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Abstract: Urban energy mapping plays a crucial role in benchmarking the energy performance of
buildings for many stakeholders. This study examined a set of buildings in the city of Borlänge,
Sweden, owned by the municipality. The aim was to present a digital spatial map of both electricity
use and district heating demand in the spatial–temporal dimension. A toolkit for top-down data
processing and analysis was considered based on the energy performance database of municipality-
owned buildings. The data were initially cleaned, transformed and geocoded using custom scripts
and an application program interface (API) for OpenStreetMap and Google Maps. The dataset
consisted of 228 and 105 geocoded addresses for, respectively, electricity and district heating monthly
consumption for the year 2018. A number of extra parameters were manually incorporated to this
data, i.e., the total floor area, the building year of construction and occupancy ratio. The electricity
use and heating demand in the building samples were about 24.47 kWh/m2 and 268.78 kWh/m2,
respectively, for which great potential for saving heating energy was observed. Compared to the
electricity use, the district heating showed a more homogenous pattern following the changes of the
seasons. The digital mapping revealed a spatial representation of identifiable hotspots for electricity
uses in high-occupancy/density areas and for district heating needs in districts with buildings
mostly constructed before 1980. These results provide a comprehensive means of understanding
the existing energy distributions for stakeholders and energy advisors. They also facilitate strategy
geared towards future energy planning in the city, such as energy benchmarking policies.

Keywords: digital mapping; spatial; temporal; energy use

1. Introduction

Buildings represent large energy end-users worldwide. In the EU, buildings currently
consume over 40% of total primary energy usage [1]. With its sights set on the new
paradigm shift regarding energy production, efficiency and climate change, Sweden will
implement strategies to reach national targets for energy efficiency in the building sector by
2050. According to these targets, energy use per square metre should decrease by 20% by
2020 and 50% by 2050, in comparison with use in 1995—this is a national target for energy
efficiency in the housing sector [2]. In 2010, over 50% of the world’s population were living
in urban areas. By 2050, this number is expected to reach 75% [3]. Urban development and
the expansion of cities, through the modification of land uses (from natural to artificial),
cause a shift in the local energy budget and energy supply/demand patterns. Such a
transformation has significantly changed the microenvironment and the related energy
usage in urban cities [4]. The mapping of urban building energy plays a crucial role in
understanding the multitude of agents that take part in the energy performance of buildings
and thus in setting up the benchmarks in different districts for various stakeholders.
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In Swan and Ugursal’s study, the modelling approaches for energy consumption
in a number of buildings were classified into bottom-up or top-down approaches [5].
The bottom-up approach is more appropriate when there is a need to evaluate the energy
consumption based on a highly detailed level of data and to model technological systems [6].
Bottom-up models can be divided into two types: deterministic (or engineering) and
statistical. The statistical methods search for correlations, utilizing a sample of information
from energy bills as a source of data for energy modelling and analysing the link between
energy consumption and a range of different variables (e.g., building shape, age and
occupant behaviour) [7]. They can also take into account socioeconomic effects in the
equations. They calculate reliable consumption based on the available information on
the current status of buildings. However, due to their strong dependency on available
historical consumption data, these bottom-up statistical methods are restricted to predicting
the impact of new technology options and energy saving potential after the application of
refurbishment measures [8]. The bottom-up deterministic methods are detailed models
which are based on thermodynamic relationships and heat transfer calculations [9]. The
main advantage of an engineering-based method is the ability to predict energy saving
potential for buildings when some renovation measures are to be implemented [10]. These
modelling approaches require a large amount of information about the building structures
and parametric input to estimate the energy usage of a set of reference buildings of the stock
based on a numerical model. Additionally, the evaluation of urban planning scenarios
is computationally extensive, and the availability of construction and geometrical data
needed as input for the models is very scarce. The top-down approaches treat the entire
residential sector as one energy sink. Unlike the bottom-up approaches, the top-down
methods are suitable for a large-scale analysis and not for the identification of the possible
improvements to the building at urban and local levels [11]. Compared with the bottom
up-approaches, the top-down methods are relatively easy to develop based on the limited
information provided by macroeconomic indicators, such as price and income, technology
development pace and climate. As summarised by Swan and Ugursal, the top-down
approaches have advantages including the capacity for long-term forecasting in the absence
of any discontinuity, inclusion of macroeconomic and socioeconomic effects, the simple
input information required and the capacity to encompass trends [5].

