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Abstract: Since tremendous resources are consumed in the architecture, engineering, and construction
(AEC) industry, the sustainability and efficiency in this field have received increasing concern in
the past few decades. With the advent and development of computational tools and information
technologies, structural optimization based on mathematical computation has become one of the
most commonly used methods for the sustainable and efficient design in the field of civil engineering.
However, despite the wide attention of researchers, there has not been a critical review of the recent
research progresses on structural optimization yet. Therefore, the main objective of this paper is
to comprehensively review the previous research on structural optimization, provide a thorough
analysis on the optimization objectives and their temporal and spatial trends, optimization process,
and summarize the current research limitations and recommendations of future work. The paper
first introduces the significance of sustainability and efficiency in the AEC industry as well as the
background of this review work. Then, relevant articles are retrieved and selected, followed by a
statistical analysis of the selected articles. Thereafter, the selected articles are analyzed regarding the
optimization objectives and their temporal and spatial trends. The four major steps in the structural
optimization process, including structural analysis and modelling, formulation of optimization
problems, optimization techniques, and computational tools and design platforms, are also reviewed
and discussed in detail based on the collected articles. Finally, research gaps of the current works and
potential directions of future works are proposed. This paper critically reviews the achievements and
limitations of the current research on structural optimization, which provide guidelines for future
research on structural optimization in the field of civil engineering.

Keywords: critical review; structural optimization; optimization strategy; metaheuristic algorithm

1. Introduction

Civil engineering is defined as a discipline dealing with the design, construction,
operation, and maintenance of buildings and infrastructures including a variety of works
such as residence, bridges, and roads [1]. However, the architecture, engineering, and con-
struction (AEC) industry is often considered as an industry with high labor intensity, low
efficiency, and considerable environmental impacts [2,3] while it accounts for a large part
of the economy. According to a report by Horta et al. [4], the global construction industry
makes up approximately 9% of the world’s gross domestic product (GDP). Another survey
from Xu and Wang [5] pointed out that in 2017, the construction industry was the second-
largest energy consumption sector in China, accounting for about 20% of the total energy
consumption, about 23% of the total electricity consumption, and about 30% of the total
CO2 emissions, which had considerable impacts on the environment. Therefore, there has
been growing interests in improving the social, economic, and environmental performance
of civil engineering projects. Since the 20th century, with the advent and development of
computational methods for structure design and analysis, optimization methods based on
mathematical programming techniques have been proposed and adopted in the field of
civil engineering in the past few decades [6].

Buildings 2021, 11, 66. https://doi.org/10.3390/buildings11020066 https://www.mdpi.com/journal/buildings

https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-3175-334X
https://doi.org/10.3390/buildings11020066
https://doi.org/10.3390/buildings11020066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/buildings11020066
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/2075-5309/11/2/66?type=check_update&version=2


Buildings 2021, 11, 66 2 of 27

Optimization refers to acquiring the best outcome under specific conditions [7]. In the
field of civil engineering, optimization can be executed in each step of a project life cycle
such as design, construction, operation, and maintenance. One of the most commonly used
types of optimization is structural optimization. In this study, “structural optimization”
refers to an optimization which aims to find the best arrangement of structures or structural
components to achieve certain objectives under prescribed conditions [8], while ignoring
the properties of adopted materials. Material is a critical part of civil engineering structures,
which significantly affects their performance. Concrete based composite materials are
most commonly used in buildings and civil engineering infrastructures [9], including
plain concrete, reinforced concrete, pre-stressed concrete, etc. [1,10]. Although some
civil engineering structures which contain different types of materials, structures that only
contain a single type of material are normally considered in terms of structural optimization
due to the computational difficulty when considering material distribution of structures.
Structural optimization can be divided into the following four categories [11]:

1. Size optimization: also known as sizing optimization, which treats the cross-sectional
areas of structures or structural members as the design variables;

2. Shape optimization: also known as configuration optimization, which treats the nodal
coordinates of structures as the design variables;

3. Topology optimization: focuses on how nodes or joints are connected and supported,
aiming to delete unnecessary structural members to achieve the optimal design;

4. Multi-objective optimization: simultaneously considers two or more of the above
optimization objectives for better optimization results; an optimization involving size,
shape, and topology at the same time is also known as layout optimization.

At the early stage, researches on structural optimization in the field of civil engineering
only involves mathematical theorems and programming techniques based on simple struc-
tures as benchmarks. With the development of computational and construction techniques,
structural optimization has become increasing popular and has been applied to larger and
more complex civil engineering structures, especially topology optimization. For example,
topology optimization based on iterative 3D Extended Evolutionary Structure Optimiza-
tion (EESO) algorithms were implemented during the design process of the Qatar National
Convention Centre (QNCC) in Doha in order to minimize the structural compliance, which
is one of the largest civil engineering structures created by generative tools based on topol-
ogy optimization [12]. Another example of structural optimization applied on a large-scale
civil engineering structure is the Shenzhen CITIC Financial Center in Shenzhen, China.
Through topology optimization assisted design, the optimized exoskeleton truss layout
improved the material efficiency while ensured the overall stiffness of the structure [13].

One of the principal objectives of structural optimization is minimizing the total cost
of the structure [14]. In construction projects, a lower cost is always desired on the premise
of satisfying the requirements of structural performance. Many studies have been reported
to reduce the total cost by minimizing the total weight of the structure. Recently, with the
increasing attention on the environmental issue and sustainable development, reducing
environmental impacts has become another significant objective of structural optimization
because of the considerable amount of CO2 emissions in the civil engineering industry [3].
In addition, some research articles on structural optimization focus on improving certain
structural performance [15] such as mechanical behavior, aerodynamic performance, and
dynamic seismic performance in order to adapt the structures to different environments.

To achieve the abovementioned objectives, many optimization methods have been
proposed and developed. Recently, metaheuristic methods have become one of the most
popular optimization methods in civil engineering structural optimization research because
they are suitable for combinatorial optimization problems [16]. However, these metaheuris-
tic methods also have some shortcomings such as high complexity [17] and inadequacy for
high-dimensional problems [18]. Therefore, there has been increasing studies that focus
on improving the performance of optimization methods, either to enhance the existing
metaheuristic methods or to propose novel optimization methods. For example, Mor-
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tazavi [19] proposed an auxiliary fuzzy decision mechanism to improve the performance of
interactive search algorithm (ISA) for structural size and topology optimization. The com-
bined algorithm, namely the fuzzy tuned interactive search algorithm (FTISA), achieves
a lower computational cost and a higher solution accuracy. Degertekin [20] proposed
two improved harmony search algorithms (i.e., efficient harmony search algorithm and
self-adaptive harmony search algorithm) for size optimization of truss structures. Based on
the experimental results from several cases, the new algorithms are proved to have lower
computational cost, higher convergence speed, and better optimization results than the
traditional harmony search algorithm. Furthermore, Zheng et al. [21] presented an explicit
topology optimization method, namely transformable triangular mesh (TTM) method,
for structural topology optimization, which is able to obtain the optimal solution more
effectively compared with other state-of-the-art algorithms.

These abovementioned studies in the field of structural optimization presented the
achievements and potential of structural optimization to improve the efficiency and sus-
tainability of the civil engineering industry. However, although a substantial number of
studies as well as survey reports were published in this domain, none of them achieved a
comprehensive review of the research developments on structural optimization. Therefore,
this paper aims to comprehensively review the state-of-the-art literature on structural
optimization in the field of civil engineering, including the analysis of the optimization
objectives and their temporal and spatial trends, analysis of the optimization processes
with four major steps, and the discussions of research limitations and recommendations of
future works.

