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Abstract: Thermal comfort and indoor air quality (IAQ) of educational buildings can affect students’
academic performance and well-being and are closely related to ventilation energy consumption.
Demands of the indoor environmental quality within the classroom generally vary with the education
levels and result in ventilation energy consumption accounting for a considerable proportion of
the total energy use in bulk educational buildings. Its huge energy-saving potential is attracting
worldwide attention from scholars and governments. Therefore, appropriate operation strategies of
ventilation systems should be adopted to effectively reduce energy consumption without sacrificing
thermal comfort and IAQ. However, the absence of relevant standards and guidelines for designing
a quality classroom environment considering the special features of educational buildings remains
an important research question. This study conducts a comprehensive review to determine research
gaps and identify future directions for the interaction between thermal comfort, IAQ and ventilation
energy consumption for educational buildings. The review results show that: (1) The thermal comfort
prediction model should consider the influences of genders, ages and socioeconomic backgrounds;
(2) The mixed-mode ventilation coupling the natural and mechanical approaches is preferred given
its advantage of lower energy consumption and improved thermal comfort, but its control strategies
need further exploration; (3) Optimizing passive design parameters of buildings (e.g., window to wall
ratios, window orientations and sun shading installations) can significantly reduce the ventilation
demands while maintaining indoor thermal comfort; (4) More studies are required for investigating
thermal comfort in educational buildings during the heating period; and (5) IAQ of university
buildings clearly requires further studies, especially on bacterial and fungal aerosol pollutants, for a
more comprehensive assessment of the built environment.

Keywords: thermal comfort; indoor air quality; ventilation energy consumption; educational buildings

1. Introduction

The indoor environmental quality (IEQ) performance within the buildings affects occu-
pants’ health, emotion, and productivity [1]. 12.6 million deaths were caused by unhealthy
environments as estimated by the world health organization (WHO) [2]. Given this severe
situation and significance of indoor environmental quality, it arouses worldwide attention
from scholars and governments, and much further detailed researches are carried out.

Compared with residential and commercial buildings, educational buildings have a
higher population density of 3–4 times [3]. Therefore, the indoor environmental quality in
schools becomes more significant because higher CO2 concentrations reduce productivity
and limit academic performances, inducing healthy risks to students [4,5]. Moreover,
students usually spend 6–8 h on average per weekday in classrooms [6], occupying more
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than 40% of their daytime [7]. Thus, considering the effects on academic performances and
long exposure time, the indoor environmental quality within the educational buildings
deserves more attention.

The perceptions of the indoor environmental quality for students are influenced by
multiple parameters [8]. The corresponding aspects can be grouped into four categories, in-
cluding thermal comfort, indoor air quality (IAQ), visual comfort, and acoustic comfort [9].
Among all these mentioned variables, thermal comfort and IAQ are the key factors that
significantly affect students’ feelings of the indoor environments, followed by acoustic and
visual comforts [5,10]. Poor thermal comfort and IAQ can lead to increased health-related
symptoms, causing absenteeism and loss of concentration [3]. Noticeably, thermal comfort
can affect the perception of IAQ to some extent, increasing the tolerance of uncomfortable
IAQ for occupants [11,12]. At present, the IAQ is exceptionally crucial for a quality indoor
environment, taking the impact of COVID-19 into account [13].

Thermal comfort was defined as “the condition of mind that expresses satisfaction
with the thermal environment” in ASHRAE Standard 55. According to the definition by
Nicol et al. [14], Comfort or neutral temperature can be reached when the largest number of
participants are satisfied [15]. Based on previous studies, thermal comfort affects students’
academic performances and study efficiency [16,17]. The unacceptable thermal conditions
caused by excessively high or low temperatures correspond to the distraction and reduction
of concentration, slowing down the studying progress [18–20]. By contrast, appropriate
thermal conditions are conducive to improving typing and thinking efficiencies by 47.4%
and 32.6%, respectively [20]. Among most studies, the predicting model, including the
Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD), is universally
applied to evaluate the levels of thermal perceptions of the occupants as a major research
focus [21]. PMV ranges from −3 to +3, and PPD spans from 0 to 100%, while PMV ranging
from −0.5 to +0.5 and PPD smaller than 10% are defined as acceptable conditions for
thermal comfort.

As a professional term, indoor air quality (IAQ) is used to characterize indoor air
quality [22]. Indoor air pollutions can increase the short-term and long-term disease risks
for students and staff in school [23]. Specifically, volatile organic compounds (VOCs) are
found to be related to sick building syndrome (SBS) symptoms [24,25]. Carbon dioxide
(CO2) concentration influences the attendance rate and study efficiency of students [26].
Short-term and long-term exposure to particulate matter (PMs) increases the risk of lung
and respiratory diseases [27]. Other indoor air pollutants, such as carbon monoxide (CO),
nitrogen dioxide (NO2), ozone (O3), formaldehyde, etc., may cause acute effects, including
skin, eyes, nose, and throat, etc. Hence, all chemical pollutants are worth investigating
for possible association with acute impact under short- and long-term exposure, respec-
tively [6]. The indoor air pollution interacts with each site’s outdoor sources: urban, rural,
industrial, etc. [28–30]. The significant parameters related to the educational environments
include the microclimatic parameters (i.e., temperature, relative humidity, and ventilation
rate) [31,32], building age [24], occupancy level [33], and floor covering [34] etc. To provide
a healthy and comfortable IAQ for students, the governmental, national, and relevant
global organizations have developed guidelines and standards for IAQ such as CEN CR
1752, EN 16798–1, ASHRAE 62.1, and ISO/DIS 16814 to guarantee the IAQ.

All the indoor parameters related to thermal comfort and IAQ can be divided into
subjective and objective parameters. Subjective parameters (such as metabolic rate and
clothing insulation) and objective parameters (such as indoor air temperature, occupants’
activity level, clothing index, relative humidity, air velocity, and mean radiant temperature)
affect occupants’ perception of indoor thermal comfort and IAQ and are monitored as the
indicators in the evaluation of the indoor environment [18,20]. Noticeably, these mentioned
factors vary in response to behavioural, physiological, or psychological adaptation [19].
The primary way to record the subjective parameters is to conduct the questionnaire-based
survey and thermal sensation votes (TSVs). All participants are asked to complete the ques-
tionnaires simultaneously to ensure the constant environmental variables corresponding to
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collected TSVs [18]. Sensors play an essential role in recording the objective parameters,
including the indoor and outdoor environmental data. Considering the situation that stu-
dents spend almost their entire daytime sitting in the classroom, the sensors are installed at
a height of 1.0–1.2 m above the floor near the breathing zone for indoor monitoring [35,36].
Moreover, to avoid test errors caused by the outdoor environment, sensors should be placed
as close to the room centre as possible, with at least 2 m away from active heating/cooling
systems, doors, and windows [37]. For outdoor monitoring, sensors should be placed at
a height of 1.5–2.0 m above the ground with a minimum distance of 1 m from the closest
building [7].

Both thermal comfort and IAQ are greatly influenced by ventilation because ventila-
tion can remove indoor contaminants and provide the occupants with fresh air, contributing
to controlling and improving IAQ [38–40]. In some circumstances, ventilation can be used
to adjust the indoor air temperature and relative humidity via the introduced fresh air,
resulting in less operation of mechanical systems and corresponding lower energy con-
sumption [37]. It should be noted that heating, ventilation and air-conditioning system
(HVAC) accounts for 60–70% of total energy use in non-industrial buildings, indicating a
huge energy saving potential [41]. Providing comfortable thermal conditions and healthy
indoor air with lower ventilation energy consumption is therefore desired in the build-
ing sector.

Up to now, many relevant review articles have been published, but most of them
focus on one or at most two issues among thermal comfort, IAQ, or ventilation energy
consumption. For example, Yuan et al. [42] discussed the satisfaction of thermal com-
fort; Ma et al. [39] analysed the measurement parameters for thermal comfort and IAQ;
Sharma et al. [43] studied the indoor thermal performance in naturally ventilated built
environments. Only one study concentrates on interactions among these three issues, but
not for educational buildings [44]. Therefore, this study aims to fill the current gap by
reviewing the interaction between thermal comfort, IAQ and ventilation energy consump-
tion for educational buildings to provide suggestions for future research. To be specific,
the objectives for this study include: (1) to clarify the limitations and problems in the
evaluation of thermal comfort and IAQ in buildings for different education levels; (2) to
review the technologies and control strategies for providing a comfortable indoor thermal
environment and acceptable IAQ; (3) to explore the interactions between the thermal com-
fort, IAQ and ventilation energy; and (4) to present recommendations for saving ventilation
energy without sacrificing thermal comfort and IAQ and guide the future works.

