the building as a thermal network also; they used one season of data.
Therefore, the model can be considered incomplete because it covered only the winter
season, thus only the heating system was considered. Moreover, developing models
using a limited range of data (less than one month) is not accurate for predicting indoor
temperature and relative humidity, unlike other studies that developed models using a
short period. A study conducted by [19] developed models using an extended period (nine
months). The study has found that no model can predict indoor temperature and humidity
levels. This conclusion contradicts [20], who used a shorter period.

Moreover, there have been some studies that implemented the whole system opti-
mization technique in the past. Those studies used the approach of reseating the system
set points to reduce the total system energy consumption. A dissertation work conducted
by [21] proposed an integrated optimization technique to reduce the energy consumed
by chilled water VAV systems. The study has utilized the use of both physical models
and data-driven models to model the system component. Later, the optimization process
was implemented to optimize two system setpoints the supply air temperature and duct
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static pressure. The work was established on the assumption of a fixed minimum zone
airflow rate of 20% of the design flow, fixed occupancy schedule that is assumed to be
the maximum number of design people. In addition, the work has not accounted for the
occupancy sensors reading. The study has found that this approach can reduce the total
system energy consumption by at least 13%.

Therefore, this research will address the previous studies gap by using existing build-
ing data to create accurate data-driven models instead of using the rule method of operation
(Sequences of Operation for HVAC System) stated by ASHRAE guideline 36 [22] to fill the
first gap of using physical-based estimated data.

Also, a more extensive data span will be gathered from an actual system performance
in our study. Since previous research that used data collected over a short span or using
simulated data instead of actual data has resulted in less accurate results. Therefore, three
months of data were found to be sufficient for the type of application being examined in
this research.

Later, this study will create a modeling and optimization technique that utilizes all
data-driven models instead of hybrid modeling. That will ease the optimal structure
models finding using the optimization process in a sufficiently timely manner. Thus,
reduce the time required to select the optimal model structure to predict the component
performance and eventually predict the actual total system energy consumption.

Also, this research will propose implementing the occupancy schedule inputs into
the optimization process to account for the actual number of occupants at each time step
and reduce the ventilation airflow rates to the exact required amounts. This approach
will enhance the sustainability goals of ASHRAE 62.1 [23] by optimizing the zone level
ventilation ratio and fulfilling the gap in this related code, as well as reducing the total
system energy consumption. In addition, this research will implement the real-time zones
occupancy sensor readings. This approach will crucially affect the zones’ ventilation
flowrates and zones minimum flowrates. Lastly, this research will implement the method
of zone minimum airflow rates setpoint rests. This approach will allow this setpoint to be
adjusted over the operation time instead of using the constant design minimum values.
This method is crucial to reduce reheat requirements.

Finally, a new approach that was rarely introduced in any previous work will be
implemented in this research, which is the demand-control method. Implementing the
demand control methodology with the optimization process in response to the demand
signal received from the utility companies to modify the electricity consumption power
profile by alleviating the peak load demand when the demand signal is received.

3. Methodology

A previous study was conducted as part of this work to model and optimize the
chilled water VAV system components and published in MDPI (Talib et al. 2020). The
study compared between multiple learning algorithms such as the Support vector machine
(SVM), Artificial neural networks (ANN), and bootstrap aggregation (BSA). Furthermore,
the three modeling tools were trained and tested, and a comparison between the 3 was
made to choose the best modeling technique. Lastly, the ANN was selected to be the
modeling technique to further model the component of the HVAC system chosen [7,24].

After choosing the ANN as the modeling technique in the previous study, a data-
driven model was developed for each component of the chilled water VAV system using
ANN. First, the inputs and outputs of each model were tuned to create the structure of each
model. Later, a parametric study was conducted to test the performance of each model.

The testing results were compared against the actual system performance data, and
the optimal model structure with the lowest error value was selected. The components of
the system were thoroughly investigated and modeled.

Moreover, a model-level optimization (MLO) technique was used to automate this
process and help select the best model structure. The MLO process consists of 2 calculations
loops. The inner loop was used for the model parameter tuning and another outer loop
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for the proposed optimization process. A typical learning algorithm was used in the inner
loop where the model’s parameters were tuned. For this purpose, artificial neural networks
were selected. Moreover, the variables that were adjusted in the process were (1) input
time delays, (2) feedback time delays, and (3) the number of neurons (hidden layer size).
At the same time, the model parameters were such as weights and biases. The tuning of
the parameters will be completed on the whole testing data set.

The outer loop was the proposed calculation to determine the optimal model structure.
A high-level optimization will be performed in this loop to select the best model structure
that produces the minimum error values in model prediction. G.A. was chosen to be
used to solve the optimization process for this research. This process will not replace the
typical learning algorithm. Instead, it will automate the process to deliver more accurate
predictions with lower processing time.