Both the bottom-up and top-down approaches can assist the spatial–temporal analysis
of the energy demand at the district level. For instance, Schneider et al. (2017) developed
two bottom-up statistical extrapolation models for spatial–temporal analysis of the geo-
dependent heat and electricity demand of a building stock located in Switzerland [12]. They
calculated the heat demand using a statistical bottom-up model applied at the building
level. Due to the large variability in the electricity usage, they estimated the municipality-
level electricity load curve by combining socio-economic indicators with the average
consumption per activity and/or electric device. Chen et al. (2019) established a Geo-
graphic Information System (GIS) based multi-criteria index system for spatial–temporal
analysis of the energy demand in a university located in China [13]. They used the de-
veloped system to investigate the characteristics of (i) the temporal dynamic, (ii) the load
fluctuation and (iii) the district load spatial distribution as well as the coupling relationships
of power loads for heating/cooling between single buildings and the entire university
district. They also implemented principal component analysis to identify the buildings
which had large impacts on the district power demand. Unlike most of the existing ap-
proaches, which estimate the district energy demand at different spatial–temporal levels as
functions of the characteristics of either individual buildings or cities and their occupancy
levels, Mohammadi and Taylor (2017) connected spatial–temporal heterogeneous human
behaviour with the city-level building energy use [14]. They first examined the temporal
manifestation of the energy use fluctuations in urban buildings driven by spatial mobility
patterns of the population, and then they developed a multivariate auto-regressive model
for spatial–temporal analysis of the urban-level building energy demand in the City of
Chicago based on a yearly individual positional record. Their study reveals that human
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mobility can account for the collective energy consumption in urban spaces. As can be
seen from the abovementioned literature, spatial–temporal analysis of the geo-dependent
urban-level heat and electricity demand is important for urban-scale planning and can
bring several benefits: (i) it is beneficial for the construction of a geo-referred database
for a specific location; (ii) it enables the estimation of the energy saving potentials that
can be achieved by different retrofit programs and thus assists decision making; (iii) it
supports the investigation of the influential factors affecting electricity demands and the
optimization of the operation and management of district heating/cooling systems and
district power dispatches.

Besides the top-down and bottom-up approaches, there is also a typology approach,
which is based on the synthetic characteristics of a group of buildings. The European
TABULA project defined building typology as “a systematic description of the criteria for
the definition of typical buildings as well as a set of exemplary buildings representing
the building types” [15]. It takes into account aspects such as climate, period of construc-
tion, spatial and housing models, technologies, design rules, building codes, planning
regulations, economic constraints, building construction techniques, the organization of
construction companies and worksite organizations [16]. Dascalaki et al. has demonstrated
that the typology approach is effective in investigating the energy performances of building
stocks [17]. By drawing on various building typologies, an energy benchmarking system
could be developed as representative of a large percentage of the entire urban building
stock. This approach has also been utilised in European Commission energy projects
like RePublic_ZEB [18]. An effective tool to support the typology approach in analysing
urban building stock patterns and “typologies” is spatial cluster analysis. For instance,
Lucchi et al. conducted a spatial cluster analysis using data-mining methods (i.e., an hdb-
scan algorithm) and a GIS method to investigate the energy performances in a historic
town in Calavino, Italy [19]. Such clustering analysis can overcome the inaccuracies related
to the application of the traditional building stock analysis approach. Similarly, Miao et al.
proposed a clustering method to automatically extract and identify urban spatial patterns
and functional zones based on massive amounts of volunteered geographic information
collected in Beijing, China [20]. The study results show that these methods can effectively
identify urban spatial patterns and thus can contribute to urban energy simulation.