Figure 1 depicts the framework of this review study. In Sections 2 and 3, the thermal
comfort, IAQ, and their interactions with ventilation strategies considering energy con-
sumption are elaborated. Specifically, in Section 2, the review methodology is illustrated.
The basic information of reviewed papers is summarized, such as journals and years of
publication, and the research areas. In Section 3, the thermal comfort assessment models
are discussed, and the influential factors for thermal perceptions in different educational
levels under natural and mechanical ventilation are then discussed with identified re-
search gaps and corresponding recommendations. In Section 4, the school-related IAQ
guidelines and the effects of varied IAQ parameters on students’ health and academic
performance are elaborated. Objectives 1 and 2 are achieved in Sections 3 and 4. The
thermal comfort interacts with IAQ by ventilation, which leads to corresponding energy
consumption. Therefore, the relationship between thermal comfort and IAQ, ventilation
modes, corresponding energy performance and optimal control strategies are discussed to
achieve objectives 3 and 4. Finally, suggestions for future directions and the limitations of
this study are summarized in the last section.
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Figure 1. Framework for this review.

2. Methodology

The fundamental purpose of this research is to identify and discuss the interactions of
thermal comfort, IAQ, and ventilation energy consumption with a focus on educational
buildings by critically reviewing previous studies. This section presents the research
mythology and brief statistical analysis on the reviewed articles to understand the current
research trends. The relationship between thermal comfort, IAQ and ventilation is shown
in Figure 2. Overall, these three research aspects affect each other. The ventilation can influ-
ence thermal comfort by adjusting the indoor air temperature and relative humidity while
impacting the IAQ by controlling the introduced fresh air. Ventilation energy consumption
is induced as a result of modulating these two indoor environmental indicators. Moreover,
the IAQ also interacts with thermal comfort through varied occupant sensations.
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The research methodology is shown in Figure 3. Overall, the review is conducted with
three steps. First of all, a wide range of literature is generally searched and browsed to
narrow down the review topic. Moreover, the related keywords are summarized as inputs
for the search engine to identify the topic-specific publications during this process. In the
second step, the identified publications are classified according to their detailed research
direction. Then, the significant research findings in each classification are discussed for
determining review objectives. The comparative analysis points out the current research
gaps and provides valuable suggestions for future directions.
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A bibliometric review was carried out for the articles published in ‘Scopus and Web
of Science’ as proven to be the most credible literature database. Besides, ‘Science Direct’
and ‘Google Scholar’ were also adopted for literature search to ensure all related papers
were included. Specifically, the combination of below keywords in the titles or the abstracts
were used for searching: “educational buildings”, “school”, “indoor environmental qual-
ity”, “indoor air quality”, “indoor air pollution”, “thermal comfort”, “thermal condition”,
“energy consumption”, “ventilation”, “questionnaire survey”. This review can contribute
to identifying the current research gap in maintaining and improving the indoor environ-
mental quality in educational buildings, and provide useful recommendations for future
studies. As a result, 148 relevant articles were obtained from the search and preliminarily
classified based on the publication year, journal and country for further discussions. The
scope of this review is demonstrated in Figure 4.
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2.1. Year of Publication

Firstly, the reviewed articles are classified by the publication year to learn the research
trend in indoor environmental quality fields. Figure 5 demonstrates a boom of relevant
research since the year of 2000, where searched articles rapidly increase from 2 in 2000 to
18 in 2021. Generally, it can be concluded that people have started paying more attention
to indoor environmental quality with increasing demands of health and wellness due to
the rapid development in the economy and society.
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2.2. Country and Region of Publication

The development of one country’s GDP and the number of IEQ-related papers pub-
lished can reflect peoples’ concerns and requirements for indoor environmental quality.
Therefore, the published articles are summarized and classified by the authors’ research
areas with an indication of the corresponding countries’ GDP, as shown in Figure 6. This
figure demonstrates that the authors coming from China published the most articles (i.e., 24)
for IEQ focused on educational buildings, followed by the UK, Italy, Spain, and India,
where corresponding numbers of articles are 14, 13, 9 and 7, respectively.
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2.3. Journal of Publication

The top-10 related journals are summarized and ranked by the number of published
papers shown in Table 1. It can be noticed that ‘Building and Environment’ ranks the
first with 46 relevant articles published, followed by the ‘Energy and Buildings’ with 24
articles, ‘Indoor Air’ with 7 articles, ‘Applied Energy’ with 6 articles, etc. For the remaining
journals, some relevant articles were also published, while the total number of their papers
is still less than the first journal. In general, ‘environment’ and ‘energy’- related journals
are the main sources of relevant articles given their close correlation with the theme of this
study, which can further reflect society’s concern for the indoor environmental quality in
educational buildings.

Table 1. Classification of published articles by journal categories.

NO. Journal Name Number of Published Papers

1 Building and Environment 46
2 Energy and buildings 24
3 Indoor Air 7
4 Applied Energy 6
5 Atmospheric Pollution Research 6
6 Science of the Total Environment 6
7 Atmospheric Environment 4
8 Journal of Building Engineering 4
9 Energy 3
10 Journal of Environmental Management 3

3. The Studies on Thermal Comfort
3.1. Thermal Comfort Assessment Model

Research of thermal comfort is absolutely a composite field, depending heavily on
indoor set-point temperature, occupancy and heat recovery rate, etc. [45]. To better under-
stand the interactions between influential factors and optimize the thermal environment,
the predicting model plays a greatly important role, and two main methods to evaluate
thermal comfort are used worldwide, including the Fanger’s heat balance model and the
adaptive model [46]. According to Fanger’s heat balance model, the occupants are just
passive recipients of the indoor thermal environment, which has been challenged by an
adaptive model that occupant can adjust their behaviors to adapt to the indoor environ-
ment. In this section, the two models will be elaborated respectively. The thermal comfort
models commonly used are demonstrated in Table 2.

Table 2. Thermal comfort assessment model [39].

Model Type Analytical Model Limitation

Heat balance model

PMV = f (M, W, f cl, pa, Tdb, Tcl, hc)
M = the metabolic rate, W/m2; W = effective mechanical
work/power, W/m2; f cl = the ratio of clothing surface area to
the exposed surface area; pa = vapor pressure of water;
Tcl = the clothing surface temperature, ◦C; Tdb = dry bulb
temperature, ◦C; hc = the heat exchange by evaporation on the
skin, ◦C.

steady-state

Adaptive model aPMV =
(

PMV−1 + β
)−1

β = adaptive coefficient. Cause inaccurate estimation of
thermal comfort due to the
unsuitable estimation on

occupants’ clothing insulation
and metabolic rate

Adaptive model

nPMV = γ · 4.03 + 0.0949 · Top + 0.00584 · RH% + 1.201 · M ·
f cl + 0.000838 · T2

out
Top = operation temperature; RH% = relative humidity;
M = metabolic rate, f cl = the ratio of clothing surface area to the
exposed surface area; Tout and the outdoor mean air
temperature.
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3.1.1. Heat Balance Model

The heat balance model simplifies the thermal perception as a function of the occupant
bodies’ thermal balance [47–49]. Applying the heat balance model needs four measured
physical variables as inputs, including the air temperature, airspeed, relative humidity,
and globe temperature. Besides, two personal estimation parameters are also required,
including the metabolic rate and clothing insulation [47–49]. The widely used PMV-PPD
model is based on this heat balance model. However, this model ignores the characters of
the buildings and the influence of climates, which significantly influence the acceptable
zone of thermal perception and cause considerable evaluation relative errors [49–52]. It was
pointed out that this model cannot be used in the evaluation of the dynamic quality of the
indoor environments with the uncertainty can reach up to ±0.5 [49]. In order to improve
the predicting accuracy of the heat balance model, using additional correction factors as
a significant solution to reduce the model predicting uncertainty are suggested [21,53].
Moreover, as reported, providing reasonable clothing insulation and metabolic assessment
as model inputs can also contribute to accurate indoor thermal comfort evaluation [54].