The rest of this paper is organized as follows. Section 2 demonstrates the methodology
used for literature retrieval and Section 3 presents a statistical analysis of the selected
articles. Then, the optimization objectives of the selected articles are categorized and
analyzed regarding the temporal and spatial trends in Section 4. Next, Section 5 provides
an exhaustive review and analysis of the structural optimization process in four aspects, in-
cluding structural analysis and modelling, optimization problem formulation, optimization
methods, and computational tools and design platforms. Section 6 indicates the limitations
of the current research and based on which elaborates the potential future works. Finally,
conclusions are drawn to conclude and summarize this study in Section 7.

2. Methodology

A holistic approach was adopted in this paper to critically analyze the state-of-the-art
literature and present a comprehensive review on structural optimization in the field of civil
engineering. Figure 1 elaborately depicts the overall methodology of this study, including
literature retrieval and selection from a digital database, statistical analysis of the selected
literature, review of optimization objectives with temporal and spatial trends, review of
optimization process, limitations and future work recommendation, and conclusion. The
details of literature retrieval are presented in Section 2.1, and a brief introduction of the
keywords utilized for literature retrieval is presented in Section 2.2.

2.1. Literature Retrieval

The database used for literature retrieval in this study is Google Scholar, which
contains most of the academic literature published. Several search keywords includ-
ing structural optimization, size, shape, topology, layout, optimal design, civil engineer-
ing structures, and metaheuristic algorithms, were adopted to facilitate the literature
retrieval. Then, the most relevant literature was manually selected from the search results.
Through the above literature retrieval method, a total of 196 papers were selected, including
154 research articles, 19 conference abstracts, 12 book chapters, 7 review articles, and 4 the-
ses. Although structural optimization has a history of more than one hundred years, it is
first applied in aerospace industry and the application in civil engineering industry is much
later [22]. Moreover, with the advent of information technology, the optimization methods
used in recent studies have changed a lot compared with early studies. Therefore, the range
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of publication year of the selected papers is set from 1970 to 2020 in order to analyze and
summarize the latest achievements of research on civil engineering structural optimization.
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2.2. Keywords for Literature Retrieval

As mentioned above, eight keywords are utilized for searching relevant publications.
During the process of choosing suitable keywords, “civil engineering structural optimiza-
tion” is firstly searched in Google Scholar. Then several review articles are selected to
find the state-of-the-art techniques in this field and based on which some other keywords
such as topology optimization and metaheuristic algorithms are summarized for literature
retrieval. Through these steps, a set of keywords which are sufficient to cover most of the
articles in this domain could be obtained.

3. Statistical Analysis of Selected Literature

The distribution of papers regarding the publication years is presented in Figure 2,
which divides the timeline into five time periods. It is obvious that the number of papers
on structural optimization experiences a significant increase over the years. Among all the
selected papers, 88% of them were published after 2000, and 73% of them were published
after 2010, indicating that this theme has attracted increasing attention from researchers.
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These selected papers are also analyzed based on the journals they are published
in. Figure 3 shows the top ten journals that publish the most articles in the field of
civil engineering structural optimization. The top ten journals have published a total of
82 papers. The journal of Computers and Structures is ranked first with 21 papers published,
followed by Structural and Multidisciplinary Optimization and Engineering Structures, each of
which also published more than 10 papers.
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Moreover, the retrieved articles are classified according to the geographical location
of the first author’s research institution, and the distribution of geographical locations is
shown in Figure 4. The top three continents are Asia, Europe, and North America, which
have published 79, 66, and 36 papers, respectively, which altogether account for 92% of the
total number of the collected papers.
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4. Objectives of Structural Optimization
4.1. Categories of Optimization Objectives

The optimization objectives of the selected papers on structural optimization can be
divided into the following four categories:

1. Cost minimization: the objective of the structural optimization design is to minimize
the total cost, which is usually achieved by reducing the weight or the volume of
the structure;

2. Structural performance improvement: the objective of the structural optimization
design is to improve certain properties of the structure such as mechanical behav-
ior, aerodynamic performance, dynamic seismic performance, in order to meet the
requirements in different environments;

3. Environmental impact minimization: the objective of the structural optimization
design is to reduce the greenhouse gas emission or energy consumption to improve
the environmental performance of the structure;

4. Multi-objective: the objective of structural optimization contains more than one of the
above three objectives.

Table 1 presents a summary of the four categories of optimization objectives and some
relevant literature from the selected papers for further analysis.

Table 1. Summary of the four categories of optimization objectives with their respective relevant articles in the field of
structural optimization.

Optimization Objectives Description Relevant Articles

Cost minimization
Optimization for minimizing the total cost of
civil engineering structures, which is usually

achieved by reducing structure weight or volume

Barbieri, Cinquini [23]; Lin, Che [24]; Zhou
and Rozvany [25]; Liang, Xie [26]; Ghasemi
and Dizangian [27]; Ho-Huu, Nguyen-Thoi

[28]; Zhao, Xu [29]

Structural performance
improvement

Optimization for improving certain properties of
civil engineering structures in order to adapt

functional requirements

Rahmatalla and Swan [30]; Natke and Soong
[31]; Achtziger [32]; Wang [33]; Guest and
Moen [34]; Uroš, Gidak [35]; Martin and

Deierlein [36]

Environmental impact
minimization

Optimization for reducing the environmental
impacts of civil engineering structures, such as

greenhouse gas emission and energy
consumption

Yi and Malkawi [37]; Brown and Mueller [38];
Penadés-Plà, García-Segura [39]; Mayencourt

and Mueller [40]

Multi-objective Optimization considering more than one of the
above objectives

Bremicker, Chirehdast [41]; Ohsaki and Swan
[42]; Paik and Raich [43]; Munk, Vio [44];

Choi, Oh [3]; Xia, Langelaar [45]
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Figure 5 presents the percentage of the selected articles for each optimization objective.
It is found that most researchers are from the standpoint of project stakeholders and
focus on the objective of cost minimization, accounting for 62% of the selected articles.
Another 22% of the collected articles aiming to improve the structural performance based
on structural optimization, whereas 14% of the articles engage in structural optimization for
more than one goal. Few studies concentrate on reducing the environmental impact of civil
engineering structures alone, which only account for 2% of the selected articles. The reason
might be that reducing greenhouse gas emissions and embodied energy consumption
will result in a reduction of the total cost of structures at the same time [39]. Therefore,
a more common approach is to consider cost minimization and environmental impact
minimization simultaneously, which is categorized as multi-objective optimization in
this study.
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4.2. Temporal Trends of Optimization Objectives

Over the years, the overall tendency of research on civil engineering structural opti-
mization experiences an upward trend, while the proportion of articles with each objective
has been constantly changing. To analyze the changes of research trends in the field of
structural optimization over time, the number and proportion of the selected papers with
each optimization objective in the five time periods are shown in Figure 6a,b, respectively.