In the context of sustainable cities, spatial visualization is a very effective approach
that can help decision-makers in the urban planning process create future energy transition
strategies and implement energy efficiency and renewable energy technologies. The most
fundamental energy visualization tools use simple lines, pie charts and bar charts to
show the energy usage patterns over time at the individual building level. For instance,
the Pulse Dashboard presents trend-line energy consumption data for each commercial
building [21]. The Building Dashboard presents energy usage using bars [22]. Other
2D visualization techniques include cluster maps, component planes, spiral displays,
time logs and thematic 2D maps [23,24]. However, as the number of analysed buildings
increases, these conventional visualization techniques may not perform well due to the
limited information that can be presented; most of them can only reveal the temporal
characteristics of land but not the spatial characteristics. Compared with 2D visualization,
3D visualization is more realistic and psychologically appealing for the human brain.
Geographic information system (GIS) techniques can be used for the visualisation of the
energy demand or production in buildings from the urban to the regional scale, or even
at a national one. These visualization techniques include “hit maps” (i.e., aggregated
data in 3D charts) [24] and 3D city models with semantic objects [25]. There are many
studies using GIS techniques to visualise the energy data in building stocks. For instance,
Mattinen et al. (2014) developed a method for estimating and visualizing the energy use
and greenhouse gas emissions from a residential building stock located in the Kaukajärvi
district, Finland [26]. Using such a visualization model, they also analysed the impacts
of behavioural and technical changes on the energy performance in the building stock.
Finney et al. made a comprehensive mapping of heat sources and sinks in Sheffield City,
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UK [27]. Based on the heat source mapping, they linked these smaller systems to create a
combined heat and power-based urban-scale network of energy generation and delivery.
Huang et al. (2019) used a GIS technique to obtain the roof area in Kowloon district
in Hong Kong. Using the obtained roof area, they evaluated the solar power potential that
would be available for the whole district by installing rooftop PV panels, which was then
used as the input for designing public charging stations. The solar PV potentials were
visualised using different colours on the Kowloon district map [28]. Similarly, Ramachandra
and Shruthi used the GIS technique to map the wind energy resources of Karnataka state,
India. Based on the wind-power mapping, they analysed the variability of these resources,
considering spatial and seasonal aspects [29]. Despite the abovementioned literature, until
now the utilization of 3D visualization in spatial–temporal analysis of urban-scale energy
usage has been very limited.

Although there are existing studies of mapping energy uses in different cities, spatial
energy analyses in local municipalities are necessary as they will be different in various city
and culture contexts. Specific consideration should be paid to the differences between cities
when the aim is to optimise the integration of urban energy systems operated in buildings
and promote renovation and renewable energy systems. This is because cities differ from
each other at the local, national and international levels from the perspectives of geography,
socio-economy, culture, infrastructure, and information platform. The types of cities and
districts determine the kinds of users and needs and consequently the nature (qualitative
and quantitative) of the policy/regulation schemes and the calibration/adjustment of the
energy infrastructures. Citizens’ behaviours and needs/preferences with regard to energy
may be different from each other in different cities, which can lead to great differences
in energy demand. Within the same framework of transforming to a sustainable and
liveable city, different areas must not only adopt standardised approaches but also take
into account specificities at the local level. Dedicated research into cities and districts at
the local scale is therefore of paramount importance to ensure the proper mix between
international/national scenarios and local measures.

The urban energy mapping and analysis for Borlänge city have not yet been done. This
study therefore aimed to cover this research gap by examining a set of buildings owned
by the municipality of Borlänge, Sweden. The first step of the study was to conduct a
spatial–temporal analysis of both electricity use and district heating demand. A top-down
approach was considered based on the energy consumption data of the municipality-
owned buildings. It was expected that this study would be able to provide insights that
allow an understanding of the existing local energy distributions. It also facilitates strategy
geared towards future energy planning in this city.

This paper is structured as follows: Section 2 indicates the data sources and the method-
ology used to process the data; results and discussion are presented in Sections 3 and 4; a
conclusion is included afterwards.