3.1.2. Adaptive Model

The adaptive model allows the occupant to adjust their behaviours to adapt to the
indoor environment. Taking adaptative behaviours is conducive to improving the per-
ceptions of thermal comfort [55]. Based on the adaptive comfort theory and the model
assumptions, the occupants are treated as an active controller in creating an ‘ideal’ indoor
thermal environment by adopting personal behaviours or adjusting the surrounding envi-
ronments [56]. Moreover, the comfort zone becomes wider with more available adaptive
opportunities [57]. Principal adaptive opportunities available to students include clothing
level change, opening windows, regulating ceiling fans, etc. [52]. The adaptive approach is
commonly used in naturally ventilated buildings [58].

In conclusion, the heat balance model is partially restrained by the model assumptions,
whilst the adaptive model can take occupants’ subjective will into account. Therefore, in
comparison to the heat balance model, the adaptive model, as expected, can provide more
accurate predictions for indoor thermal feelings. However, similar to the heat balance
model, evaluation errors are inevitable for adaptive models. The following sections will
discuss the drawbacks of these two models applied in the actual application cases with
different education stages.

3.2. Thermal Comfort in Primary School and Secondary School

Primary and Secondary schools’ classrooms are usually occupied by students of ages
between 6–18 approximately. Assuming that the thermal perceptions of children are similar
to those of adults could cause considerable inaccuracy in indoor thermal evaluation [59].
A better understanding of the children’s thermal perceptions and the corresponding im-
pacting factors becomes crucial for improving their academic performance and health
development. Hence, in this section, the thermal performances of children were analyzed
respectively for naturally ventilated classrooms and mechanical ventilated classrooms.
And the types of the mechanical ventilation system are discussed in reference [60] and
illustrated in Figure 7. The references reviewed in this section have been summarized in
Table 3, presenting the characteristics of the education levels, ventilation operation modes,
age groups, etc.
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3.2.1. Natural Ventilation (NV)

Natural ventilation (NV), as one of the fundamental strategies in the energy-efficient
design of buildings, operates with airflows driven by gravity forces, without electricity
consumption [61]. Classrooms with NV are prevalent in most countries due to their
simplest operation and lower initial investment. In cold regions, NV is operated in the
spring and autumn, whilst it can be used throughout the year in tropical areas.

The PMV-PPD model is universally adopted to assess the interior thermal comfort
across different areas of the world. However, the adult-based thermal evaluation model is
not appropriate for assessing the thermal perceptions of children studying in primary and
secondary schools, as indicated by some preliminary studies. For example, Mors et al. [19]
verified that the PMV model could not predict the thermal sensation of these children
accurately, underestimating the mean thermal sensation up to 1.5 scale points. Aparicio-
Ruiz et al. [50] also observed a discrepancy between the PMV predictions and the thermal
sensation votes (TSVs), concluding that using PMV will cause maximum predicting errors
for children exposed to heating environments for a long time. These produced relative
errors can be attributed to the fact that children prefer lower temperatures than adults to
feel comfortable [62,63]. Therefore, the temperature in classrooms should be kept a few
degrees lower than that in the office where the teachers work inside [64,65]. To improve
the prediction accuracy of the PMV-PPD and adaptive models, some adjustments are
suggested, such as calibrating PMV models by addressing the difference in metabolic rates
and correcting the input metabolic value by accounting for the smaller body surface area
of children [66–68].

Adaptive behaviours can impact the thermal perceptions of the occupants. Students
in naturally ventilated classrooms are likely to practice adaptive methods such as opening
windows or blinds and clothing adjustment. However, Corgnati et al. [69] pointed out
that children have limited adaptivity opportunities. Excluding the change of clothing
layers, they might not be capable of opening or closing windows or changing their activity
level to adapt to specific environments according to their personal will. Giuli et al. [70]
concluded that the classroom indoor environments largely depend on the teacher’s per-
sonal thermal preferences, which may differ from the preferred thermal conditions of
children. Thus, Korsavi et al. [71] suggested that school managers should encourage
children to practice personal adaptive behaviours to reach thermal comfort after a TSVs
survey conducted in 32 naturally-ventilated classrooms. The adaptive model is similar to
the heat balance model that can cause relative errors between the predicting results and
real TSVs. Trebilcock et al. [72] found that the comfort temperature obtained from TSVs is
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significantly lower than those predicted by the adaptive comfort model established mainly
for adults.

In addition to the classroom’s external physical influences, children’s socioeconomic
background also can affect their perception of thermal comfort in primary schools [65]. In
particular, their thermal perception in the classroom can reflect the thermal experiences at
home. Trebilcock et al. [72,73] stated that children from highly vulnerable backgrounds
were comfortable at lower temperatures than those from less vulnerable. However, the ef-
fect of socioeconomic background on the thermal perceptions of students is not sufficiently
addressed by existing studies.

3.2.2. Mechanical Ventilation

According to a previous study, the children also preferred ‘cooler-than-neutral’ tem-
peratures in mechanically ventilated classrooms [62,74]. Specifically, exposing to the same
thermal environmental, the preferred temperature for children is estimated to be 2–3 K
below the neutral one predicted for adults [62,74]. In ‘cooler-than-neutral’ indoor envi-
ronment, the academic performance for children in standardized tests could increase by
2–4% with a reduction of the indoor temperature by 1 ◦C [75]. In addition, children are
more vulnerable to uncomfortable environmental conditions than adults [76]. Therefore,
uncomfortable environmental conditions affect children more significantly than adults.

Recent studies found that the majority of the children in school suffer from allergy,
atopic dermatitis, asthma, etc., due to the inappropriate and crowded learning environ-
ment [77]. Under this situation, MV becomes more significant to increase the ventila-
tion flow rate and help achieve thermal comfort, as addressed in many relevant studies.
Rashidi et al. [78] demonstrated that sufficient ventilation of classrooms is necessary by
either installing air handling units (AHU) or having compulsory breaks between lectures.
The study also pointed out that classrooms air-conditioned with split units could not take
in fresh air regularly [78]. Wang et al. [45] illustrated that classrooms of passively designed
school buildings could provide better thermal comfort with optimized HVAC control
systems. Mumovic et al. [79] concluded that a hybrid ventilation system coupling MV
and NV is much more effective than running MV alone due to less exposure to noise or
cold draught. Hybrid ventilation modes with high energy efficiencies without sacrificing
thermal comfort may become future research directions.

Passive building design parameters (e.g., orientation, furniture layout) can influence
the occupants’ thermal perceptions even in classrooms with MV. Conceição et al. [80] con-
cluded that classrooms with windows backing to the sun, the classrooms with sun shadings
and interior spaces without windows present the worst thermal conditions in winter. The
study suggested that uncomfortable occupied space needs to be ventilated and heated
to simultaneously improve thermal comfort and air quality to suitable levels. Moreover,
it was also found that solar radiation incoming from a south-facing window in winter
could improve the indoor thermal conditions but may do the opposite in summer [80].
Optimal configuration of the window to wall ratios (WWRs) and building orientations
can improve the indoor environment and reduce corresponding MV energy consumption
through controlling the natural ventilation and limiting the thermal load. Building energy
simulation-based multi-objective optimization with high efficiency and accuracy is a robust
and promising approach to optimized passive design. It can automatically predict energy
consumption and search for optimal solutions based on the specified design criteria and is
therefore suggested as a potential research method in this area [81].

Furthermore, adaptive activities could also impact children’s thermal comfort in air-
conditioned space [62]. Wang et al. [82] studied primary and secondary school students’
thermal adaptation during the heating season in rural regions. The results illustrated that
students showed a tolerance for a slightly cold indoor environment, so that is suggested
to main a slightly lower indoor temperature to save heating energy while maintaining
their thermal comfort [82]. Due to varied climate and the temperature increase, avoiding
overheating and keeping thermal comfort in school buildings is becoming a growing
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concern [76]. In order to improve the energy efficiency and level of thermal comfort,
Mohamed et al. [59] suggested that the heating system should be operated based on the
actual outdoor climate through the whole heating season, subject to part-load operations
in the early or late periods.

Table 3. Thermal comfort parameters proposed in studies on primary and secondary schools.