Before 2000, most of the articles focus on cost minimization. There are 16 papers
related to this theme, which account for 70% of the total number of papers before 2000.
Since weight or volume of a structure constitutes a considerable part of the cost [46], cost re-
duction was achieved by reducing the total weight or volume of the structure in all of these
early studies collected. In addition to cost minimization, a few studies also concentrate on
structural performance improvement and multi-objective optimization, which account for
17% and 13% of the selected articles, respectively. All of the articles aiming at structural
performance improvement collected in this period are based on topology optimization,
in which design optimization is achieved by eliminating subsystems with negligible con-
tributions to structural performance while satisfying prescribed criteria [31]. It is worth
noting that there was not a uniform structural performance indicator in these studies, and
various performance indicators such as compliance [32,47], and maximum displacement or
moment [48] were applied for optimization. For multi-objective structural optimization,
the earliest study retrieved in this paper conducted a mean compliance minimization and a
weight minimization separately, and then combined these two types of optimizations [41].
A more common form of multi-objective optimization is to consider two objectives at the
same time. Some researchers proposed a multiplier to convert multi-objective problems to
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single-objective problems [49] and others adopted a Pareto solution for achieving multiple
optimization objectives simultaneously [50].
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The number of articles in the field of structural optimization increases rapidly after
2000, especially in the fourth time period, from 17 articles between 2006 and 2010 to 66 ar-
ticles between 2011 to 2015, while the proportion of articles with each objective has been
changing over the years. According to Figure 6a,b, it is obvious that cost minimization has
always been the hottest research theme, and the number of articles on this theme keeps
increasing in the four time periods after 2000. However, the proportion of this theme in the
last four time periods is less than that in the first period (before 2000), with 54%, 59%, 67%,
58% respectively. Structural performance improvement is the second hottest topic and
accounts for 22% of the total selected articles. The number of articles with this objective has
also been increasing in all of the four time periods after 2000. This type of structural opti-
mization is particularly important in case the safety and serviceability of a structure system
are more important than cost (weight) reduction [48]. In addition, some researchers focus
on simultaneously achieving several different objectives through structural optimization.
These objectives are usually incommensurable and in competition with each other [43,51].
However, due to some limitations such as computational complexity [50] and uncertainty
of the solution [51], the number of studies relevant to this theme is limited, which only
accounts for 14% of the total selected articles. According to Figure 6a, the number of articles
with multi-objective has been fluctuating in the time periods after 2000. Moreover, one
thing that must be pointed out is that although only four articles (2%) aim to reduce the
environmental impact of the structures, three out of the four articles were published from
2016 to 2020, which suggests that this theme may become more popular in the future with
increasing concern on sustainability in the field of structural engineering [39].

4.3. Spatial Trends of Optimization Objectives

Generally, more funding resources from the government or private institutes lead
to a relatively larger number of research articles in specific directions [52]. In a previous
review work, a term called “geographical scope” is defined for the division of geographical
locations [53].

In this study, continent was chosen as the geographical scope at first, and the distribu-
tion of collected articles in each continent is shown in Figure 5, where Asia, Europe, and
North America are the top three continents with relatively more articles. Furthermore,
Figure 7 presents the distribution of collected articles with each optimization objective
in each continent. It is observed that cost minimization is the theme with the highest
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proportion in all the continents. However, in Europe and North America, the proportion
of this theme is slightly lower than that in Asia. Another difference is that research on
environmental impact minimization has been found in Europe and North America, while
there are no articles with this objective found in Asia. In terms of the other three areas
(Africa, South America, and Oceania), only two, five, and eight articles were retrieved from
these continents, respectively, which means that research relevant to structural optimization
is relatively elementary in these regions.
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Then, individual country was used as the geographical scope to further analyze the
geographical trends of research in the field of civil engineering structural optimization.
The 196 articles collected in this study are contributed by a total of 37 countries. Figure 8
presents the top 12 countries with the most collected articles and the number of their
contributed articles. The top four countries with relatively more articles retrieved are Iran,
the USA, China, and Turkey. A total of 117 papers are published by researchers from these
four countries, accounting for 60% of the total number of collected articles. In terms of the
distribution of optimization objective, generally speaking, the different research objectives
are more evenly distributed in countries with a better economy (e.g., the USA, China,
Australia, Greece, Italy, South Korea, the UK, Germany, and Spain), whereas in countries
with a relatively poor economy (e.g., Iran, Turkey, and Brazil), the research mainly focuses
on cost minimization. Besides, it is also found that more articles related to structural perfor-
mance improvement come from countries that fall in seismically active zones, including the
USA, China, and South Korea. This finding suggests that geographical and environmental
factors can affect the research directions [10]. In these regions, researchers are probably
more motivated to pay attention to improving the structural behavior under dynamic
seismic loads.
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5. Process of Structural Optimization

In the field of civil engineering, there is a wide range of structural optimization objects,
including columns, beams, rods, etc., among which the most commonly used object for
structural optimization is skeletal structures such as trusses and frames. Generally, there
are four major components that should be taken into account in the process of structural
optimization:

1. Modelling technique for structural analysis and design, based on which structural
optimization can be divided into discrete optimization and continuum optimization;

2. Formulation of optimization problem, including the definitions of variables, objective
function(s), and constraints;

3. Optimization method, referring to the mathematical programming methods applied
to achieve structural optimization;

4. Computational tool and design platform, referring to the software platforms used to
run the optimization codes and conduct structure design.

The following Sections 5.1–5.4, will provide a detailed review and discussion of the
state-of-the-art literature according to the abovementioned four aspects.

5.1. Modelling Techniques for Structural Analysis and Design

Structural optimization is an iterative process in nature. During the optimization
process, structural analysis needs to be repeated many times to evaluate the improvement
of each design until convergence is reached, which is an enormous computational task.
Therefore, it is necessary to select a structural analysis method that is computationally
inexpensive, especially for large, complex civil engineering structures. Generally, structural
analysis is conducted based on finite element method (FEM), and crude finite element
models are more commonly used compared with detailed finite element models to reduce
computational cost. Another method to reduce this cost is to combine structural analysis
with structural design, which is called simultaneous analysis and design approach [22,54].
According to the modelling techniques used in the early stage of the design process, struc-
tural optimization can be divided into two broad categories, namely discrete optimization
and continuum optimization. In discrete optimization, the structure system is modelled
with discrete structural elements, while the structure system is treated as a solid continuum
with variable topology in continuum optimization [42].

Since structures are broken down into several sections in discrete optimization method,
it is convenient to select the cross-sectional properties and the nodal locations. Therefore,
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this method is usually used in size and shape optimization with predefined and fixed
topology. Structural optimization focusing on size and shape is also known as no topo-
logical or pre-defined topological optimization [1]. In other words, the aim of topological
optimization is to create the shape of a structure, while shape optimization only has to
tune the shape of the structure in order to improve the desired properties of the structure
(usually mass or weight). Studies reported in [55–58] are some examples of the pre-defined
topological optimization. For topology optimization, the discrete optimization method
often focuses on the connectivity of structural elements. The overall optimal design can be
obtained by combining the optimal design of each section.

In terms of continuum optimization, this method is usually applied in topology opti-
mization, dealing with material distribution problems [42]. To some extent, the continuum
optimization method has better performance than the discrete optimization method because
the optimal design does not necessarily lead to truss-like or beam-like structural elements.
Nonetheless, the application of the continuum method in the field of civil engineering is
relatively limited because the optimization problem is more complex and the programming
process is more difficult than treating the structure as discrete components [47].

5.2. Formulation of Optimization Problems

Problem formulation refers to determining the three fundamental components of
an optimization problem in the problem search space, namely the design variables, ob-
jective function(s), and constraints [10]. When conducting structural optimization, it is
presupposed some freedom to change the attributes of the structure. The parameters
used to represent the change of these attributes are usually called design variables and
they are usually denoted by a vector. Design variable can be divided into two categories
according to its value, namely continuous design variable and discrete design variable.
The values of continuous design variables fluctuate within a certain range, while discrete
design variables only have isolated values. Objective function refers to a function or a
set of functions that can be used as a measure of the optimization result. Constraints
refer to the safety and serviceability requirements that must be satisfied during the op-
timization process. According to the form of the expression, constraints can be divided
into two categories, namely equality constraints and inequality constraints. They can be
interconverted to satisfy the requirements of different optimization methods. For example,
an equality constraint h(X) = 0 can be replaced by two inequality constraints h1(X) ≥ 0
and h2(X) ≤ 0 [22]. In addition, constraints could be combined into the objective function
as penalty functions to convert the constrained objective function to an unconstrained
one [59]. The range of design variables is called search space or design space, which could
be further divided into feasible domain and infeasible domain. Feasible domain contains
design points that satisfy all of the constraints, while design points that violate at least one
constraint constitute infeasible domain. The general form of an optimization problem can
be defined as follows [56]:

Minimize/Maximize : f (X);
Subject to : gi(X) ≤ 0, i = 1, 2, 3, . . . . . . , m;

hj(X) = 0, j = 1, 2, 3, . . . . . . , p;
X ∈ S.

where X is usually a vector X = [x1, x2, x3, . . . . . . , xn] and represents the set of design
variables, in which n is the number of design variables; f (X) is the objective function;
gi(X) and hj(X) refer to inequality and equality constraints; m and p are the number of
constraints; and S is the search space of the optimization problem.