2. Data Sources and Research Methods

2.1. Data Sources

Acquiring the necessary data to create an urban model can be a difficult endeavour.
New general data protection regulation (GDPR) laws instituted by the European Parliament
regulate how data can be acquired, handled and stored in order to protect the privacy of
individuals [30]. Energy consumption data include sensitive information that falls within
the bounds of the new regulation, greatly complicating the data acquisition. Depending on
the data resolution, storing the information can be complicated as it may not be kept for
long periods of time or may be stored in obsoletes systems, making it difficult to be of use.

The primary source of the data used for this model was Tunabyggen, a municipality-
owned company that constructs, manages and rents a set of buildings in the Borlänge
municipality. The data were provided in the PDF format, with a total number of 375 pages
of monthly data for electricity demand, district heating and hot water flow rate for the
year 2018. The geographical information, specifically the vector data for the property
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information and LIDAR data for the Borlänge municipality, was obtained from the official
Swedish surveying institution, Lantmäteriet. Other social statistics and specific data such
as building year of construction, percentage of occupation, demographics and typologies
were acquired from hitta.se, a Swedish search engine that offers a telephone directory,
addresses and maps. To complete and validate the model, it was necessary to use some
extra information that was obtained by visual inspection, including the number of floors
and the area and shape of the roofs. The flowchart in Figure 1 further describes the
processes, databases and validation operations.
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Figure 1. Flowchart for data processing, extraction, geocoding and validation.

2.2. Data Extraction

The first step in the process was to extract the information from the data source
provided. The archaic PDF data structure format had to be transformed into a common
format that could be used by other applications. In order to extract the data, a custom
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Python script was written to parse out the information. Then, the data were further
inspected for missing data and error correction. From the 375 pages in PDF format, a total
of 262 addresses and 463 entries of monthly data for electricity (kWh), district heating
(MWh) and flow rate (m3) for the year 2018 were extracted.

2.3. Geocoding

The addresses extracted from the data source were further expanded to the city and
the country. Then, they were processed with a Python script using an application program
interface (API) for OpenStreetMap (OSM). Figure 2 shows the script flowchart that was run,
which used the pandas and geopy libraries. In parallel, another script was used to connect
to the API geocoding services of Google Maps. Two outputs from each geocoding service
were obtained with the longitudes and latitudes of the addresses. The output format for
the coordinate system was the standard LL-WGS84 [31]. The locations for a total of 222 out
of the 262 entry points were found on the first iteration.
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2.4. Geocoding Validation

The results were plotted and further inspected for validation. During this process,
the locations were geocoded and manually centred in the property area, as shown in
Figure 3. The red dots were the geocoded locations that were manually centred in the
building properties (green polygons). The output amounted to 238 out of the 262 total
addresses, leaving a total of 24 addresses and 31 entry points that, due to unspecific naming,
we were not able to geocode until manual visual inspection and analysis of the context
were undertaken. The preliminary result generated a total of 250 geocoded addresses and
12 unclarified ones.

2.5. Area Merger Code, Area Validation

The next parameters were extracted from the Swedish survey database Lantmä-
teriet [32]. The building property vector information was provided in a shapefile (.shp)
format, a digital vector storage format for storing geometric location and associated at-
tribute information.

Using the Feature Manipulation Engine (FME) tool, it was possible to extract and
calculate the areas for the geocoded address points [33]. This information was compared to
the visually inspected area in order to analyse its accuracy. The extra information stored
in the shapefiles was incorporated into the dataset. This information included a building
description, coordinates in the Swedish reference system SWEREF-99-TM and a unique
object identity [31].
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2.6. Data Processing

All the different sources of information were finally combined together and inspected
for errors or inconsistencies. The total building area was calculated using the number
of floors and the buildings’ polygon surface areas. Finally, the results for the energy
consumption, electricity and district heating in kWh/m2 for the year 2018 were obtained.
From the 250 total addresses that were geocoded, 28 addresses were excluded from the
analysed dataset due to missing, erroneous or abnormal information. The initial dataset
contained 236 entries for electricity demand and 108 for district heating demand, which
were reduced to 228 and 105, respectively, due to the following reasons: (i) some entries
related to utility building samples that had no coherent energy demand on a normalised per
metre square surface—for example, the energy demands of some laundry buildings were
not representative for this dataset as they were detached from the buildings they provided
services to; (ii) the building occupancy ratios for the entries were close to zero—some of the
buildings in the sample were unoccupied, so their energy demand was close to zero. The
final sample dataset consisted of 228 buildings for the electricity data and 105 buildings for
the district heating data.