Reference Country School
Types Time of Survey Operation

Types
NO. of

Students
NO. of
Schools Age

Mors et al. [19] Netherlands P 24 days, including winter,
spring, summer, 2010 NV 79 1 9–11

Aparicio et al. [50] Spain P summer NV + MV 67 1 10–11

Kim et al. [62] Australia P + S Two summer seasons
(2012–2013) MV - 11 10–15;

16–18
Hamzah et al. [63] Australia S - NV 1594 8 -

Montazami, et al. [65] UK P Cooling season
(2014–2015) MV 662 8 8–11

Vassella, et al. [40] Swiss S winters NV - 96 -

Teli, D., et al. [66] UK P
outside the heating

season.
June and July 2012

NV 560 2 7–11

Teli, D., et al. [67] UK P April to July 2011 NV 230 1 7–11

Korsavi et al. [71] UK P
during Non-Heating

(NH) and
Heating (H) seasons

NV 805 - 9–11

Corgnati et al. [69] Italy S + U
Heating period from 15
October to 15 April in

2002
NV + MV - 4 -

Giuli et al. [70] Italy P Spring, 2010 NV 614 - 9–11

Trebilcock et al. [72,73] Chile P
winter (July–August) and

spring
(November–December)

NV 440 12 9–10

Wargocki et al. [76] Denmark P summer (in 2004 and
2005 MV - - 6–16

Ukawa et al. [77] Japan P - - 4254 12 6–12
Al-Rashidi, et al. [78] Kuwait P 16–27 May 2010 NV + MV - - 6–10
Mumovic et al. [79] UK S 2006–2007 NV + MV - - -
Conceição et al. [80] Portugal - January 2004 MV - 800 -

Liang et al. [83] China P + S 1 September 2005 to 5
February 2006 NV - - -

Pereira et al. [84] Portugal S
From the end of April

until
mid May 2013

NV - - -

Wang et al. [82] China S November 2014 to
December 2015 MV 1126 13 -

Katafygiotou et al. [85] Cyprus S September to June in next
year MV 20 1 -

Notes: P: primary school; S: secondary school.

From about literature review, it can be concluded that primary and secondary school
children prefer colder indoor temperatures than adults for their thermal comfort in both
naturally or mechanically ventilated classrooms. Considering that children are more
vulnerable to inappropriate environmental conditions than adults, a precise prediction
and control of the indoor thermal environment is important for improving their academic
performance and health. However, the commonly used comfort models mainly derived
from adult-based experiments cannot offer accurate predictions of children’s thermal
perception. Compared with MV, a hybrid ventilation mode is much more effective given
its good acoustic and thermal performances.

3.3. Thermal Comfort in Universities

University students are adults with ages over 18. Compared to primary and sec-
ondary school students, they are subject to multidisciplinary and multi-functional envi-
ronments [85,86]. Moreover, university students vary in age, gender, thermal background
and taken programs and class types, adding the difficulties in evaluating the indoor envi-
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ronmental quality and analyzing their thermal perceptions [85,86]. Thus, indoor thermal
analysis in varied university buildings becomes increasingly significant. The references
reviewed in this section have been listed in Table 4, demonstrating the basic research
information, such as ventilation operation modes and so on.

3.3.1. Natural Ventilation (NV)

Natural ventilation (NV), such as opening doors or windows, is commonly used
in university buildings, with zero-energy consumption and convenient operation. Ad-
justing doors or windows to achieve indoor thermal comfort can be treated as adaptive
behaviours. One noticeable difference from students of lower grades is that university
students can adopt more adaptive behaviours, such as clothing adjustment and window op-
eration [52,87–89]. This subsection reviews studies focusing on natural ventilation systems
within universities. Kumar et al. [89] conducted a transverse questionnaire-based thermal
comfort field study to evaluate thermal preferences and understand students’ behavioral
adaptation in naturally ventilated classrooms under the tropical climate. Mishra et al. [90]
got the preferred temperature of 26.4 ◦C in the hot and humid regions and found that
80% occupant satisfaction was achieved when the regression neutral temperature is near
29 ◦C and the operative temperature varies between 22.1 and 31.5 ◦C. Moreover, the influ-
ence of gender on thermal perceptions cannot be ignored as indicated by Nico et al. [91].
Their study confirms that the thermal perceptions of students differ with gender, and
the questionnaire-based results demonstrate that girls prefer higher temperatures than
boys under the same thermal conditions because of their lower levels of activities and
metabolism rate [91]. When assessing thermal comfort, selecting an appropriate model
is necessary. The PMV-PPD model can be used for evaluating thermal perceptions of
students in universities, but sometimes overestimates their thermal sensation as indicated
by Zhang et al. [92].

In terms of University classrooms with NV, the influence of passive design (e.g.,
WWR, shading) over the indoor thermal environment varies significantly. Solar shading
benefits the reduction of MV energy consumption in summer while doing the opposite
in winter [20]. Krüger et al. [93] demonstrated that buildings with windows exposed to
the sun usually suffered from thermal discomfort in summer, but contributed to thermal
comfort in winter with more solar gains. Therefore, optimized passive design can not only
reduce the energy consumption of ventilation or extra heating/cooling system, but also
ensure the indoor thermal conditions within a comfort level.

Outdoor environmental and climatic conditions also influence the preferred thermal
environments in classrooms. Corgnati et al. [69,94] found that the thermal preference
of students changed gradually from the cold season to the interim and warm seasons.
Specifically, the results show a preference for slightly warm or warm environments during
the heating season while neutral environments in the interim season. Baruah et al. [95]
carried out a questionnaire-based thermal comfort study in warm and humid climates in
spring. All subjects felt no extreme level of thermal discomfort in this study. In addition,
Costa et al. [96] pointed out that poor maintenance of window frames compromised occu-
pant comfort and suggested that the windows frames should be repaired and maintained
regularly to enable efficient natural ventilation and reduce the need for thermal regulation.
This study highlights the significance of building maintenance in reducing the requirement
of MV.
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Table 4. Thermal comfort parameters survey conducted in universities.

Reference Country School
Types Time of Survey Operation

Types
NO. of

Students
Classroom

Types Age

Jowkar et al. [86] UK U

October and
November 2017;

January to March
2018

NV + MV 3000

Lecture
rooms;

Studios;
PC labs

-

Krüger et al. [93] Brazil U August 2000;
January 2001 NV - -

Hwang et al. [97] China U 2003–2004 NV + MV 944 - -

A. Mishra [87] India U January to April
in 2013 NV 121 Laboratories 19–21

Yao et al. [88] China U March 2005 to
May 2006 NV 3621 Lecture

buildings 16–40

Kumar et al. [89] India U Peak summer
months NV 900 - -

Mishra et al. [90] India U Autumn 2013;
Spring 2014 NV 67 - -

Nico et al. [91] Italy U - NV + MV 126 - -

Corgnati et al. [94] Italy U
Heating period,
January to April

in 2002
NV 230 - -

Costa et al. [96] Brazil U Februauy, March,
April in 2017 NV + MV 178 - 18–67

Jing et al. [98] China U December 2018 MV 40 - -

Mishra et al. [99] Netherlands U Heating season,
March 2016 MV 384 - -

Fanga et al. [100] Hong Kong,
China U August to

October in 2015 MV 982 - -

Wang et al. [101] China U October 2013 to
April 2014 MV 30

Classrooms
and

dormitories
-

Fong et al. [102] Hong Kong,
China U Summer MV 48 - 20–23

Serghides et al. [103] Cyprus U
winter and

summer of 2012
and 2013

MV 60 - -

Notes: U: University.

3.3.2. Mechanical Ventilation (MV)

Compared with NV classrooms in universities, students’ thermal perceptions of MV
classrooms are related to multiple factors. Hwang et al. [97] demonstrated that thermal
perceptions of students were significantly related to the air temperature, wind speed and
solar isolation, while the influence of acoustic, lighting and IAQ aspects can be ignored [97].
Davidsson et al. [104] pointed out that thermal comfort is related to the heat recovery
rate. Mishra et al. [99] assessed the thermal comfort perception of students through
the class hours, and they found that the thermal perception varied primarily with the
outdoor temperature, operative temperature, and their previous thermal conditions. After
a 20-min adaption, the thermal perceptions became uniform gradually. Additionally,
Corgnati et al. [69] found that gender can also influence thermal perceptions, and women
generally prefer a warmer environment than men in MV-dominated classrooms [69].