As mentioned above, there are four different types of objectives in structural opti-
mization. Therefore, the problem formulation will be discussed according to the type of
objective. Defining the objective function refers to finding a quantification of the desired
result for an optimization problem while satisfying some requirements. Therefore, the
parameter representing the objective function is sometimes different from the optimization
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objective. For example, cost minimization, which is the most commonly adopted objective
in structural optimization, is usually quantified as the total weight of the structure to set
up the objective function [60]. As a result, the optimal design is achieved by minimiz-
ing the total weight of the structure. However, using weight to represent cost is often
criticized by structural designers because a structure design with minimum weight does
not necessarily lead to the minimum cost [61]. Therefore, some objective functions are
proposed to deal with the minimization of the cost, but only a small fraction of articles
in the field of civil engineering structural optimization focus on this topic because of the
uncertainties and fuzziness encountered [46]. In terms of size optimization, the structure
system is usually divided into several structural elements, and the cross-sectional areas are
chosen as the design variables because the total weight of the structure is directly relevant
to the cross-sectional properties of each structural element [60]. Since the distribution of
different materials is not considered in these studies, the objective function can be defined
as Equation (2) [62]:

Minimize : W =
n

∑
i=1

γgAiLi

where W is the total weight of the structure; γ is the density of the material; g is the
acceleration of gravity; the set of design variables X = {A1, A2, A3, . . . . . . , An} represents
the cross-sectional areas of structural elements; and Li is the length of each structural
member. For shape optimization, the nodal coordinates are used as the design variables.
This type of structural optimization is often combined with size optimization for weight
minimization [6,63,64]. In terms of topology optimization, this type of structural optimiza-
tion focuses on finding the optimal connectivity among nodes (joints), that is, determining
whether there should be structural elements between the nodes or not [65]. Topology
optimization generally starts from a predefined dense structure with a lot of structural
members, which is called the ground structure. In the optimization process, unnecessary
elements are progressively eliminated and eventually the optimal design with minimized
weight is obtained [19]. Similarly, a vector is used as the set of topology variables. There
are two values of these variables, namely 1 and 0. If the value of a topology variable
is 1, the structural element represented by this variable can be removed, while 0 means
the element cannot be removed [66]. Structural topology optimization is also commonly
combined with size optimization for structure weight minimization because the structural
elements with very small cross-sectional areas are regarded as unnecessary and can be
removed [66]. In structural optimization with the goal of cost minimization, stress and
displacement constraints are usually adopted, and the specific design requirements depend
on the regional specifications applied instead of the type of optimization. Some most
commonly used regional specifications include the ACI Codes for Concrete, Eurocodes 2,
AASHTO, and British Standards [10].

Another commonly adopted objective for structural optimization is improving struc-
tural performance. However, there is not a uniform parameter to quantify the structural
performance. Many performance indexes such as stiffness [31], compliance [67], strain
energy [68], and static displacement [69] are used to construct the objective function in the
collected literature. Most of the articles aiming at structural performance improvement
reviewed in this paper are based on topology optimization. The reason may be that topol-
ogy optimization leads to optimal structural size in principle, and can be further refined
by size and/or shape optimization methods [67]. In this type of structural optimization,
compliance minimization is generally set as the objective function to maximize the stiffness
of structures. The objective function can be expressed as Equation (3) [70]:

Minimize : C = FT × u(x)

where C is the compliance of the structure; F represents the load vector applied on the struc-
ture; and u refers to the displacement vector. The constraints of structural optimization for
structural performance improvement are more diverse than that for weight minimization
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because of the various design requirements of structural properties. For example, when
considering the dynamic response of structures, natural frequency is always constrained
to avoid destructive effects of dynamic loads [71]. Based on the design requirements,
many mechanical constraints such as displacement, stiffness, stress, and buckling loads are
adopted in this type of structural optimization. In addition, material weight or volume is
often constrained to control the structural cost [68].

The third objective of structural optimization is environmental impact minimization,
which has received little attention from researchers. Only four articles on this theme
are collected. In these articles, the environmental impact of civil engineering structures
is quantified as CO2 emissions or embodied energy consumption, and environmental
impact minimization is achieved by reducing the material consumed [39]. Similar to the
optimization for cost minimization, safety and serviceability constraints are adopted to
satisfy the design requirements.

In the civil engineering industry, there is always a common criterion to evaluate a
project, which is minimizing the cost while maximizing safety and serviceability. However,
these goals may conflict with each other, which means that improving one of them implies
worsening another one [1]. Therefore, increasing studies have focused on balancing the
competing objectives (usually two objectives [72]) in the field of structural optimization.
This type of structural optimization is usually termed as multi-objective optimization,
which is defined as the last type of structural optimization objective in this paper. One
of the major differences between multi-objective optimization and the aforementioned
single-objective optimization is that more than one objective function are considered in
multi-objective optimization. For example, researchers may consider minimizing weight
and deflection simultaneously [73]. Obviously, multi-objective optimization problems
are more complex and require more advanced computational methods [72]. Another
major difference is that there is not a unique solution that reaches the optimum of all
objectives simultaneously, which is determined by the intrinsic feature of multi-objective
optimization [74]. Generally, a multi-objective optimization problem can be formulated as
Equation (4) [1]:

Minimize the vector function
f(X) = [ f1(X), f2(X), f3(X), . . . . . . fk(X)]T

Subject to : gi(X) ≥ 0, i = 1, 2, 3, . . . . . . , m;
hj(X) = 0, j = 1, 2, 3, . . . . . . , p;

X ∈ S.

where f(X) is the set of objective functions; gi(X) and hj(X) refer to the inequality and
equality constraints; X = [x1, x2, x3, . . . . . . , xn] is the set of design variables; and S is the
search space of the solution. As mentioned above, no unique optimal solution can be
obtained from the formulation, and the optimization result consists of a series of trade-off
solutions in fact. These solutions are known as no-dominated solutions and the set of
these solutions is known as Pareto optimal set [74]. The Pareto optimal set, when it is
plotted in the coordinate system considering the design criteria, is referred to as the Pareto
front [74], which is a useful tool to display the result of multi-objective optimization. It is
convenient for the designer to make trade-off decisions between the competing objectives.
The constraints for multi-objective optimization is a combination of the constraints for each
objective, including mechanical constraints, volume constraints, deflection constraints, etc.

Problem formulation plays a crucial role in structural optimization. It defines the vari-
ables, objectives, constraints, and solution scope of an optimization problem. Subsequently,
computational techniques and methods are adopted in the process of optimization to find
the optimal solution(s) in the search space.

5.3. Optimization Techniques and Methods

Structural optimization is one of the most intensively investigated research domains in
engineering in the 20th century [75]. In this field, one of the milestones is proposed by Kuhn
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and Tucker in 1951 [76], which presented some fundamental mathematical programming
techniques for structural optimization, including Lagrange multiplier method, equivalence
theorem, etc. These techniques are widely used in the subsequent researches. In recent
years, mathematical programming and numerical search techniques have become one of
the most commonly applied approaches in the field of structural optimization to search
for the optimal solution in an efficient manner. The optimal solution searching process
normally starts from an initial design and gradually improves the value of the objective
function by iteration until convergence is achieved [22]. Generally, two categories of
optimization methods are widely used in civil engineering structural optimization, namely
gradient-based approaches and heuristic approaches [61].