The optimization results were compared against the parametric study results to
validate the results. Thus, the objective of the model level optimization was to find the best
model structure with the lowest error value over a predefined (training or testing) period
with an n data sample. The error values were measured in terms of MSE (mean square
error) and CV% (coefficient of variation).

The previously referenced study showed the proposed approach of the component
modeling and optimization (MLO). Only the cooling coil and fan were modeled, and results
were thoroughly discussed. The study suggested modeling the rest of the system components
in future work. Therefore, in this research, the rest of the components were modeled.

Figure 2 shows the rest of the system component data-driven models that were
developed in this research based on the previously described methodology. Lastly, this
work will not repeat the modeling process and will only state the optimal model structure
for each component. Instead, this research will focus on the whole system integrated
two-level optimization technique.
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The main objective of this research was to optimize the performance of HVAC systems,
which will be conducted by integrating both the component model optimization level
(MLO) and the whole system optimization level (SLO). Therefore, the accuracy of the
model-level optimization process is crucial for the system’s total energy consumption
prediction. It is noted that the results produced by the MLO process are similar in value to
those obtained in the parametric study, which gave the green light to continue with the
next level of optimization process (SLO).

Table 1 shows the optimization process results for the chilled water VAV component
model. Again, the results produced by the optimization tool are similar in value to those
obtained in the parametric study.

Table 1. Optimization Process Results for the chilled water VAV system components.

Component Model’s
Input

Model’s
Output

Number of
Neurons

Time
Delay

Feedback
Delay

Minimum
CV%

Minimum
MSE

Cooling coil

Supply hot water
temperature, hot water

flow, mixed air
temperature, and supply

air temperature.

Total load 30 3 3 1.45 0.019

Chilled water
flow 30 1 1 0.23 0.0056

Return water
temperature 5 1 3 0.401 0.0605

Fan System airflow rate and
fan pressure Fan power 20 2 2 0.4021 0.0322

Chiller

Chilled water flow, supply
and return water

temperature, and the
outside temperature

Chiller power 15 1 2 2.702 0.0302

Chilled water
pump

Chilled water flow and
pump pressure Pump power 5 3 3 0.6271 0.0417

Due to the significance of each component in the system, we cannot propose one
model to fit all the components in the system. Moreover, choosing the best model structure
was a time-consuming process. Moreover, here comes the optimization process role in
automating the process of selecting the optimal model structure for each application.

The results have validated the use of the MLO process that achieved higher accuracy
values when compared against the one conducted by the parametric study. Figure 3
below shows the simulated data vs. the actual performance data for the fan power model.
Since the data were collected in a 1 min time step, the figures were crowded and complex
to examine for the entire 3 months examined. Therefore, the figure shows 10 days of
performance only for clarity of the results. The figure reflects how accurate the model was
in predicting the fan power.

After modeling and optimizing all the components of the selected HVAC system,
the whole integrated system optimization process (SLO) developed in this research will
optimize the system setpoints over a short period of optimization (15 min). First, the
genetic algorithm was used to find the energy used by each system component in the
model level (MLO). Later, the integrated components model together will form the system
model. Moreover, the total system energy use will be calculated as the output of the system
model at each time step in response to the controller setpoints and operating modes.
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Later, the SLO process developed in this research using a genetic algorithm will
optimize the total energy consumption through optimizing the system operation set points
at each timestep (15 min). The setpoints (problem variables) that were selected to be
optimized in this research were:

1. The optimal supply air temperature setpoint,
2. Duct static pressure setpoint,
3. Minimum zone airflow setting,
4. Minimum outdoor air ventilation rate,

In developing the whole system integrated optimization process proposed in this
research, accurate modeling and optimization of the system components (MLO) was
crucial. Since those components’ models impact the accuracy of the objective function of
the optimization process. Those component models integrated with each other will be
the main part of the system model. The system-level optimization process, besides the
component models, will include a few other models and calculations as follow:

• The system basic calculations model calculates the zones’ humidity ratios, supply,
return, mixed air temperatures, and economizer condition (on/off).

• Constraint model that specifies the design constraints and assigns a power penalty.
• An HVAC simulation model to calculate the total power. This model will read the

user inputs such as the system loads, outside air conditions, design system parameters
such as efficiencies and pressure drop, schedule, and electricity demand signal.

• Total pressure model that specifies all the design static pressure values and limits.
• Ventilation model that specifies the zone minimum air flowrate requirements based on

ASHRAE 62.1 standard. This model will call for the occupancy sensor signal, schedule
number of people, and demand signal.

• The zone model specifies all the zones’ design conditions and requirements in terms
of supply air temperature, sensible load, minimum airflow rate, and reheat loop.