3. Results

3.1. Statistic Data Analysis

In the considered building samples, all of the buildings were residential buildings and
related facility buildings (such as laundries, storage, etc.). The energy use was normalised
by dividing it by the heated floor area. The definition of the heated or living floor area has
a large impact on the magnitude of the area-specific energy requirement. In Sweden, the
heated floor area is defined as the floor area that is heated to more than 10 ◦C. As a result,
in this study, we assumed the heated floor area was on average 87% of the total external
floor area for the analysis [34]. In addition, electricity demand was further normalised by
considering the occupancy ratio of each building. For heating demand there was no need
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to consider the occupation ratio, as it is common in Sweden for heating systems to stay on
even when a building is unoccupied.

The data were normalised by dividing the total energy consumption by the total
living space area. This worked for most cases, i.e., self-sufficient homes and buildings with
integrated facilities. In other cases, when the utility facility was in a detached building, it
was unclear how many buildings it provided services to. Therefore, the area of the facility
in itself was not representative of the total area it served, giving an impression of a very
energy-inefficient building. In Sweden, most communal arrangements have a dedicated
laundry, garage or storage facility for the community. The utilities room is usually in the
basement of apartment buildings, providing an assortment of laundry and/or ironing
machinery. In other cases, this facility can be completely detached from the main building.
The annual electricity demand for lighting and appliances in the building samples is shown
in Figure 4.
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The average electricity demand of the 228 building samples was 24.47 kWh/m2, with a
total range from a minimum of 0.16 kWh/m2 to a maximum of 189.89 kWh/m2. Compared
to the average electricity demand of 30–36 kWh/m2 in the Swedish context [35], the average
electricity demand of the building samples was reasonably low. This corresponded with
the build year, zone, occupant background and purpose of the buildings, as most of the
occupants in the sampled buildings were life renters, students or had a relatively low
income. The median electricity demand was 13.17 kWh/m2, which means that 50% of the
sampled buildings demanded less electricity than this value. Furthermore, over 75% of the
sampled buildings achieved electricity use lower than 30 kWh/m2.

The Swedish Housing Agency’s building rules [36] stipulate requirements for the
energy performances of buildings depending on their use, end-use heating system and
climate zone. The energy performance (heating demand) requirements are given as the
specific energy use, comprising the purchased energy for space heating, domestic hot water
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and electricity for fans and pumps but excluding electricity for household appliances and
lighting [37]. The annual heating demand for the building samples is displayed in Figure 5.
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Figure 5. Annual heating demand for building samples.

The average heating demand of the 105 building samples was 268.78 kWh/m2, with a
total range from a minimum of 0.41 kWh/m2 to a maximum of 1234.52 kWh/m2. Borlänge
city belongs to Climatic Zone II in Sweden, for which the new building code requires an
annual energy use of up to 110 kWh/m2 for non-electrically heated buildings (i.e., heated
with district heating). In addition, the criteria for passive houses include even have higher
requirements, with a value up to 35% lower compared to the building code [38]. Thus, the
average heating demand in the building samples was much higher than either the building
code or the passive house standard, about twice of requirement stipulated by the building
code and three times the requirement of the passive house standard. The median heating
demand was 149.34 kWh/m2, which means that 50% of the building samples demanded
less heating than this value. Approximately 21% of the building samples achieved a lower
heating demand than 110 kWh/m2. The difference between the different municipalities is
clear. In Gävleborg, it was found that the average heating demand was about 185 kWh/m2

in 2010. Across the whole of Sweden, the average annual energy use for heating in one-
or two-dwelling buildings was reported to be about 158 kWh/m2 per year in 2014 [39].
Therefore, the heating use in Borlänge city was found to be at a high level when compared
to that of the closest regions and the average figure for the country. However, this high
energy demand can be explained by the fact that over 56% of the buildings in the sample
were constructed before 1980 and therefore may not be energy-efficient dwellings.