The preferred comfort temperatures differ with types of rooms (e.g., lecture rooms,
studios, libraries and personal computer laboratories). Jowkar et al. [86] found that students
acquire a higher level of physiological and psychological thermal adaptation in the studios
and individual computer laboratories than in the lecture rooms, owing to a higher level
of freedom to adopt adaptive behaviours. Specifically, comfort temperature calculated
by the Griffiths’ method tends to be 1 ◦C higher in studios than lecture rooms and PC
labs, and comfortable temperature is shown to be approximately 2 ◦C lower under heating
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mode compared to the free-running and cooling modes [86]. Wang et al. [101] compared
the preferred temperatures within the classrooms and dormitories. The results indicated
that the students feel comfortable in dormitories with a higher preferred temperature of
21 ◦C than in classrooms where higher clothing insulation is expected. Therefore, applying
different comfort standards corresponding to various class types and operation modes is
necessary to reach an indoor thermal comfort level with lower energy consumption.

Rational control of MV systems contributes to providing comfortable temperatures by
adjusting the relative humidity and airspeed. Fong et al. [102] investigated the acceptable
thermal conditions under three ventilation strategies, including mixing ventilation, dis-
placement ventilation, and exhaust types of stratum ventilations. The experimental results
demonstrated that the third controlling strategy could satisfy the thermal perceptions
of students with the lowest ventilation energy consumption due to the higher preferred
temperatures. Fanga et al. [100] illustrated a significant difference between the neutral and
preferred temperatures of classrooms with MV in tropical regions, which were found to be
24.14 ◦C and 24.58 ◦C, respectively. Jing et al. [98] carried out a field survey in Taiyuan of
China. The results illustrated that 3.46% of the annual heating load could be saved when
the indoor design temperature could decrease from 21.85 ◦C to 19 ◦C. Serghides et al. [103]
focused on the indoor comfort and energy consumption in university buildings during the
winter. According to the results, using air conditioners and other indoor equipment only
during the occupation periods instead of 24 h can save up to 40% of energy consumption.

3.4. Research Gapes and Recommendations

This section discussed the importance of thermal comfort for different educational
buildings. Due to the significant role of ventilation in evaluating and optimizing indoor
thermal conditions, the reviewed works are classified by natural ventilation and mechani-
cal ventilation.

Ventilation interacts tightly with the indoor thermal environment. The ventilation
can improve the relative humidity and control the air speed and temperature, keeping
the acceptable PMV and PPD range. Undeniably, natural ventilation is subject to the local
climates, and mechanical ventilation suffers from extra operation costs and energy con-
sumption. Therefore, using a mixed-mode combining natural and mechanical ventilation
effectively reduces energy consumption and operation cost without sacrificing thermal
comfort. For instance, in spring and autumn, the proportion of NV time can be extended
appropriately. It should be noticed that indoor comfort targets and mode switch algorithms
significantly influence the mixed system’s energy performance. Therefore, smart sensors
and machine learning algorithms can be integrated into the control system to analyze and
predict students’ preferences, achieving both targets in energy and IEQ. Besides, special
ventilation methods such as the stratum ventilation system can produce acceptable air
flow to meet thermal demands with a lower ventilation rate and corresponding energy
consumption. Some passive design measures can be coupled with efficient ventilation
methods, depending on the availability of renewable energy sources.

The thermal acceptance analysis in universities is complicated due to more adaptation
behaviours that can be adopted by students, and the relevant studies also started later
than those on primary and secondary schools. The gender difference can also influence
the thermal perceptions of students, but existing prediction models fail to take this factor
into account. It has been found that children generally prefer cooler temperatures. There-
fore, most existing models cannot accurately predict the thermal perceptions of children.
Therefore, gender-specific and children-centric evaluation models and standards should be
developed in future studies combining well-designed surveys and experiments.

4. The Studies on Indoor Air Quality (IAQ)

Indoor air quality (IAQ) significantly influences people’s health, especially for children
in kindergartens and primary schools. Additionally, for secondary schools and universities,
due to the intensive population and activities, the concentration of contaminants generated
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by students may be higher than that in other places. For this reason, experiments, analytical
assessment models and statistical analysis of IAQ are necessary, which not only offer
students healthy environments but also improve their studying efficiency.

In general, there are two methods to measure IAQ-related parameters [35]. The first
method is continuous IAQ monitoring for a specified period of time. It records IAQ
parameters, such as CO2, CO, SO2, NO2, H2S, PM2.5, PM10, and total volatile organic
compounds (TVOCs), for several hours and even longer. The measurement results are
strongly associated with occupants’ activities. The second method is the passive IAQ
measurement, which does not show the varying profiles of concentrations over time, for
parameters such as volatile organic compounds (VOCs), aldehydes, toluene and aldehydes.
Noticeably, among all the indoor contaminants, PM2.5 and CO2 are indoor air pollutions of
major concern [37]. The evaluations models are described in the following parts, and the
relevant models are summarized in Table 5. The references reviewed in this section have
been listed in Table 6, including the basic research information.

4.1. IAQ Assessment Model

This section will discuss the analytical model for determining the concentrations of
indoor contaminants.

CO2 as an essential indicator is commonly used to assess ventilation rates. Equation (1)
in Table 5 shows an evaluation model for CO2. This model, as a time-dependent method,
considers the indoor CO2 sources, outdoor CO2 levels and the influence of ventilation. The
drawback for this model is that it needs to monitor the data continually as input to the
evaluation models for further prediction. As for the prediction and evaluation for PM,
there is no single model suitable for dealing with all PM-related problems because of the
interaction among the different sized PM. Precisely, different models correspond to PM
with different sizes. Equation (2), based on the theory of sequentially mass conservation,
shows an assessment model for PM, considering the mechanical supply, natural ventilation
and infiltration. Equation (3) is a mass balance equation for continuous VOCs concentration
computation. The indoor NO2 concentration depends significantly on the surface removal
rate and outdoor NO2 levels. If there is no indoor NO2 source, the indoor to the outdoor
ratio of NO2 can be calculated by Equation (4). However, if there are some indoor NO2
sources, this model is not applicable. At a constant air exchange rate, the ratio between
indoor and outdoor O3 concentrations can be quantified by Equation (5).

Table 5. IAQ assessment model [39].

Evaluated
Parameter Analytical Model Limitation

CO2

Cco2 = C0 +
G
Q +

(
C0 − Cout − G

Q

)
e−

Q
V t (1)

G = the generation rate, m3/s; Cout = outdoor CO2
concentrations, ppm; C0=initial indoor CO2 concentrations,
ppm; Q = ventilation rates, m3/s; V = the volume of indoor
air, m3; t = time, s.

Require to continue to monitor the data as
input for the evaluation models, such as

real-time occupancy.
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Table 5. Cont.

Evaluated
Parameter Analytical Model Limitation

PM

d(CinV)
dt = E + Cout[Qs(1− ηs) + QN + QLP]

−Cin[QFηs + ξV
+(QS + QN + QL)]

(2)

Cout = outdoor particles concentrations, µg/m3;
Qs = mechanical ventilation flow rate, m3/h;
QN = natural ventilation rate, m3/h; QL = leakage flow rate,
m3/h; P = the penetration rate of leakage flow path;
ηs = single-pass removal efficiency filtered by mechanically
operated supply; QF = the flow rate of a particle-control
filter, m3/h; ηF = single-pass removal efficiency of a
practical-control filter; E = emission source rate, µg/h;
ξ = a deposition rate of particles onto room surface, h−1;
V = space volume, m3; Cin = indoor particles
concentrations.

The outputs are significantly dependent
on ηs, ηp, P and E which varies with

PM sizes.

VOCs

V
d(Cin)

dt
= QCa + ∑

i
Esoi Asoi − ∑

j
Ssij Asij − QCout (3)

V = the volume of the zone, m3; Cin = the VOCs
concentration in the zone, µg/m3; t = time, s; Q = ventilation
rate of the zone, m3/s; Ca = the compound concentration at
the supply inlet, µg/m3; Esoi = the emission rate per unit
area of the source material i, g/m2·s; Asoi = surface area of
the source material i, m2; Ssij = absorption rate of sink
material j, g/m2·s; Asij = surface area of the sink material j,
m2; Cout = compounds concentration at outlet, g/m3.

NO2

I
O

=
EX

EX + KNO2

(4)

EX = air exchange rate, h−1;
KNO2 = the constant removal rate of the surface, h−1;

No indoor NO2 sources

O3

I
O

=
EX

EX + Kd(A/V)
(5)

EX = air exchange rate, h−1; Kd = the deposition velocity of
ozone, m/h; A = total surface area, m2; V = the volume of
the room, m3.