• System model to simulate total energy use as a function of optimal variables. This
model will specify the variables that will be optimized in this research while calling
for all the component models that were previously described as well as all the models
and calculations above.
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The SLO process using G.A. will call for the HVAC simulation model to calculate the
total power consumption using Equation (1) below.

Total = total power +chiller power + fan power + heating energy + reheat (1)

That the chiller power and fan power are electric output measured in kWh. At the
same time, the heating energy and reheat are measured in BTU. Therefore, to examine the
total power correctly, the units need to be uniformed first.

According to (EIA, 2021), the price of kWh of electricity in Ohio was 9.78 cents/kWh.
In contrast, the average Ohio price of natural gas was $0.85 per therm. The energy use was
converted to the total cost as in Equations (2) and (3) below. Later in Equation (4), the total
cost was divided by the kWh price to obtain the equivalent energy use in one form (kWh).
As discussed in the results section, this approach was implemented in the optimization
process to calculate energy use accurately using Equations (2)–(4) below.

Therm = 100,000 BTU (2)

Total cost = (ChillerPower + FanPower) × 0.10 + ((abs(Rheat) + abs(qht))/100,000) × 0.85 + PowerPenalty (3)

Total = Total cost/0.10 (4)

Figure 4 shows a schematic of the whole system-level optimization process.
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The SLO process will calculate the total energy consumption at each timestep as
well as the optimal variables (setpoints). At the same time, considering all the design
constraints imposed by the codes and regulations for the system design. For the supply air
temperature, the range of temperature that was examined in this research was 55–65 ◦F
(12.8–18.3 ◦C). While the fan duct static pressure range was 0.2–2.5 in.w.g. (0.007–0.09 psi).
Any zone with less than 0.2 duct static pressure will be starving for air, and that will cause
termination of that iterations.

The proposed integrated 2-level optimization process in this research will contribute to
the field of modeling and optimization of the HVAC systems performance in many aspects.
This process has implemented several new approaches with the regular optimization
approach aiming to reduce the total system energy consumption while improving the zone
thermal comfort and therefore reduce the cost of operation as well as the environmental
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benefits from lowering the usage of the system that means less greenhouse gas emissions.
Furthermore, this research has introduced the following new contributions:

1. The demand control method and implementation in the optimization process after
receiving the demand signal from the utility companies. Where the demand control is
a process that is applied to the demand side to influence and modify the electricity
consumption power profile by alleviating the peak load demand instead of increasing
the power generation and enhancing the transmission and distribution network. It is
a partnership between the supplier and consumer sides, aiming to maximize mutual
benefits. Where electricity companies nowadays are raising the price of electricity
kWh in peak hours. Therefore, implementing the demand control to regulate the
individual’s electricity use through peak hours will have several benefits for the
consumer, the provider, and the environment.

A methodology was proposed that responds to the demand response signal from the
electricity companies for the peak hour usage when the electricity prices increase. The
system will respond to this signal with an energy conservation method that reduces the
zone airflow rate to less than the minimum. For example, each zone’s minimum zone
airflow rate under normal conditions is 20%, while through the peak load where the
demand signal is received, the zone airflow rate will drop to 10%. This approach will lower
the energy consumption for that period, as shown in the results section.

2. The proposed optimization process had an occupancy scheduling method imple-
mented in it. Where most of the base case systems nowadays do not count for
real-time occupancy, that will eventually affect the ventilation airflow rate of the
system. Thus, the constant occupant count in the base case designs will require more
ventilation airflow rate that increases the total system airflow rate and requires more
energy. On the other hand, implementing the accurate, current occupancy schedules
method will reduce the ventilation rate to the required airflow rate. This approach
will enhance the sustainability goals of ASHRAE 62.1 by optimizing the zone level
ventilation ratio and fulfilling the gap in this related code. While at the same time
reduce energy usage. The occupancy schedule can be updated based on real-time
knowledge of the occupant’s count, zones type of use, and schedule.

3. Occupancy sensors implementation. The other approach implemented in the opti-
mization process was the occupancy sensor readings against the baseline cases that
do not count for occupancy sensors in adjusting the system performance, such as flow
rates and ventilation ratio. This approach will crucially affect the zones’ ventilation
flowrates and zones minimum flowrates. Updating that information in real-time
applications will lower the ventilation flow rates and therefore reduce the total energy
consumption.

4. Zone Minimum airflow rate setpoint. Optimizing the minimum zone air flowrate
setpoint will be crucial to reduce the reheat energy. The codes and regulations
suggested using 20% of the total design flow rate as a minimum flow rate for each
zone. In this research, the zone minimum flowrate range that was examined was from
20–30%. Savings in the reheat energy will be reviewed and discussed later.