Gradient-based approaches require a predefined search direction, which is called
gradient, before searching for the optimal solution. This type of optimization approach
can be further divided into four categories: linear programming methods, non-linear
programming methods, optimality criteria methods, and feasible direction methods [61].
The linear programming methods refer to optimization methods with linear objective
functions and constraints. When at least one of these functions are non-linear, the opti-
mization methods are termed as non-linear programming methods. The optimality criteria
methods involve developing efficient algorithms for the optimization of structures subject
to stiffness constraints based on statically determinate or indeterminate structures and
structural dynamics principles [77]. The optimality criteria methods are usually used for
calculating the Lagrange multipliers, which are used for finding local minima/maxima of a
function subjected to equality constraints, with stress and displacement constraints, as well
as satisfying the certain optimality criterion. In the feasible direction methods, searching
optimum starts from a point that satisfying all the constraints. Then the point is moved to
a better point based on the following iterative scheme:

Xi+1 = Xi + λSi

where Xi and Xi+1 are the start point and the end point of the ith iteration; Si is the direction
of movement; and λ is the distance of movement, whose value is always predefined to make
Xi+1 falls within the feasible region. Si determines the search direction and is found based
on two principles: (1) a small move without violating constraints, and (2) a direction that
reduces the value of the objective function. Therefore, the optimal solution can be reached
after a number of iterations [78]. Sometimes researchers may incorporate approximate
techniques in these gradient-based optimization approaches to reduce computational cost.
These techniques construct an approximation of the structural design problem at first based
on structural analysis and then solve the approximate problem by optimization methods.
The optimal solution of the approximate problem is used as a basis for performing further
analysis and refine the design [22].

These gradient-based optimization methods are also termed as conventional methods
and are widely used in the early studies on civil engineering structural optimization. For
example, Chan [6] used a linear programming algorithm for the optimization of structures
subject to multiple loading. Dobbs and Felton [79] adopted a steepest descent nonlinear
programming algorithm for truss geometry optimization to minimize the structure weight.
Lin et al. [24] proposed a bi-factor α-β algorithm, which is an effective iteration algorithm
and belongs to feasible direction methods, for minimal weight design of structures under
static and dynamic constraints. However, despite the extensive applications, many limita-
tions of these gradient-based algorithms have been pointed out by previous studies. These
limitations can be divided into three categories in general:

1. Although these gradient-based algorithms have good performance in some cases of
civil engineering structural optimization, the convergence to the global optimum is
difficult to ensure [6]. In fact, a structural optimization problem generally has more
than one local optimum, so these gradient-based algorithms may converge to one of
these local optimum if the initial design and the search direction are not well defined.
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In other words, these algorithms are usually trapped into a local optimum instead of
reaching the global optimum.

2. The requirement of computation gradients makes them difficult to implement and
inefficient [80]. Therefore, these gradient-based methods cannot efficiently handle
the optimization problem of large structures with highly nonlinear, implicit, and
discontinuous constraints;

3. Few of the gradient-based algorithms contain comprehensive optimization con-
straints [6], which limits the scope of their applications.

To address the limitations of the gradient-based algorithms, a new type of mathemati-
cal programming methods is proposed and adopted to meet the requirements in structural
optimization, which is known as heuristic methods.

Heuristic methods refer to problem-solving approaches that obtain the solution by trial
and error. This kind of optimization methods include lots of machine learning techniques,
such as artificial neural networks [81] and support vector machines [82], that aim to improve
the accuracy of solutions by iterations [83]. Although heuristic methods are relatively easy
to program with high computational speed, these methods are problem-dependent and
may be trapped in local optimum [84]. Therefore, researchers have proposed further
developed heuristic methods, namely metaheuristic methods, for better optimization
results. Metaheuristic methods are problem-independent and utilize certain trade-off
randomization to move from local search to global search. This type of optimization
method has become increasingly popular in research on structural optimization in the past
few decades [83].

Metaheuristic methods are normally inspired by natural or man-made phenomena
such as ant colony, water flow, and ensemble of musicians [17]. Some examples of the
metaheuristic methods include genetic algorithm (GA) [85], harmony search (HS) [86],
firefly algorithm (FA) [87], artificial bee colony (ABC) [88], differential evolution (DE) [89],
Tabu search (TS) [90], teaching–learning based optimization (TLBO) [91], particle swarm
optimization (PSO) [92], bat algorithm (BA) [93], cuckoo search (CS) [94], and Jaya [95].
Some taxonomies based on certain attributes of the algorithms are adopted to classify
the metaheuristic algorithms [96], such as nature-inspired against non-nature inspired,
population-based against trajectory-based, and dynamic objective function against static
objective function. However, despite these differences, all metaheuristic algorithms have
two main components: exploitation and exploration [16]. Exploration aims to generate
diverse solutions for comparison, while exploitation is used to find the current optimal
solution. Eventually, the global optimal solution can be effectively achieved by a good
combination of exploitation and exploration.

The metaheuristic algorithms have many advantages compared to conventional deter-
ministic and stochastic optimization methods, which can be concluded as the following four
aspects [16]. First, the metaheuristic algorithms are suitable for combinatorial optimization
problems with both continuous and discrete design variables. Second, the metaheuristic
algorithms do not require the gradient information. Third, the metaheuristic algorithms
do not require the convexity or an explicit relationship between the objective function
and constraints. Fourth, the metaheuristic algorithms can find a global optimum more
effectively. In structural optimization, there have been some successful applications of
the metaheuristic methods. For example, Kociecki and Adeli [97] proposed a two-phase
GA for size and topology optimization of frame structures with rectangular hollow struc-
tural sections to minimize the total weight of the structure. Mortazavi and Toğan [71]
proposed an integrated PSO algorithm for size and layout optimization of truss structures
to improve the structural dynamic characteristics and minimize the weight of structures.
Bekdaş et al. [62] applied a recently developed metaheuristic algorithm, namely the flower
pollination algorithm, in size optimization to minimize the weight of truss structures.

Despite the advantages and the successful applications mentioned above, the meta-
heuristic algorithms also have some drawbacks and limitations according to previous
studies. For example, Sörensen [17] claimed that the metaheuristic algorithms are usually
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very complicated and are only tested on a few samples with small structural size. Although
the metaheuristic algorithms can achieve excellent results, it cannot be concluded that they
are better than constructive heuristic algorithms. Saka et al. [16] indicated that one of the
disadvantages of the metaheuristic algorithms is that they are computationally expensive,
particularly in large and complex structures under several load cases. According to Mah-
davi et al. [18], the main deficiency of the standard metaheuristic algorithms is that they
cannot well handle high dimensional problems because of the high landscape complexity
and large search space. Therefore, many recent studies in structural optimization involve
further improvements of the existing optimization methods. These algorithm improvement
methods aim to enhance the optimization efficiency based on the characteristics of each
metaheuristic algorithm. For example, Cheng et al. [98] proposed a hybrid HS algorithm,
which utilized the PSO search and neighborhood search instead of the randomization
function for global optimum while retaining the harmony memory and pitch adjustment
functions in the traditional HS algorithm. This hybrid algorithm is proved to perform better
in solution accuracy as well as convergence rate compared with traditional metaheuristic
algorithms. Arjmand et al. [99] presented a hybrid algorithm that combines the improved
dolphin echolocation algorithm with the ant colony optimization algorithm. The hybrid
algorithm enhances the efficiency of the improved dolphin echolocation algorithm by using
the positive attributes of ant colony optimization. Moreover, Cao et al. [100] concluded four
methods to improve the performance of the traditional PSO algorithm: (1) balancing the
local search and the global search, (2) replacing traditional global topology with different
neighborhood topologies, (3) combining PSO with other metaheuristic methods, and (4)
combining traditional gradient-based algorithms with PSO. These methods expand the
exploration ability of the traditional PSO algorithm to obtain global optimum and enhance
its exploitation ability to accelerate the convergence rate as well as improve the accuracy of
solutions. Table 2 presents a summary of some other studies on structural optimization
that involve improved metaheuristic algorithms. Although these variants of traditional
metaheuristic algorithms have many different forms, each of them focuses on improving
certain ability (abilities) of the original algorithm. Therefore, it is of great importance to
select the most suitable algorithm for a specific optimization problem in order to obtain the
best optimal design while minimizing computational cost.