4.2. Carbon Dioxide (CO2)

The concentration of CO2 is mainly related to ventilation rates, the number of oc-
cupants, classroom sizes, activities, and the total time that occupants stay [105]. The
respiration of occupants is the primary source of CO2 [105]. Besides, the vehicle’s combus-
tion of fossil fuels near the classroom also contributes to the indoor CO2 concentration [59].
In most studies, the CO2 concentration was monitored continuously to evaluate indoor
ventilation levels [59]. Additionally, the measurement of CO2 also benefits in predicting
trends of other indoor-generated gaseous pollutants in classrooms. However, It is hard to
use CO2 levels to predict other dynamic pollutants generated outdoor and/or in the form
of particles [106].

CO2 significantly influences the academic performance of both teachers and students.
High CO2 concentration in the classroom means inadequate ventilation, which is a common
problem in many schools [6,105]. For a healthy indoor environment, the CO2 concentration
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ranges from the indoor value of 380 ppm to 1500 ppm reported by ESFA as an acceptable
value for occupants that do not feel uncomfortable [107]. For green buildings, the corre-
sponding value should be smaller than 1000 ppm [107]. When the concentration is greater
than 200,000 ppm extremely, death is induced [107].

The dynamic feature of the concentration of CO2 in educational buildings is more
evident, significantly differing from other buildings such as commercial buildings and
residential buildings. Specifically, the CO2 concentration profiles over time in education
buildings demonstrate strongly inherent relationships with the class schedules [35]. At the
beginning of the class schedule (9:00 a.m. usually), CO2 concentration increases and reaches
the maximum at the end of the class [35]. Then, the CO2 concentration decreases suddenly
in the class breaks due to the break-time outdoor activities [35]. In addition to the teaching
hours, which corresponds to the highest contribution of low IAQ, the role of the afternoon
nap is also important [108]. In contrast, the CO2 in commercial and residential buildings
levels off considerably lower with slight fluctuations due to no strict time schedules [108].

It was noted that improving ventilation and decreasing the number of occupancy
following occupancy periods can alleviate high CO2 concentration [108]. Under this sit-
uation, ventilation systems become crucial to keep the concentration of CO2 under the
guidelines during class time. It was pointed out that both the mechanical ventilation
systems and automatic opening windows benefit the classroom for keeping a lower level of
CO2 in comparison with the manual opening of windows and doors [109], and mechanical
ventilation is relatively efficient to remove the CO2 and allow more occupants to stay in the
classroom simultaneously [110]. If energy consumption is not considered, continuous ven-
tilation during the day and night is the other most efficient and effective way to passively
cool educational spaces [111]. After adopting the appropriate ventilation strategies, the
CO2 concentration can significantly decrease from 3000 ppm to 530 ppm during breaking
time [112].

4.3. Particulate Matter (PM)

Particulate Matter (PM) is a kind of small particle in the atmosphere. The detriment
to occupants’ bodies is mainly related to the size of the aerosols because of the increasing
capacity of penetration in the respiratory tract with decreasing size of particulate matter
(PM) [113]. Specifically, the PM with an equivalent diameter smaller than 2.5 µm, defined
as PM2.5, can pass through the pulmonary alveoli and reach the bloodstream [114]. The PM
with an equivalent diameter between 2.5 µm and 10 µm could be breathed into the tracheo-
bronchial zone, defined as PM10 [114]. Long-time exposure to PM2.5 and PM10 increases
the opportunities of asthma-like symptoms in children in school environments [114].

Many reasons caused the unacceptable concentration levels of PM2.5 and PM10. The
influence of room occupancy on indoor particle concentrations varies with particle sizes.
Specifically, Poupard et al. [115] stated that the infiltration of outdoor pollutants is the
primary source of indoor PM2.5, to which motor vehicle emission by products contribute
the largest portion [115]. Becerra et al. [35], Chan et al. and Yang et al. [116,117] found
that indoor PM10 seems to be dependent on the particle suspension due to the occupant’s
activity, such as cleaning, which can cause resuspension of these particles from carpet and
furniture. Bennett et al. [36] found that the particle suspension was primarily composed
of crustal matter (soil) elements brought by children’s footwear and blackboard chalk use.
Undoubtedly, high-density traffic areas can induce high PM concentrations as well [118].

Noticeably, based on the equivalent diameters of the PM, there exist different ways
for reducing indoor PM concentrations. In order to prevent the outdoor PM2.5 from
entering the indoor environments, Hou et al. [119] stated that closing windows and doors
is conducive to lessening PM2.5, and the indoor concentrations of PM2.5 could be reduced by
40%. For reduction of the PM10 concentration, taking the shoes off when entering the school
buildings can significantly reduce the corresponding concentrations [118]. In addition,
it was found that the indoor PM10 level of schools near the road with few vehicles was
significantly lower than that of the schools near surrounding buildings and mountains [24].
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Therefore, choosing rural areas with fewer pollutant sources as school sites may help
reduce concentration levels of PM [24].

However, when doors and windows are closed, the ventilation rates in the classroom
will be lower than 1 L/s per person. In this case, although the PM2.5 level is low, the
CO2 concentrations will exceed 2000 ppm, which is unacceptable for students inside the
classroom [119]. Therefore, mechanical ventilation equipment with air filtration should
be introduced into closed educational buildings [119]. It should be noticed that mechan-
ical ventilation influences indoor PM concentrations significantly. Fromme et al. [34]
demonstrated that the indoor PM levels interact strongly with the outdoor levels, which is
attributed to the increased ventilation in spring, summer and autumn.

4.4. VOCs and TVOC Concentrations

Volatile organic compounds (VOCs) consist of many air pollutants, from volatile com-
pounds, such as formaldehyde, to semi-volatile compounds, such as phthalate plasticiz-
ers [35,114]. The VOCs threaten the occupants’ health if the corresponding concentrations
exceed the standards or guidelines, especially for children and the elderly, because of their
relatively vulnerable and sensitive immune systems [35,114]. Hutter et al. [120] concluded
that the detriments of VOCs on health depend on several aspects, including (1) the type
of VOCs, (2) the total amounts of VOCs and, 3) the exposure duration. Living with some
VOCs for an extended period could increase cancer risks [120].

Total volatile organic compounds (TVOC) are usually used to represent the total
performance of the various VOCs, which can be measured through continuous IAQ moni-
toring. A high concentration of TVOC induces sensory effects, including sensory irritation,
dryness, and weak inflammatory irritation in the eyes and/or nose [35]. Similar to CO2,
the concentration of TVOC also changes obviously over time. In the daytime, TVOC
concentration starts to increase with the beginning of the class schedule, resulting from the
indoor pollutant sources (e.g., by class activities and the specific equipment used) [35,107].
At night, TVOC concentrations, related to indoor pollutant sources significantly, keep a con-
stant level approximately [35,107]. The indoor sources of TVOC usually include cleaning
products, construction or furnishing materials and miscellaneous consumer products [35].

Mechanical ventilation is a significant factor for improving the IAQ by removing the
VOCs. Noticeably, because of the absence of mechanical ventilation, TVOC concentrations
are over three times higher in the more airtight rooms. By using mechanical ventilation,
Hernandez et al. [121] found that TVOC concentrations can be reduced by >340 µg/m−3

in less airtight rooms. Hu et al. [122] proposed an improved strategy for reducing in-
door VOCs pollutions. This method adopts the average concentration of VOCs as the
optimization objective. The optimization results suggest that the inflowing air needs to
flow preferentially to the places with high VOCs concentration to remove excessive VOCs
and reduce the average concentration. However, there are few studies focusing on indoor
educational environments.

4.5. Other Pollutants: NO2, SO2, and O3

NO2, SO2, and O3 are other critical factors related to the health of students. A high
concentration of air pollutions mentioned above causes the respiratory distress-like syn-
drome, which deserves detailed studies. It was reported that the concentration of SO2 is at
a similar level for both urban and suburban areas, illustrating that the vehicular traffic and
the petrochemical plant present a similar potential for SO2 emissions [6]. On the contrary,
the indoor NO2 and O3 concentrations have strong and positive correlations with the levels
of outdoor contaminants. The concentration of NO2 and O3 varies significantly with the
location of school buildings [6]. Specifically, compared with schools in rural regions, the
urban schools have higher NO2 values resulting from the vehicular emissions proved to be
an essential source of NO2 in the atmosphere [7,31]. Noticeably, except for the occupancy
and the school locations, the climates also affect the performance of the indoor environmen-
tal parameters. For instance, it was found that O3 concentrations are significantly higher
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in the cold season, while CO and NO2 concentrations are relatively higher in the warm
season [34,37].