Some of the building samples with a high energy demand corresponded to small
districts or clusters of buildings. Even though the total area was aggregated and nor-
malised, it is possible that some heating surfaces for common and utility areas were
missing. It is also possible that these nodes required more energy due to some kind of
distribution inefficiency.
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Annual average heating demand varies considerably depending on the year of con-
struction of a building. For buildings built after 1980, the heating demand was about
97–98 kWh/m2 in 2004, while for those built before 1980 heating demand was from
120–133 kWh/m2 per year [40]. For the sampled buildings with a documented year of
construction, the average heating demand for buildings constructed before 1980 was about
246.46 kWh/m2 per year, with these buildings accounting for 98,838 m2 of the heated floor
area, as shown in Table 1. There is, therefore, great potential—amounting to an improve-
ment of about 13,487 MWh per year—for these buildings built before 1980 to improve their
energy performance through renovations, such as increasing the thermal insulation of the
walls/roofs or upgrading windows and heating radiators. The rest of the buildings in the
study case accounted for 132,912 m2 of the heated floor area, with a heating demand of
about 296–297 kWh/m2. There appeared to be no significant difference between the data
for the buildings built after 1980 and those with unclassified years of construction but, due
to an even higher heating demand, they still offer great potential for energy saving, around
24,917 MWh per year.

Table 1. Comparison between heating demand in the studied case and the average data for Sweden.

Year/Case Heating Demand Area Potential Savings

2018, case study, 1980> 296.90 kWh/m2 11,315 m2 2114 MWh/m2

2018, case study, <1980 246.46 kWh/m2 98,838 m2 13,487 MWh/m2

2018, case study, N/A 297.53 kWh/m2 121,597 m2 22,803 MWh/m2

2018, Swedish building code, [36] 110 kWh/m2
Historical heating demands are shown in the left

columns according to building code and practice. In
comparison to the studied case, great potential savings

in heating can be observed.

2014, Swedish practical average, [39] 154 kWh/m2

2010, Gävleborg practical average, [39] 184 kWh/m2

2004, Pallardó [40], 1980> 97 to 98 kWh/m2

2004, Pallardó [40], <1980 120 to 133 kWh/m2

3.2. Spatial Data Analysis

A digital mapping method was applied in this study to compile and format the energy
data into a virtual image and thus to produce a general map of energy use in Borlänge city
based on the building samples, offering appropriate representations of the dedicated areas
and districts.

By using a geographic information system tool—QGIS—it was possible to visualise
the sample energy data on a spatial map of Borlänge [41]. Using the yearly electricity and
heating demand, as measured in the unit kWh/m2, as the weight factor, along with the
longitudes and latitudes of the addresses, two digital maps were generated, as shown in
Figures 6 and 7, for electricity use and heating demand, respectively.

These digital maps provide an interactive and scalable way of visualizing the energy
use across the city, which can be used to spot abnormalities or faulty energy data points.
They also provide a spatial representation of identifiable hotspots for electricity uses in
high-occupancy/density areas. For district heating demands, they show hotspots with
buildings mostly constructed before 1980. For instance, some of the hotspots can be easily
identified as several student accommodation areas in the northwest quadrant. These highly
dense buildings showed high electricity consumption since the occupants remain indoor
for most learning and living activities; but, at the same time, these buildings had relatively
low heating needs as the buildings are well maintained and insulated. It can be observed
from these two maps that electricity use mainly depended on the occupancy density, with
higher population per floor area usually resulting in higher electricity use. On the other
hand, district heating demand was dependent on the building itself, with poorly-insulated
buildings leading to higher heating need. As a result, electricity use and heating demand
did not always appear in the same district/area since they were influenced by different
parameters. This results offer clear insights for the planning of urban energy infrastructure
and distribution, as well as with regard to the potential contributions from local renewable
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energy source (RES) systems. For instance, more extensive electricity distribution or greater
RES power generation are necessary for highly dense residential areas, while better heating
should be distributed to those areas with buildings mostly constructed before 1980.
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3.3. Temporal Data Analysis

The yearly energy aggregation, providing a global overview of the data, was analysed
in the previous section, but energy demand varies strongly depending on time. Seasonal
and daily patterns have been regularly noted in the literature. In this section, we report on
the analysis of monthly energy consumption. The same methodology and assumptions as
before are applied, in this case at the monthly scale.