In addition to improving the performance of algorithms, an alternative approach
to enhancing the optimization efficiency is to reduce the time-consuming evaluations of
optimization objective or constraint function in the optimization process [100]. However,
this approach may lead to an optimization result that deviates from the optimization
objective, and thereby this approach is not discussed in this paper.

There is another special type of optimization methods apart from gradient-based
methods and heuristic methods, namely the reliability-based design optimization (RBDO)
methods. RBDO aims to seek for the best compromise between structural cost and safety
by considering the uncertainties of the structural system, including dimension, material,
model, loads, etc. [101]. Therefore, this type of optimization methods ensure a minimum
level of reliability, which provide a prior for the designers [102]. There are three main
categories of RBDO methods, namely the two-level approach, the single loop approach and
the decoupled approach [101]. Despite the aforementioned advantages, these RBDO meth-
ods also have some drawbacks such as high computational cost caused by the reliability
analysis in each iteration and the difficulty of computing the gradients of the probabilis-
tic constraints and thus their application in civil engineering structural optimization is
relatively limited [103].
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Table 2. A summary of some recently proposed improved metaheuristic algorithms.

Year Involved Algorithms Inspiration Reference

2012

Efficient harmony search
algorithm (EHS) and

self-adaptive harmony search
algorithm (SAHS)

Proposed two improved harmony search algorithms
to decrease the parameter-dependency of HS

algorithm for size optimization
Degertekin [20]

2012 Enhanced GA with multiple
populations (EGAwMP)

Enhance the exploitation and exploration capacities of
the GA with multiple populations by a radial-basis

neural network and a new design strategy to increase
the convergence degrees of optimal designs

TALASLIOGLU [104]

2013 Accelerated firefly
algorithm (AFA)

AFA improves the searching procedure of the
standard firefly algorithm based on randomness

reduction and scaling the random term to increase the
convergence rate

Baghlani, Makiabadi [105]

2015 Improved ray optimization
(IRO) algorithm

IRO changes the formulation of generating solutions
and returns violated agents to feasible search space to

make the original ray optimization algorithm more
efficient

Kaveh and Ghazaan [106]

2016
Hybrid genetic algorithm and
particle swarm optimization

algorithm (HGAPSO)

Divide the population members into two equal groups
based on their fitness values, using PSO algorithm for

the best half while using the GA for the worst half
Maheri, Askarian [107]

2017

Colliding bodies optimization
(CBO) and enhanced colliding

bodies optimization
(ECBO)

CBO is a new metaheuristic algorithm based on
one-dimensional collision, while ECBO uses memory

to improve the performance of CBO without
increasing computational cost

Kaveh and Moradveisi [108]

2017
Integrated particle swarm

optimization
algorithm (IPSO)

IPSO is a particle swarm optimizer combined with the
improved fly-back mechanism and the weighted

particle concept, and it is used for weight
minimization of structures with frequency constraints

Mortazavi and Toğan [71]

2017
Genetic algorithm with

domain-
trimming (GADT)

Enhance the global optimum searching capacity of GA
through domain-trimming technique, and use the
GADT for weight minimization design of support

structures for offshore wind turbines

AlHamaydeh, Barakat [109]

2017

Whale optimization algorithm
(WOA) and enhanced whale

optimization algorithm
(EWOA)

WOA is a metaheuristic algorithm inspired by the
hunting behavior of whales; EWOA improves the
formulation of the WOA in to improve solution

accuracy, reliability, and convergence rate

Kaveh [110]

2018 Adaptive hybrid evolutionary
firefly algorithm (AHEFA)

AHEFA utilize an automatically adapted parameter
for an effective trade-off between the global and local
search and use an elitist technique to select the best

individuals

Lieu, Do [64]

2019 Discrete advanced
Jaya algorithm (DAJA)

DAJA produces new trial designs and forms descent
directions in the neighborhood of each design

candidate to overcome the limitation of the Jaya
algorithm: no utilization of algorithm-specific

parameters

Degertekin, Lamberti [66]

5.4. Computational Tools and Design Platforms

In addition to structural analysis and modelling, optimization problem formulation,
and optimization method, it is also important to choose suitable computational tools and
design platforms to perform the optimization codes as well as to achieve the optimal design
of the structures. In the past, structural design and analysis were carried out by manual
calculations through trial and error, which was characterized by heavy workload and
error-proneness. With the development of information technology, many computational
tools and design platforms have been developed to provide an environment for structural
modelling, analysis, and design. Some prominent software packages, such as ETABS and
SAP, significantly improve the calculation speed and lead to better results [111]. However,
not all software packages perform that well. Some existing software packages have been
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proven to be less effective when dealing with large-scale structures [10]. Meanwhile,
building information modelling (BIM) based software, which is often used for structure
design and visualization, always faces the problem of low data interoperability [112].

In terms of structural optimization, it is crucial to select suitable software packages
to carry out optimization because the software performance directly affects the efficiency
of optimization. Generally, after determining the problem formulation and optimization
method, the optimization process follows such a sequence: solution encoding, mathe-
matical computing, and structural analysis and design. There are two encoding methods
when using metaheuristic operators, namely natural encoding, which uses real values to
represent the design variables, and binary encoding, which uses binary strings to represent
the design variables. Because each algorithm has a different behavior, the selected encoding
method depends on the adopted metaheuristic algorithm [1]. Then two types of software
packages are involved in the structural optimization: computing software and design
software. The former is used to perform the optimization codes, while the latter is used
to conduct structural analysis and design. In the computing software, the iterative part
of the optimization is carried out and each iteration will generate a set of values for the
design variables. Then, the design variables are transferred into the design software to
update the structure model with new geometric properties. After reaching the algorithm
convergence, the range of the design variables (i.e., the minimum and maximum values)
will be determined. The optimal design can be obtained through structural analysis based
on some predefined criteria [113].

MATLAB is a commonly used computing software in structural optimization due
to its excellent ability for computation and programming. For example, Zhou et al. [114]
proposed a modified bidirectional evolutionary structural optimization (BESO) method for
topology optimization, where they adopted a MATLAB program to implement this method.
Zegard and Paulino [115] used the ground structure method for topology optimization, and
the source code, which is known as GRAND3 (ground structure analysis and design in 3D)
was implemented in MATLAB. In terms of structural analysis and design, some software
packages such as SAP2000 and ETABS are often used because of their good performance.
BIM software is another type of commonly used software for structural analysis, design,
and visualization. However, the structure information from the BIM environment must be
converted to finite element analysis tools such as ETABS, SAP, and ANSYS to obtain the
optimal design [10].

In addition to using two types of software and conducting mathematical computation
and structural analysis and design separately, some researchers have adopted a single
integrated platform to conduct the entire process of structural optimization. For example,
Sotiropoulos and Lagaros [113] proposed a platform for topology optimization of framed
structures, namely the high-performance topology optimization computing platform (HP-
TOCP). A wrapper was created in SAP2000 to call the fmincon function in MATLAB’s
toolbox. Through this method, computing software is not used in the optimization process,
and it is not necessary to conduct information conversion.