4.6. Research Gaps and Recommendations

Generally, adequate ventilation can improve IAQ and thermal comfort [24,123]. Good
ventilation strategies in educational buildings reduce the level of indoor air pollution.
Building ventilation systems and outdoor concentration levels greatly affect indoor-to-
outdoor ratios through the introduced fresh air, leading to complex, homogeneous and
heterogeneous processes [115]. However, natural ventilation, such as opening windows
between class changes or lunch breaks, may result in higher ultrafine particle levels mea-
sured indoors. It may be due to the infiltration of pollutants from the outdoors. Some
IAQ-related concentrations usually stabilize at a constant value over the weekend. But the
concentrations of the other pollutant, such as CO2, increase to higher levels at the beginning
of the working day due to the increase in the number of students/occupancy and activities.

On the contrary, NO2 and O3 showed fewer regular fluctuations during occupancy.
Therefore, it is concluded that the air permeability of the building envelope and the manual
ventilation of the classroom cannot simultaneously reduce the concentration level of various
pollutants in the classroom [106]. Thus, an improved mixed control strategy for ventilation
is needed, and mechanical ventilation with a function of filtration is necessary to solve
the above problems [106] effectively. Moreover, the quality of outdoor air used to provide
ventilation needs to be considered [124]. Choosing locations close to rural areas for new
schools can significantly improve air quality and healthier environments in schools [24,125].

In addition, most research focuses on primary schools, followed by nursery and
secondary schools, while little attention is paid to IAQ in the university as summarized
in Table 5. There are 15 articles focusing on primary school, followed by 6 articles on
the nursery, 5 on secondary school, and 2 on the university. As for studied parameters,
21 articles focused on the CO2, followed by 18 articles on PM, 9 articles on NO2, 9 articles
on VOC and TVOC, and 6 articles on CO, etc. Obviously, most IAQ studies concentrate
on primary schools, while few on the universities. Among these studies, CO2 and PM as
significant IAQ parameters attract more attention. Undoubtedly, there is a lack of research
on bacterial and fungal aerosol pollutants to comprehensively assess IAQ in nurseries,
secondary schools, and universities. These research gaps need to be bridged by more
comprehensive measurement and assessment approaches.

Table 6. IAQ parameters monitoring for different types of schools.

Reference
School
Types

Continuous IAQ Monitoring Passive IAQ
Monitoring

CO2 SO2 NO2 H2S TVOC PM CO O3 TSP VOC Aldehydes

Hemoud et al. [126] P + S
√ √ √ √ √ √ √

Becerra et al. [35] N + P + S
√ √ √ √

Bennett et al. [36] P
√ √ √

Branco et al. [37] N + P
√ √ √ √ √

Cai et al. [110] N + P+S
√ √

Chithra et al. [3] -
√ √

Fromme et al. [34] P + S
√ √

Godoi et al. [7] P
√ √ √

Haddad et al. [127] S
√ √ √

Hou et al. [119] P
√ √

Jovanović et al. [128] P
√ √ √ √

Kalimeri et al. [6] N + P
√ √ √ √

Leppanen et al. [118]
√

Madureira et al. [114] P
√ √ √ √

Mainka et al. [108] N
√ √ √

Majd et al. [125] P
√ √ √

Mohamed et al. [129] P
√ √

Poupard et al. [115] -
√ √ √

Rivas et al. [31] -
√ √

Sohn et al. [130] -
√ √ √ √
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Table 6. Cont.

Reference
School
Types

Continuous IAQ Monitoring Passive IAQ
Monitoring

CO2 SO2 NO2 H2S TVOC PM CO O3 TSP VOC Aldehydes

Stabile et al. [106] -
√ √

Theodosiou et al. [131] N + P
√

Yang et al. [24] P
√ √ √ √ √

Alves et al. [132] U
√ √ √

Fan et al. [133] U
√

Notes: N: nursery; P: Primary school; S: Secondary school; U: University.

5. Ventilation Energy Consumption

As an essential part of building services systems, the ventilation system can provide a
preferable thermal environment and acceptable IAQ for occupants while is also responsible
for a considerably large proportion of total energy consumption [134]. Energy consumption
varies in response to ventilation modes, affecting the IAQ and thermal comfort in return. It
was pointed out that schools have a great potential in improving energy efficiency [131].
In most climates, improving ventilation performances contribute to the reduction of ur-
ban energy consumption by up to 6.704%, dominating the energy saving in temperate
continental climate zones [135]. Stabile et al. [136] stated that it is possible to achieve a
considerable reduction in energy consumption for MV systems. Therefore, optimizing
ventilation control systems and building operation modes is necessary for reducing energy
consumption without compromising thermal comfort and IAQ [137]. The interactions
between IAQ, thermal comfort and ventilation energy are detailed in this subsection.

5.1. Mechanical Ventilation (MV)

Mechanical ventilation (MV) systems can simultaneously vary the indoor environ-
ment and energy consumption. Stabile et al. [138] illustrated that mechanical ventila-
tion systems could effectively remove the indoor pollutants and reduce the indoor-to-
outdoor concentration ratios, showing a higher efficiency in IAQ management than nat-
ural ventilation. It is recognized that MV has advantages in IAQ management over NV,
and appropriate MV can also achieve energy-saving and thermal comfort regulation.
Haghshenaskashani et al. [139] studied the impinging jet ventilation system, making ther-
mal stratification possible with the lowest energy consumption. Such ventilation ensures
a better IAQ and reduces energy consumption by up to 30%. Jagadeesh et al. [140] ana-
lyzed the indoor temperature and airflow in the classroom using CFD and scaled-down
experiments. The results illustrated that providing proper additional ventilation in the
classroom enhances the natural circulation of air and reduces room temperature by 4 ◦C
to 5 ◦C, achieving the goal of energy saving in fans [140]. Using the mixed operation
mode combing the MV and NV can improve the comfort and energy performance at the
same time.

Proper MV before or after the occupation period for education buildings can provide
an acceptable thermal indoor environment with the lowest energy cost. Wang et al. [141]
stated that extra night ventilation could provide more satisfactory living conditions for the
next day and reduce the electricity consumption for cooling in the daytime. Good ventila-
tion decreases and increases the ventilation energy consumption in summer and winter,
respectively, where overall energy demands are reduced for almost all climates with higher
ventilation levels [135]. Gustafsson et al. [137] found that pre-ventilation before classes
in the winter morning could improve IAQ and assist in heating the classrooms. Using
passive design strategies assisted with MV can achieve the same purpose. Applying the
phase change material may be a better choice besides optimizing the WWRs and building
orientations for NV. Prabhakar et al. [142] reported that coupling the night ventilation and
phase change material within the building envelope could reduce air-conditioning energy
consumption. In addition, the sunspace is a noteworthy passive design measure as pointed
out by Barrencua et al. [143]. Their experiment pointed out that combining the sunspace
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with the mechanical ventilation system could effectively reduce energy consumption with
preheated air.

Apart from passive design, the smart building management system can adjust the
airflow and cooling capacity to ensure sufficient air-conditioning and reduce energy con-
sumption. According to a sensor-based monitoring system, Che et al. [144] reported that
the moisture can be removed from the outdoor air in a hot and humid climate with a
reduction of energy consumption by 50%. Schibuola et al. [145] reported that using an
autonomous high-efficiency air handling unit reduces energy consumption between 60%
and 72%. Wang et al. [146] demonstrated that the IAQ improvement and heating energy
reduction could be achieved simultaneously via a novel heat recovery heat pump and
ventilation system in the classroom.

5.2. Natural Ventilation (NV)

Natural ventilation (NV) is considered one of the most commonly used sustainable
solutions to ensure healthy and comfortable indoor environments while consuming less
energy than other ventilation strategies [147]. However, natural ventilation is limited by
location and it alone cannot guarantee the IAQ. Huertas et al. [148] found that applying
NV in coastal areas has a better performance than that in inland areas due to low-level
outdoor pollutants. Therefore, natural ventilation should be used together with a portable
air cleaner that can rapidly remove air pollution [149].