The air temperature data for the year 2018 in Borlänge indicated that there were direct
correlations with the energy consumption and temperatures. During the winter months,
the temperature drops below 0 ◦C. Afterwards, a short spring rapidly transitions into the
summer season, which is accompanied by a pleasant temperature around 20 ◦C. A relatively
smooth transition from autumn to winter occurs between September and November.

There was a slightly negative correlation between the electricity demand and the
temperature at the monthly scale. The correlation was stronger for district heating because
not only the median values but also the maximum values of district heating energy showed
a significant decrease from April and increase from August (Figures 8 and 9).
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Further analysis of the dataset provided a better understanding of the temporal
dimension, as the previous analysis was outlined based on a yearly aggregation. On
the monthly temporal scale, the seasonal weather impact was more evident. Winter
usually refers to December, January, February and March in Borlänge. In this period, the
average electricity consumption was 2.65 kWh/m2 per month. In contrast, the summer
season, comprising May, June, July and August, had an average electricity consumption of
1.52 kWh/m2 per month. The average consumption for the transitional seasons, spring and
autumn, was 1.94 kWh/m2 per month. Table 2 shows the descriptive statistics, such as the
mean value, minimum and maximum monthly and yearly values for 2018 and the median
and standard deviation calculations. It can also be seen that the variations of electricity
demand in winter were higher than in other seasons. One possible reason might have
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been that additional electricity heaters and more lighting devices were used in winter. The
electricity usage varied depending on individual factors and the effect was significant in
summer. Figure 8 shows the electricity demand per month in a boxplot. The high monthly
electricity demand data series corresponds to laundry, parking and other facilities, with
a peak monthly consumption above 15 kWh/m2 per month. It can be further observed
that almost all the “outliers” appear in the upper part of the boxes and that the number of
“outliers” is similar for each month. This explains why the mean values are higher than
the median. Thus, the influences of these “outliers” should be noticed when evaluating
load distribution.
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District heating energy demand was significantly more consistent than electricity
demand, as shown in Table 3 and Figure 9. For the winter months, there was an average
heating energy demand of 38.8 kWh/m2 per month. In contrast, summer had an average
consumption of 7.27 kWh/m2 per month. The transitional seasons, spring and autumn,
had an average of 21.11 kWh/m2 per month. The intra-difference for each winter and
summer seems to be negligible while the inter-difference is obvious.

Table 3. District heating demand per month: averages, minimum, maximum and median.

2018
kWh/m2 Mean Min Max Median Standard

Deviation

January 39.232 0.037 188.436 22.741 34.686
February 39.204 0.037 183.786 23.068 34.354

March 38.448 0.045 175.248 21.941 33.809
April 22.698 0.023 99.735 12.767 20.404
May 9.603 0.043 43.763 5.304 8.959
June 7.192 0.043 37.452 4.083 7.012
July 5.300 0.017 30.831 2.979 5.586

August 6.987 0.033 36.026 3.876 6.827
September 12.082 0.022 54.051 7.115 10.980

October 21.700 0.048 100.274 11.978 19.515
November 27.981 0.030 134.077 16.269 24.970
December 38.361 0.038 188.769 21.958 36.329

Yearly 268.788 0.414 1234.521 149.347 238.991

Thus, comparing the electricity demand to the district heating monthly energy de-
mand, it is observed that district heating adhered to a more homogenous pattern following
the changes of the seasons. For the sampled buildings, the heating was managed by central
systems. The variations were determined more by the building envelopes, physical param-
eters and weather conditions than by the occupant behaviours. This explains the regular
pattern and the lower number of “outliers” for each month. The high heating demand
values might have been due to poor insulation material or inefficient energy systems.