Although computational tools and design platforms are not introduced in detail in
most of the collected articles, they are of great importance because they can significantly
affect the optimization efficiency. There is no doubt that the existing tools can satisfy
the computational and design requirements. However, the development of new tools
or integrated platforms are still desired to further improve the optimization capability,
computational efficiency, and data interoperability.

6. Limitations and Future Work

In the past few decades, with the development of theories and technologies, re-
searchers have made great progresses in the field of civil engineering structural optimiza-
tion. Optimization can involve multiple aspects such as size, shape, and topology of
structures at the same time. In addition, optimization objectives are diverse, extending
from minimizing the total cost to minimizing environmental impact, improvement of
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structural performance, and even multi-objective optimization. Moreover, the emergence
and development of metaheuristic algorithms have significantly improved the efficiency
and accuracy of structural optimization. Despite these achievements, there are still some
limitations and research gaps, which need to be solved in the future. These research
limitations with the recommendations of future works will be discussed in this section.

6.1. Weighting Criteria in Multi-Objective Optimization

As mentioned above, multi-objective optimization is an important and promising
theme in the field of civil engineering structural optimization, which balances between
more than one competing optimization objective and thus better satisfying the requirements
of structure designers. However, some issues of the multi-objective structural optimization
have yet been solved. There is not a definite solution in optimization considering two ob-
jectives simultaneously. Although a set of optimal solutions (Pareto set) can be obtained, it
may be difficult to select one solution that best satisfies the design requirements. Moreover,
all of the selected articles in this paper on multi-objective optimization only consider two
objectives simultaneously. None of these studies considered three or more optimization
objectives at the same time.

Researchers have made some efforts to deal with these issues faced by multi-objective
optimization. An alternative to the Pareto optimality is the compromise solution method,
which yields a single optimal solution [116]. In this method, an unattainable ideal point is
proposed, and the optimal solution is obtained by progressively reducing the difference
between the potential optimal point and the ideal point. However, it is difficult to represent
the closeness between the two points mathematically unless the objective functions are
dimensionless [116].

It is more common to incorporate the preferences of decision-makers to deal with
multi-objective optimization. These methods use weights as the parameters to represent
the preferences of decision-makers. According to the moment when the decision-makers’
preferences are provided, these methods can be divided into three categories, namely
priori approaches, interactive approaches, and posteriori approaches [117]. The priori
approaches define the weight of each optimization objective before the optimal solution
search. Many weighted criteria have been proposed to facilitate this process, such as
linearly weighted criterion [118], weighted global criterion [116], and weighed scalar-
valued performance criterion [119]. In the field of civil engineering structural optimization,
Sanaei and Babaei [120] used the weighted sum method (WSM), which is the simplest and
most common weighted criteria method, for simultaneous shape and topology optimization
of continuum structures. This method uses a set of scalar values to define the weight
of each optimization objective, and thus synthesize these objective functions into one
single objective function. Then, the optimization problem can be solved following the
process of single-objective optimization and a definite optimal solution can be obtained.
The interactive approaches provide the decision-makers’ preferences during the search.
However, interactive approaches are not that common in the collected articles, the reason
of which might be the inconsistency of the preference information provided by a decision-
maker [117]. In terms of posteriori approaches, the decision-makers’ preferences are
involved after the search. The weighting criteria in the posteriori approaches may depend
on the solutions obtained [116]. For example, Zavala et al. [1] have adopted the posteriori
approaches in their review work on multi-objective structural optimization, where they
provided the solutions to the decision-makers based on an approximation of the Pareto
front and then incorporated the decision-makers’ preferences into the solutions.

However, there is still a major problem for the preference-based methods in spite of
these achievements. That is, no matter which criterion is adopted to weight the objectives,
it is subjective more or less. In other words, it is difficult to determine whether a weighting
criterion is suitable for a specific problem or not. Moreover, sometimes decision-makers
cannot provide their preferences for each objective or to determine the most appealing
solution among the solutions provided by the optimization results [116]. Hence, future
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studies are necessary to propose a comprehensive optimization objective weighting sys-
tem, which would provide the range of weight values based on the adopted algorithms,
design specifications, and constraints for researchers to select relatively suitable weighting
criteria. Although such a weighting system may not be able to cover all the different cases
of structural optimization, this system would be sufficient to provide a reference when
the decision-makers’ preferences are not that explicit. Additionally, based on this weight-
ing system, three or more objectives can be considered simultaneously by transforming
multiple objective functions into a single objective function.

6.2. Quantification of Optimization Objectives

Generally, in order to achieve an optimization objective, researchers should find a
mathematical quantification of this objective first, and then the optimal solution can be ob-
tained through mathematical computation. There are some commonly used quantification
methods in structural optimization. For example, the structural cost is often quantified as
the weight of the structure. Compliance and total strain energy are often used as the quan-
tification of structural stiffness. Theoretically, all of the structural properties even aesthetics
attributes can be used as optimization objectives if these properties can be appropriately
quantified [121].

However, it can be difficult to accurately quantify the objectives in some cases. Ald-
waik and Adeli [61] pointed out that structure designers often questioned the feasibility
of using structure weight to quantify the total structural cost. Although a design with the
minimum weight or volume reduces the material cost, which accounts for a large part of the
total structural cost, the total cost also contains other components such as transport cost and
installation cost. Therefore, the total cost cannot be directly represented by structure weight.
There have been some studies focusing on the quantification of structural cost. For example,
Kaveh [122] combined the man-hours for fabrication, structure weight, and price of web cut-
ting to construct the structural cost function for optimization of castellated beams. Sharafi
et al. [123] used an objective function that minimizes the material cost and formwork cost
simultaneously for the optimal design of continuous reinforced concrete beams. Some re-
searchers also apply parametric mixed-integer non-linear programming (MINLP) approach
in structural optimization for cost (or mass) minimization [124–126], which is a mathemati-
cal programming technique that simultaneously optimizes the discrete system structure
and continuous parameters with nonlinear objective functions and constrains [127]. The
algorithms for MINLP approach are usually designed for handling large-scale, highly com-
binatorial and highly nonlinear problems, such as outer approximation/equality-relaxation
(OA/ER) algorithm and generalized Bender’s decomposition (GBD) algorithm [127]. Based
on MINLP approach and corresponding algorithms, a wide range of design parameters in-
fluencing the structural cost such as material unit prices, hourly labor costs, imposed loads,
structure spans, steel and concrete grades [124] could be considered simultaneously to
formulate the objective function and thus the optimization result might be better. However,
MINLP problems are extremely complex to solve because they contain all the difficulties of
their subclasses, namely the combinatorial nature of mixed integer programs (MIP) and
the difficulty in solving nonconvex (and even convex) nonlinear programs (NLP) [127].
Therefore, the application of MINLP approach is more or less limited.

Despite the aforementioned achievements, there is not a widely accepted quantifica-
tion of structural cost because researchers would consider different aspects of structural
cost in different optimization problems. Therefore, future work is required to propose a
comprehensive system for structural cost estimation, which would consider all the aspects
related to the total structural cost, such as material cost, transport cost, as well as fabrication
and construction cost that is related to the construction method (e.g., precast or cast in place)
and the standardization rate of structural components. To establish such a system, it is
necessary to collect structural cost data from existing projects, and build the cost estimation
system based on in-depth analyses of existing project data. Additionally, it is promising to
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propose more convincing quantifications of structural mechanical properties and aesthetic
properties so that these properties can be treated as objectives of structural optimization.