Ma’bdeh et al. [150] compared different natural ventilation retrofitting techniques in
terms of the ventilation rate, indoor operative temperature, relative humidity, and CO2
concentration. Among these techniques, the solar chimney assisted with a wind tower can
achieve the highest energy-saving of 39% compared with baseline air conditioning systems.
Harbich et al. stated that [151] applying natural ventilation or evaporative coolers, as an
energy-saving and sustainable method, is sufficient to provide thermal comfort during the
morning throughout autumn and winter. Though all-day natural ventilation contributes
to reducing energy consumption, the overall uncomfortable periods increase. By contrast,
exclusive use of air-conditioning could guarantee 100% hours of thermal comfort, but it is
unacceptable for most families with high electricity bills [152]. Therefore, the mixed-mode
based on the categories from EN 16798-1:2019 is recommended to save energy without
sacrificing thermal comfort [152]. Moreover, internet of things (IoT) based or artificial
intelligence (AI) based control can provide optimized solutions for mixed-mode ventilation
to balance the NV and MV. Some preliminary researches have been carried out in this
new area. For instance, based on the internet of things (IoT) system, Sung et al. [153]
presented an application system that uses fuzzy control to provide thermal comfort for
indoor environments. Yu et al. [154] presented a deep Q-learning method to balance the
IAQ, thermal comfort, and energy consumption. Based on personal thermal preference,
using smart algorithms to adjust the proportion of NV and MV provides a convenient and
effective way to control the indoor thermal environment automatically.

The influence of the WWR on thermal comfort, IAQ and ventilation energy consump-
tion cannot be ignored. The WWR mainly affects the natural ventilation flow rate and solar
gain. Considering appropriate WWRs in the initial building design process can improve
the indoor environmental quality and enhance students’ concentration and productiv-
ity [155]. Reducing WWRs is also conducive to meeting the target energy reduction [156].
Ashrafin et al. [155] pointed out that a better-designed configuration of windows can im-
prove thermal comfort by controlling the solar gain. Lakhdari et al. [157] suggested that
the optimal WWRs are 30%, 40%, and 50–60% for north, south, and west/east orienta-
tions, respectively. Unfortunately, almost all WWR-related studies focus on residential
buildings [158,159] and commercial buildings [156,160]. It should be noted that the interac-
tions between thermal comfort, window-related natural ventilation and energy cost differ
between children and adults, which is worth more systematic investigations.
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5.3. Research Gaps and Recommendations

Thermal comfort, IAQ and ventilation energy consumption interact with each other
in educational buildings. When the higher indoor temperature is preferred, occupants
may suffer from poor IAQ, as the lower indoor temperature can suppress TVOC emissions
and enhance occupants’ tolerance of IAQ. It should be noted that thermal comfort is
significantly associated with CO2 concentrations and PM background concentrations,
where relative humidity (a crucial factor of thermal comfort) is also related to almost all
kinds of indoor pollution sources. Optimal ventilation can control the indoor temperature,
relative humidity and improve IAQ by removing pollutants with fresh air. It can also
maintain thermal comfort and reduce energy consumption in heating or cooling systems.

It should be noticed that university buildings usually have different functional rooms
such as libraries, chemistry laboratories, fitness rooms and theatre classrooms, requiring
sufficient ventilation to meet safety and teaching requirements. Besides, university stu-
dents have more diversified curriculum arrangements and a higher degree of freedom for
adaptive behaviours compared with primary and secondary students. Therefore, different
functional spaces require different thermal comfort and IAQ criteria to meet the diversified
needs of the occupants while achieving energy saving. In addition, further research on
bacterial and fungal aerosol pollutants in educational buildings is needed to evaluate IAQ
comprehensively. Ventilation plays an essential role in the energy efficiency of educational
buildings, given its correlation with thermal comfort and IAQ. Optimally controlled ven-
tilation can provide a high-quality indoor environment with a reduction of heating and
cooling energy consumption. Machine learning-based multi-objective optimization can be
a promising method adopted for such future research.

Overall, the scope of future directions among thermal comfort, IAQ and ventilation en-
ergy is summarized in Figure 8. For thermal comfort, the prediction model should consider
the influence of educational levels, gender and room types. The educational level-based
evaluation model is conducive to assessing the occupants’ thermal perceptions and improv-
ing the indoor thermal conditions. Some relevant standards and guidelines considering the
factor of ages are also necessary. For the indoor thermal comfort monitoring, the influences
of the climates, which affect the occupants’ thermal experience and perceptions, cannot be
ignored besides the education levels. In terms of IAQ, fewer studies focus on university
occupants. It should be noticed that university students spend a long time within the
indoor environment, and therefore requires more attention. As mentioned above, both
the thermal comfort and IAQ interact with ventilation, and mixed ventilation modes are
suggested for energy-saving purposes. Intelligent ventilation control systems, based on
machine learning algorithms, which couple modeling, prediction and decision-making
processes, can be used to balance the operation time between NV and MV. In such novel
approaches, smart sensors (such as Apple Watch) can be applied to collect occupancy and
personal physiological data as indicators for the intelligent control system.
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6. Conclusions and Limitations

Thermal comfort and IAQ are the key factors that significantly affect students’ per-
ception of the indoor environment while interacting with building ventilation systems
and corresponding energy consumption. Appropriate ventilation can guarantee thermal
comfort and IAQ for building occupants, and current mechanical ventilation systems pos-
sesses a huge potential in energy reduction with the assistance of natural ventilation and
optimal control strategies. This paper critically reviewed the interaction between thermal
comfort, IAQ and ventilation energy consumption at different educational levels under
different climates by conducting a detailed statistical summary and classification of the
related publications.

Some important findings are concluded as follows:

(1) Occupants’ thermal comfort conditions can affect the perception of IAQ to some
extent by modulating the tolerance levels. Appropriate ventilation can adjust the
thermal comfort and IAQ to an acceptable level with lower energy consumption.
Most studies focus solely on thermal comfort, IAQ, or energy consumption, while
few publications address multiple aspects simultaneously. The significant interaction
between these three aspects should be covered in future research;

(2) Using natural ventilation alone usually cannot guarantee thermal comfort and IAQ
in extreme winter and summer conditions, while continuous mechanical ventilation
will cause huge energy consumption. Therefore, mixed-mode ventilation and its
corresponding control strategies should be further explored. Given these situations,
internet of things (IoT) based or artificial intelligence (AI) based control, as an effective
method, can provide optimized solutions for mixed ventilation strategies to balance
NV and MV;

(3) Most research related to IAQ is limited to primary and secondary schools, and univer-
sity buildings need to be paid more attention. It should be noticed that the distribution
of indoor pollutants is varied in different rooms of the school, but there are no cor-
responding guidelines focused on this issue. There is also a lack of research on
bacterial and fungal aerosol pollutants for a comprehensive assessment of IAQ in
educational buildings;



Buildings 2021, 11, 591 24 of 30

(4) Some preliminary studies indicated that there might be a relationship between so-
cioeconomic vulnerability and school children’s thermal sensation. However, the
interactions between thermal comfort and students’ socioeconomic backgrounds at
different types of classrooms in varied climates are still unclear, limiting the improve-
ment of indoor environmental quality. The current thermal comfort evaluation models
fail to consider this influential factor;

(5) Considering the energy consumption, the passive designing of natural and mechan-
ical ventilated classrooms benefits maintaining comfortable indoor environments.
Optimizing WWRs for natural ventilation can help satisfy requirements in thermal
comfort and IAQ while reducing energy consumption. Appropriate window orien-
tation and sun shading can also limit the gains or losses of solar radiation, reduce
the frequency of application of mechanical ventilation, and thus lower energy costs.
However, there are not sufficient studies focused on the optimization among the
WWR, window orientation and sun shading. Thus, more studies should be conducted
to evaluate its impact on school buildings;

During the literature selection process, some studies focusing on the overall per-
formance of the indoor environment quality are excluded from the review because IAQ
and thermal comfort are not individually analyzed and their interactions with the en-
ergy consumption are hard to evaluate. However, the perception of thermal conditions
and IAQ as a part of indoor environmental quality can be influenced by indoor acoustic
and lighting environments. Therefore, a future review considering all four aspects may
provide deeper insight and further useful suggestions for improving the overall indoor
environment quality of educational buildings.
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Nomenclature

AHU Air handling units
AI Artificial intelligence
HVAC Heating, ventilation and air conditioning
IAQ Indoor air quality
IEQ Indoor environmental quality
IoT Internet of Things
MV Mechanical ventilation
NV Natural ventilation
WWR Window-to-wall ratio
WHO World health organization
N, P, S, and U Nursery, Primary school, Secondary school, and University
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