The optimized results will be compared against a baseline case scenario of a baseline
commercial building operating under normal operation protocols in the best practice
buildings to test the optimization process. The building setpoints will be set to 65 ◦F
(18.3 ◦C) in the summer, 55 ◦F (12.8 ◦C) in the winter, 60 ◦F (15.6 ◦C) in the fall and spring
season. At the same time, the duct static pressure was set to be 2.5 throughout the year.
Moreover, the minimum zone air flow rate was 20% of the design flow. Moreover, the
occupancy schedule was fixed throughout the year to the maximum number of people
for each zone. Moreover, occupancy sensor reading was not accounted for in the system’s
real-time operation.
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Data Collection

For the component modeling and optimization level, actual data collected from an
existing system was used. The data were collected from the Building Energy Assess-
ments, Solutions, and Technologies (BEAST) lab. The lab was located at the University of
Cincinnati, Cincinnati, Ohio (BEAST lab, 2020).

The lab was equipped with several full-scale multi-zone HVAC systems, such as the
chilled water VAV system and chilled water central plant and hot water central plant
produce chilled and hot water to terminal units. In addition, the lab was equipped with a
BAS system where actual performance data can be collected and organized then transferred
into data sheets to prepare for the modeling testing and training. Figure 5 shows the BEAST
lab layout.
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After modeling the components of the selected HVAC system and developing the
proposed integrated 2-level optimization technique, the process of testing and validation
was the next step. Due to the small size of the BEAST lab for this type of application
that was designed to be implemented in large commercial buildings. A 5 zones office
building was selected to be the baseline case of this study where the accuracy of the whole
system optimization process could be tested, and actual energy savings could be calculated.
Moreover, because there was a lack of access to a real building with real performance
data available, a simulation building using Energyplus was used. The building will be
simulated using Energyplus software. The main goal of this simulation process was to test
and validate the proposed integrated optimization process. Building performance data that
were required as the user input for the optimization process was collected. Those data were
total, sensible, and latent load, system flow rates, occupancy schedule, simulation weather
conditions, ventilation flow rates, supply, return, and mixed air temperatures and humidity
ratios. The building used was a 5 zones 3-story office building of 53,660 ft2 (4985 m2)
located in Cincinnati, OH. The building floor-to-floor height was 13 ft. The floor-to-ceiling
height was 9 ft (4 ft above the ceiling plenum) with a window to wall ratio of 33%. The
glazing still height was 3.35 ft. The windows were evenly distributed along 4 building
sides. Moreover, there was no shading provided. The thermal zoning of the building was a
core and perimeter zoning. The percentage of the floor area was 40% perimeter and 60%
core. For the purpose of this research, only 1 floor will be simulated for clarity of discussion
and less simulation time. Figure 6 shows the building geometry and how the other floor
was excluded in the simulation process.
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Figure 6. The building geometry.

The building was equipped with a chilled water VAV system for cooling and a gas
furnace boiler for heating. In addition, each floor was equipped with a separate packaged
AHU. Figure 7 shows a schematic of the packaged chilled water VAV unit that serves the
5 zones.
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Figure 7. The layout of the packaged VAV unit that serves each five zones.

The building was simulated to be located in Cincinnati, OH. The weather file that was
used in the simulation process was (Weather File>>Cincinnati Municipal Ap Lunki OH
USA TMY3 WMO#=724297). In addition, by examining the heating and cooling degree
days for a 50 ◦F and 65 ◦F (10 ◦C and 18.3 ◦C) balance temperature in the weather file and
the “ASHRAE 2005 ASHRAE Handbook—Fundamentals (S.I.)” weather file. It was noted
that the cooling degree days around June, July, August, and September were the most,
indicating that those were the hottest months in Cincinnati. While the heating degree days
indicated that the coldest months in Cincinnati were January, February, March, November,
and December. Therefore, the weather in Cincinnati tends to be hot and humid in the
summer and cold and snowy in the winter.
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The simulation building was used to generate the building loads, supply airflow
rates, supply, mixed and outdoor air conditions, and occupancy schedule at each time step
of 15 min. Those variables were a crucial step for the proposed optimization process to
calculate the optimal system setpoints. After simulation, all the loads, building simulated
data, and program reads were exported and organized into an Excel file to serve as the
user input file. Finally, that system information was generated for a period of 1 year of
system performance with a time step of 15 min.

4. Results

To examine the system performance and calculate the expected system savings after
implementing the proposed optimization process. We cannot examine the performance all
year round since it is a time-consuming and redundant process. For clarity of discussion,
only one day from each season will be analyzed, reflecting the system performance in the
cooling mode, heating mode, and simultaneous heating and cooling. The savings were
calculated for each day in terms of kWh.

A day was selected from July, January, and October to be examined, reflecting the
summer performance in the summer, winter, and fall seasons, respectively. This will allow
for a better discussion of the results. Table 2 shows the weather conditions for each day
analyzed based on the ASHRAE weather condition for Cincinnati, OH.