6.3. Applicability of Optimization Algorithms

Many studies on structural optimization aim to propose novel algorithms with a
higher convergence rate and better optimal solutions. However, there has not been a
standard method to evaluate the performance of the optimization algorithms. For exam-
ple, Kaveh et al. [128] conducted size optimization of two-dimensional frame structures
with the goal of structure weight minimization to compare the performance of different
metaheuristic algorithms. They used three types of frame structures as design examples,
namely 1-bay, 10-story steel frame, 3-bay, 15-story steel frame, and 3-bay, 24-story steel
frame. Seven population-based metaheuristic algorithms were compared in their study,
including the artificial bee colony algorithm (ABC), big bang–big crunch algorithm (BB-BC),
cyclical parthenogenesis algorithm (CPA), Cuckoo search algorithm (CS), thermal exchange
optimization algorithm (TEO), teaching–learning-based optimization algorithm (TLBO),
and water evaporation optimization algorithm (WEO). Their results suggest that these
metaheuristic algorithms present different performance in different design examples. For
the 1-bay, 10-story steel frame structure, the average structure weight of the optimal design
of each metaheuristic algorithm is ranked as follows (in ascending order): TEO, CS, BB-BC,
CPA, WEO, TLBO, and ABC. For the 3-bay 15-story steel frame structure, the average
structure weights follow another sequence (in ascending order): TEO, WEO, TLBO, CPA,
BB-BC, CS, and ABC. Furthermore, the results are also different for the 3-bay 24-story frame
structure, where the order of the average weights is as follows (in ascending order): TEO,
TLBO, WEO, BB-BC, CS, CPA, and ABC. It should be noted that all of the above results are
obtained under 20,000 analyses. All of these algorithms have reached convergence under
this condition. Since the optimization objective is weight minimization, smaller average
structure weight of the optimal design means better performance of the algorithm. In terms
of convergence rate, their study presented the convergence curve of each algorithm instead
of comparing the convergence rate directly. According to their results, TEO, TLBO, and
WEO have higher convergence rates in general. However, the convergence rates of these
three algorithms also vary with different design examples. For the 1-bay, 10-story steel
frame structure, the convergence rate of TEO is much faster than other algorithms, while
for the 3-bay 15-story steel frame structure and the 3-bay 24-story frame structure, TEO,
TLBO, and WEO reach convergence almost at the same time.

The above results show that the metaheuristic algorithms have limited applicability.
Each algorithm may only have good performance for a specific optimization problem. If
a novel optimization algorithm is proposed to solve a specific optimization problem, the
performance of this algorithm for other optimization problems cannot be ensured even
if it displays better performance than other algorithms for this optimization problem. In
addition, all the newly proposed algorithms are tested on different structures, making it
difficult to compare the performance of these novel algorithms.

Therefore, future work should be focused on the establishment of a benchmarking sys-
tem for optimization algorithm comparisons, in order to facilitate the development of new
metaheuristic algorithms with higher applicability for structural optimization. To facilitate
the comparisons of algorithms, the structural optimization problems could be classified into
different categories based on the structure types, scales, or other characteristics. For each
category of optimization problems, a few standardized structural optimization problems
could be established as the benchmark test problems. Meanwhile, traditional metaheuristic
algorithms with relatively better performance for each category of optimization problems
could be used as the benchmark algorithms. Afterwards, the performance of any newly
proposed algorithm can be verified by comparing with the benchmark algorithms using
the benchmark test problems for the respective category of optimization problem. Based
on the benchmarking system, it is expected that novel optimization algorithms could be
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developed to address a category of optimization problems with better performance rather
than a specific optimization problem.

7. Conclusions

This review work comprehensively analyzed the previous literature on structural
optimization in the field of civil engineering. After retrieval and selection, 196 relevant
articles from Google Scholar were collected. The publication time period of these collected
articles spans from 1970 to 2020. These articles were analyzed statistically regarding the
publication year, article type, journal, geographical location, and optimization objective.
The temporal and spatial trends of the optimization objectives were also discussed in
detail. In general, the number of research articles in this field has experienced an upward
trend over the years, especially in the regions where government could provide sufficient
funding. Cost minimization is the most popular optimization objective, while research
on structural performance improvement and multi-objective have increased rapidly in
recent years.

In addition, the process of structural optimization was discussed in detail in this
paper. Based on the optimization objectives, these collected articles were divided into
four research themes, namely cost minimization, structural performance improvement,
environmental impact minimization, and multi-objective. Four major steps in the struc-
tural optimization process were reviewed and discussed, including structural analysis and
modelling, formulation of optimization problems, optimization techniques and methods,
and computational tools and design platforms. According to the modelling techniques
used in the early stage, structural optimization can be divided into discrete optimization
and continuum optimization. Optimization formulation comprises of three main compo-
nents: design variables, objective functions, and constraints. For structural optimization,
the design variables include one or more of cross-sectional areas, nodal coordinates, and
connectivity of structural elements. The objective function for structural optimization
aims to minimize or maximize the quantifications of optimization objectives, such as the
total weight of structure, compliance of the structure, and total strain energy. Constraints
are usually the safety and serviceability requirements that must be satisfied during the
optimization process, including stress, displacement, etc. Optimization techniques and
methods refer to the way to perform the structural optimization and obtain the optimal
design. Mathematical programming based on metaheuristic algorithms have been the
most commonly used optimization method in the recent years, and a considerable part of
collected articles aim to propose novel metaheuristic algorithms with better performance
(higher convergence rate and more accurate optimal solution) than the conventional algo-
rithms. Eventually, the optimization methods should be implemented in certain software
packages or platforms. Generally, there are two types of software packages involved in
structural optimization, namely computing software and design software. The computing
software, such as MATLAB, is used to perform optimization codes and generate optimal so-
lution through iterations. Then, the structural geometry data are transferred into the design
software such as ETABS for structure design and analysis. Some researchers also adopt
integrated platforms for structural optimization, where data transformation is not required.

Finally, limitations of the current research on structural optimization were identified,
and future works were recommended to address the limitations. Although many research
achievements have been made over the years, there are still three major research gaps,
namely weighting criteria in multi-objective optimization, quantification of optimization
objectives, and applicability of optimization algorithms. First, structural optimization con-
sidering two objectives simultaneously would generate a set of optimal solutions, which
is called Pareto set, instead of a unique optimal solution and thus may not satisfy the
requirements of designers. Future work may focus on proposing a comprehensive criterion
to weight each objective and thus convert multi-objective optimization problem to single-
objective optimization problem. Second, mathematical quantifications must be found to
represent the optimization objectives appropriately in order to conduct structural optimiza-
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tion. However, there has not been a standard method to evaluate the accuracy of objective
quantifications yet, which is expected to be proposed in the future. Third, the metaheuristic
algorithms have limited applicability. In other words, the performance of a metaheuristic
algorithm can be different for different optimization problems. Therefore, the future work
may focus on categorizing the optimization problems according to their characteristics, and
proposing a benchmarking system for each category of optimization problem including
benchmark test problems and benchmark algorithms. Based on the benchmarking system,
novel optimization algorithms could be developed to address a category of optimization
problems with better performance rather than a specific optimization problem.

In conclusion, there are four major contributions of this review article. First, this study
comprehensively reviewed and summarized the available literature on civil engineering
structural optimization in the past few decades. Second, this study statistically analyzed the
collected literature regarding the temporal and spatial trends of research in this field. Third,
this study discussed four major components of the optimization process in detail, including
structural analysis and modelling, formulation of optimization problems, optimization
techniques and methods, and computational tools and design platforms. Lastly, this study
proposed limitations of the current research on civil engineering structural optimization
and recommended corresponding future works. This paper has filled the gap that there is a
lack of comprehensive review work in the field of civil engineering structural optimization,
providing a useful reference and guidance for future works in this field.
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