Table 2. Weather information.

Month Condition Max (◦F) Min (◦F) Daily Avg. (◦F)

July
Dry bulb 97.88 53.96 77.36

Wet bulb 85.28 49.64 69.71

Dew point 81.86 45.86 66.38

January
Dry bulb 55.94 3.02 31.64

Wet bulb 51.98 2.3 28.94

Dew point 48.92 −0.94 24.62

October

Dry bulb 84.02 33.98 53.6

Wet bulb 75.2 31.87 50.24

Dew point 71.96 28.94 47.48

The results of the optimized performance of the system will be compared against
the standard practice used in most systems nowadays to calculate the proposed method
savings. The setpoints vary based on the outside temperature in standard practice, as
shown in Figure 6 below. The supply air temperature was fixed to 55 ◦F (12.8 ◦C) when
the temperature outside was more than 65 ◦F (18.3 ◦C), which was the case in the summer
season. Moreover, the supply air temperature was set to 65 ◦F (18.3 ◦C) in the winter
when the temperature outside was less than 55 ◦F (12.8 ◦C). However, in the fall and
spring seasons, the temperature outside varied. Therefore, some practices set the supply
air temperature to 60 ◦F (15.6 ◦C), while the best practices reset the supply air temperature
based on the outside temperature. The relationship between the supply air temperature
and the outside air temperature was linear, as shown in Figure 8 below.

The equation used to describe that linear relation and find the supply air temperature
based on the outside air temperature is shown in Equation (5) below.

SP = ((SPmax − SPmin))/((Tomax − Tomin)) × (To − Tomin) + SPmax (5)

where:

SPmax: Maximum design supply air temperature (70 ◦F, 21.1 ◦C)
SPmin: Minimum design supply air temperature



Buildings 2021, 11, 488 14 of 24

To: Actual outside temperature at the specified time step.
Tomax: Maximum outside air temperature.
Tomin: Minimum outside air temperature.
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Therefore, the baseline case selected for this research will follow the best practice
supply air temperature reset process instead of a fixed supply air temperature of 55 ◦F
(12.8 ◦C) throughout the year. In contrast, the supply air temperature will be 55 ◦F (12.8 ◦C)
for the summer season and 65 ◦F (18.3 ◦C) for winter. Moreover, for the spring and fall
season, Equation (5) will be used to reset the supply air temperature when the outside air
temperature was less than 65 ◦F (18.3 ◦C) and more than 55 ◦F (12.8 ◦C).

While the duct static pressure of the fan was set to 2.5 in. w.g, all year round, the
zone minimum airflow rate was set to be 20% of the design flow. At the same time, the
occupancy of the standard practice was fixed throughout the operation period. Moreover,
it equals the design maximum number of people for each zone. For the baseline case,
the occupancy for zone 1, 2, 3, 4, and 5 was 53 people, 11people, 7 people, 11people,
and 7 people, respectively.

The baseline case was run for the previously mentioned set points, and the system
performance at each timestep was saved as the baseline case output file. The output file
contains the total energy consumption and the system performance. The total energy con-
sumption was represented in Equation (1). In comparison, the system performance consists
of the system flowrate, minimum flowrate for each zone, outdoor airflow, ventilation flow,
and mixed air temperature.

Later the system was run at each timestep with implementing the proposed integrated
two-level optimization process. The optimization process proposed to optimize the system
setpoints had a range of supply air temperature from 55–65 ◦F (12.8 ◦C–18.3 ◦C). While the
fan duct static pressure ranged from 0.2–2.5 in. w.g. In addition, the outdoor air ranged from
20–30% of the design flow. In addition, the optimization process had the demand control
methodology applied to it. The demand control was selected to be from 1:00–3:00 p.m.
based on electricity peak hour prices. Finally, the output file of the optimization process
was saved as the near-optimal performance scenario.

While the occupancy schedule, unlike the fixed type for the standard practice, was
implemented as a user input that varies throughout the operation period. The occupancy
schedule proposed for this research is represented in Table 3 below. For zones 3 and 4,
the occupancy was zero for the period of 10:00–11:30 a.m., assuming that this reflects the
occupancy sensors’ readings.
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Table 3. Proposed occupancy schedule.

Time of Day Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Assumptions

8:00–9:00 a.m. 10% 10% 10% 10% 10% Beginning of the workday, gradually
9:00–10:00 a.m. 30% 30% 30% 30% 30% Beginning of the workday, gradually

10:00–11:30 a.m. 95% 95% 0% 0% 95% close to full working staff
11:30 a.m.–1:00 p.m. 50% 50% 50% 50% 50% Lunch break period

1:00–4:00 p.m. 100% 100% 95% 95% 95% close to full working staff
4:00–5:00 p.m. 50% 50% 50% 50% 50% End of workday, gradually
5:00–6:00 p.m. 10% 10% 10% 10% 10% End of workday, gradually
8:00–9:00 a.m. 10% 10% 10% 10% 10% Beginning of the workday, gradually

Figure 9 shows the sensible load for the three days analyzed. From the figure, we can
tell that the zones were occupied from 8:00 a.m.–6:00 p.m., which was the period that will
be examined in this research. It is clear that the five zones required all cooling in July. While
in January, they required heating only. In contrast, they required simultaneous heating and
cooling in October. That was more likely the case in most of the fall and spring seasons.
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Figure 9. The five zones sensible load in BTU for each day being analyzed.

Figure 10 below shows the supply air temperature for the three analyzed days. As
previously discussed, as in the best practice, the baseline case will have fixed setpoints
of 65 F◦ (18.3 ◦C) and 2.5 in.w.g. duct static pressure. While the near-optimal supply air
temperature for July was primarily close to the baseline case 55 ◦F (12.8 ◦C), which was
expected in July, where mainly cooling was required. Except before 10:00 a.m., where
the temperature was around 60 ◦F (15.6 ◦C), and then starts dropping until it is fixed
to 55 ◦F (12.8 ◦C). This temperature rise was justified to save on the reheat. The zones
were minimally occupied, and the cooling loads were low at that period, thus the zone
temperature starts dropping, which will trigger the reheat to be turned on. Raising the
supply air temperature will require less chiller power and help maintain the zone setpoints
as the boilers were typically turned off in the summer season, thus reheat was not an
option.
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In contrast, the baseline case had a supply air temperature fixed to 65 ◦F (18.3 ◦C) for
January. At the same time, the near-optimal supply air temperature was 65 ◦F (18.3 ◦C)
in the early morning due to the higher building heating load. Therefore, the maximum
supply air temperature was necessary to meet the building load. However, the supply air
temperature starts dropping slowly at around 11:30 a.m. due to the decrease in the building
heating load until it reaches the minimum of 59 ◦F (15 ◦C) at 12:15 p.m. Therefore, the
supply air temperature drop is expected to save on the heating power at that period. Still,
it was also anticipated to raise the reheat power necessary to maintain the zone setpoints.
However, the savings in the heating power have exceeded the rise in reheat energy, as will
be explained later.

While for October, the system’s performance in the fall seasons was a little tricky
because it was hard to find the appropriate supply air temperature to meet the different
heating and cooling loads throughout the day. The baseline case supply air temperature
was reset based on Equation (5) above. While implementing the optimization process has
resulted in the near-optimal case, it introduced a lower supply air temperature in the early
morning until 11:30 a.m., meaning savings on heating energy will be achieved. In contrast,
more reheat energy will be required to maintain the zone setpoint. Moreover, more system
flowrate will be introduced.

After 11:30 a.m., the supply air temperature reached a minimum of 55 ◦F (12.8 ◦C) to
meet the building cooling load and started to increase again gradually until 6:00 p.m.. This
slight increase in the supply air temperature will result in lower chiller power consumption.
However, this will also happen at a higher system flow rate than the baseline case since we
need to push more air into the zones at a slightly higher temperature to maintain the zone
setpoint than the lowest air temperature, meaning more fan power.

Figure 11 shows the near-optimal duct static pressure against the baseline case of a
constant 2.5 in. w.g. Again, it was noted that the near-optimal duct static pressure is always
less than the baseline case, which means resulting in fan power savings.
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After examining the duct static pressure trends, the total fan power savings were
analyzed. The total fan power savings are shown in Figure 12 below.
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For July, implementing the integrated two-level optimization technique has resulted in
16.7% savings in fan power. In addition, implementing the demand control process affected
the fan power savings significantly. Due to the minimum zone airflow rate reduction, the
savings were 16.7% and increased to 25.5% afterward.

For January, the near-optimal case resulted in a 38.6% savings in the fan power
compared to the baseline scenario. In addition, implementing the demand control process
has increased the fan power savings to 41% by reducing the minimum zone airflow rate
from 20% to 10%.

While for October, the near-optimal duct static pressure was significantly less than the
fixed baseline case duct static pressure. Therefore, significant fan savings were recorded.
The total fan savings recorded after implementing the integrated two-level optimization
process was 70% compared to the baseline case. In addition, implementing the demand
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control process increased the fan power savings from 70% to 74% due to reducing the
system airflow rate.

The savings in the fan power were attributed to optimizing the zone minimum airflow
rate setpoint introduced in the optimization process and implementing the demand control
method that reduces the zone airflow rate when the demand signal response was received.
As well as adjusting the minimum ventilation flow rate required after accounting for the
occupancy schedule. Unlike the baseline case scenario with a fixed number of people
(the design maximum number of people) and, therefore, a higher ventilation airflow rate.
Figure 13 below shows the system airflow rate and the ventilation airflow rate.
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Note that implementing the demand control method with the optimization process
has reduced the zones airflow rate. In contrast, it did increase the ventilation airflow rate
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due to the reduction of system ventilation efficiency when reducing the airflow rate to
maintain a healthy breathing zone.

Later, the chiller power savings were examined. For July, the chiller savings were
trending with the supply air temperature, the building load, and the occupancy schedule.
Therefore, the savings in the chiller power was found to be 9.74% after implementing
the optimization process. Furthermore, due to the higher supply air temperature in the
morning and accounting for the occupancy schedule, less ventilation airflow rate was
needed, which means less fresh air was introduced that needs to be cooled. In addition,
implementing the demand control process has increased the chiller power savings to 10%.

For January, when the system was in the heating mode, no chiller power was recorded.
While for October, increasing the supply air temperature after 1:00 p.m. as shown in

Figure 8 for the near-optimal case when the system was in the cooling mode resulted in
chiller power savings compared to the baseline case with a minimum supply air temp of
55 ◦F (12.8 ◦C). Therefore, the chiller power savings after implementing the optimization
process was calculated to be 30.4%.

In addition, implementing the demand control method increased the chiller power
savings from 30.4% to 32.4% due to reducing the system airflow rate. Figure 14 below
shows the chiller power savings for the analyzed period.
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Such as the chiller, the heating energy was examined. For July, there was no heating
recorded since the system was in the cooling mode.

While for January, a constant supply air temperature of 65 ◦F (18.3 ◦C) required more
heating energy for the baseline case, unlike the optimized case with a lower supply air
temperature resulting in lower heating energy consumed by the boiler. Still, it will result in
increasing the reheat energy needed to maintain the zone setpoint. Therefore, implementing
the two-level optimization process resulted in 50% savings in the reheat energy. On the
other hand, implementing the demand control method lowered that percentage of savings
to 44.7%. Due to introducing more outdoor airflow rates required for ventilation that
needed to be heated, as shown in Figure 13b.

For October, slightly reducing the supply air temperature in the morning when the
system was in the heating mode reduced the boiler’s heating power when compared
against the baseline case. The heating power savings were calculated to be 47%. While
no changes were recorded after implementing the demand control process. Because no
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heating was required for the proposed implementation period, Figure 15 below shows the
heating energy savings for the analyzed period.
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Lastly, the reheat energy required to maintain the zones setpoint was examined. For
July, no reheat energy was recorded due to the boilers being typically turned off in the
summer season. Implementing the optimization process had maintained the zone setpoint
by increasing the supply air temperature when the zone temperature dropped below the
setpoint as described previously, resulting in chiller power savings.

For January, when the supply air temperature was dropped below 65 ◦F (18.3 ◦C), the
reheat energy was anticipated to increase in the near-optimal case in favor of saving on the
heating energy. Thus, the reheat energy increased by 5.4% for the near-optimal case when
compared against the baseline. Reseating the supply air temperature increased the reheat
energy but significantly reduced the heating energy. Therefore, savings were still achieved

On the other hand, implementing the demand control method lowered this percentage
to 0.5% due to reducing the zone airflow rate and, therefore, less reheat energy required to
treat that amount of air and raise its temperature to meet the zone setpoints.

The same case implies for October performance. Dropping the supply air temperature
for the near-optimal case until 1:00 decreased the heating energy, but it also meant requiring
more reheat energy. At the same time, the higher supply air temperature of the baseline
case did not necessarily imply requiring zero reheat energy. This was because the baseline
case had lower system flow rate, as shown in Figure 13a. As a result, the higher supply air
temperature was not enough to meet the zone load. Therefore, more reheat energy was
consumed to raise the supply air temperature even more and meet the zone setpoint. Thus,
reheat energy savings was still recorded after dropping the supply air temperature for the
near-optimal case.

The total reheat energy saving after implementing the optimization method was
calculated to be 2.3%. While implementing the demand control process increased the
percentage of savings to 6.7%. Figure 16 below shows the heating energy savings for the
analyzed period.
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Finally, after examining each component’s savings. The total energy savings of the
system was calculated as described in Equation (1). It was found that the total energy
savings of the system after implementing the two-level optimization process was calculated
to be 11.3% when compared against the baseline case. While implementing the demand
control method into the optimization process increased the total energy savings to 13.4%
for the selected day in July.

For January, the total energy savings for the system after implementing the proposed
integrated two-level optimization process was calculated to be 19.9% when compared
against the baseline case of constant setpoints. Moreover, implementing the demand
control method into the optimization process has increased the total energy savings of the
system to 21.2%

While in October, implementing the integrated two-level optimization technique
resulted in 32% savings in the system’s total energy consumption. In addition, implement-
ing the demand control methodology in the integrated two-level optimization process
increased the total system savings to 34.4%. Figure 17 below shows the total system savings
for the analyzed period.
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5. Limitations

In the research background, this work has addressed some of the research gaps that the
previous research has not addressed that needs to be better examined. However, some of
them were addressed in this work, while the rest were not due to some research limitations.
Therefore, this section shows the research limitation that prevented this research from
addressing that research gap.

1. The proposed tool in this research was designed to be implemented in real commer-
cial buildings. However, an actual building with real-time data was not available.
Therefore, a simulation building was used to test the proposed methodology. An
existing building implementation will be addressed in future work.

2. This research examined previous studies and found that models developed using a
long period of collected data resulted in more accurate experimental results. Thus,
depending on the complexity, type of application, and previous knowledge of the topic
being modeled, the duration of the data collection period was specified. However,
based on the previous studies, a data span of a week or two resulted in less accurate
models. Therefore, a more extensive data span was gathered from an actual system
performance in our study. Three months of data were found to be sufficient for the
type of application being examined in this research. However, a larger span of data
will be examined in future work, and the accuracy of the results will be examined.

3. Finally, a new approach that was rarely introduced in any previous work was im-
plemented in this research, which was the demand-control method. Implementing
the demand control methodology with the optimization process in response to the
demand signal received from the utility companies to modify the electricity consump-
tion power profile by alleviating the peak load demand when the demand signal was
received. This approach was hypothetically implemented in this research, where it
was assumed that the demand response signal would be received from the utility
company from 1:00–3:00 p.m.. Therefore, future work will seek the possibility of
connecting with the utility provider to areal building and implement the demand
control method. Moreover, results will be further examined.

6. Conclusions

This research was conducted to develop a computational data-enabled two-level
optimization technique to reduce the building HVAC energy use in large commercial
buildings, improve the whole system efficiency, and maintain the occupant’s comfort
level. The research has examined the chilled water VAV system that is commonly used in
commercial buildings.

The research proposed an innovative optimization method. The method integrated
two levels of optimization. The first level of the process was a component modeling
optimization (MLO) designed to optimize the model’s structure. The models were tested
and trained and using actual performance data collected from an exciting system located
in the BEAST lab at the University of Cincinnati, Cincinnati, Ohio. The model that held
the lowest error value was selected as the best modeling structure. The error values were
measured in terms of MSE and CV%.

Accurate component modeling and optimization techniques are crucial for the ac-
curacy of the whole system optimization process results. Therefore, all the component
models will be integrated to form the system model that mimics the performance of the
existing physical system.

After modeling all the components of the selected HVAC systems, a parametric
study was conducted to choose the best model structure manually. Later the MLO was
implemented to automate the process and validate the results. The MLO results were
compared against the one conducted through the parametric study. The optimization
process has supported the parametric results where similar results were found. This
process was conducted as part of this work and published previously in MDPI buildings.



Buildings 2021, 11, 488 23 of 24

The shown MLO results values are not standard values for any type of application,
but they are based on its inputs and outputs and the selected datasets. The models can be
adjusted to different applications and data sets and will hold different structure and error
values. It was only showing a proposed methodology and used to test the accuracy of the
MLO process. In addition, these results have proved that artificial neural networks can be
a valuable tool in modeling the performance of HVAC systems

The second level of optimization was the whole system-level optimization (SLO)
presented in this research. Where all the optimized components models were integrated
and optimized to form the “system model.” The output of the system model is the total
energy consumption of the system at each time step. Later, the two optimization levels are
integrated to optimize the system setpoints that will reduce the total energy consumption.

That is why the accurate component modeling and optimization technique is crucial
for the system’s performance optimization. If the component models were not accurate,
then the system’s total energy consumption prediction would be faulty, resulting in less
accurate SLO performance when optimizing the system setpoints.

The total savings achieved, and the percentage of savings for each component that
was achieved after implementing the proposed two-level optimization approach are shown
in Table 4 below.

Table 4. The total savings achieved and the percentage of savings for each component.

Month Component
Savings % under

Normal Conditions
Optimization

Savings % under
Optimization with
Demand Control

12 July
Total 11.3 % 13.4%

Fan 16.7% 25.5%

Chiller 9.74% 10%

9 January

Total 19.9 % 21.2%

Fan 38.6% 41%

Boiler 50% 44.7%

Reheat −5.4% −0.5%

10 October

Total 32 % 34.4%

Fan 70% 74%

Chiller 30.4% 32.4%

Boiler 47% 47%

Reheat 2.3% 6.7%

This research has validated the use of the proposed optimization technique in im-
proving the energy efficiency of exciting systems. As well as the capability of this method
to be successfully implemented in online HVAC system applications. At the same time,
developing several aspects of the industry.
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