3.4. Information Map of Spatial–Temporal Energy Demand

This part of the study aimed to increase the level of detail of the spatial–temporal
energy analyses with the intention of presenting a digital spatial–temporal information map
of both electricity use and district heating demand. The initial data consisted of electricity
and district heating monthly energy consumption for the year 2018, visualised in graphs
and mapped in 2D heatmaps for electricity and district heating, respectively. We expanded
the information from the energy use map for benchmarking of large-scale buildings. For
this purpose, a new database structure was created by merging the spatial information
from Lantmäteriet, the database with the geocoded addresses and the temporal energy
demand. The basic workflow for merging these datasets is shown in Figure 10.

The process consisted of using the two databases, in the “.csv” and “.shp” formats,
to create a single database with all the features from both files. For the geocoded data,
the coordinates were in the standard WGS-84 format and had to be re-projected into the
SWEREF-99-TM format to be consistent with the survey data. The re-projected point
coordinates were then extracted and used as markers to select the polygons from the
survey data. In parallel, the coordinates and areas were extracted from the survey data and
used as an underlay, as shown in Figure 11. The enhanced polygons then contained the
energy information.
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The merged database, now in the “.shp” file format, contained the areas, identification
numbers and general parameters for the buildings, as well as the energy demand informa-
tion per month in kWh/m2, as show in Figure 12. Unnecessary data were filtered out of
the dataset.
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3.5. D Visualization Methodology for the Integrated Spatial–Temporal Energy Demand

It was furthermore possible to visualise the integrated spatial–temporal energy de-
mand information in a 3D map. This activity was achieved with a novel digitalization
approach. Three data files were required to generate the 3D model, obtained from Lant-
mäteriet and from the new database shapefile: (i) laser imaging, detection and ranging
(LIDAR) data, used for measuring distances by illuminating the target with laser light and
measuring the reflection with a sensor; (ii) vector maps of the building properties in the
“shapefile” format, which is a geospatial vector data format for geographic information
system software; and (iii) an “orthophoto” file, which is an aerial photograph or satellite
imagery geometrically corrected to a uniform scale.

The methodology involved a parallel data transformation of the three data files
using the Feature Manipulation Engine (FME) tool. The data were deconstructed and
reconstructed until the desired outcome was achieved. The building shape data could
be used as a clipping mask on both the “orthophoto” and the LIDAR data, defining the
building boundaries and creating a unique building identification. The “orthophoto” could
be then applied to generate textures for building roofs, as well as for the terrain. The LIDAR
data was used to generate the building geometries and heights and the terrain elevation.

Consequently, a 3D city model could be finally generated, as illustrated in Figure 13,
with the purpose of complementing the generation of an urban modelling framework/infor-
mation. The model could further include the spatial–temporal energy use information,
as indicated in Section 3.4, and thus assist the master energy planning of the buildings
in the city.
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4. Discussion

This study aimed to establish the groundwork for further urban-scale energy explo-
ration. The methodology developed here made it possible to pre-process and validate
the data for further analyses and could be applied to other study cases. This serves to
demonstrate that, even with a limited set of data, meaningful models can be created when
the data are manipulated and processed properly, as shown in the geocoding process or in
the 3D model creation.

Data analyses were done for different temporal and spatial scales; yearly averages
showed correlations for the energy demand, year of construction and typology of the
buildings, indicating the potential for future renovation opportunities. The monthly study
showed a direct correlation between energy demand and weather patterns. The spatial
analysis put into perspective the different zones and clusters of buildings in the urban
landscape. It showed that the distribution of district heating demand was greater closer
to the centre of the energy production source, while it dispersed in the outskirts; electric
energy demand increased in the outskirts, especially during the winter time, explained by
the use of electric heaters in the absence of district heating.

Moving from building-level energy modelling towards urban-level modelling pre-
sented many challenges. Data were often difficult to acquire and entailed many obstacles,
such as privacy laws, the format in which data were stored, data accuracy and, at times, a
lack of any data at all. Data pre-processing and processing can also be time consuming and
highly demanding on computational power, leading to a compromise between accuracy
and simplified assumptions. In this paper, a lot of attention was put into the level of
detail of the data, avoiding simplification where possible. In future analyses, the dataset
parameters will be submitted to machine learning models to observe the relationships
and dependencies between each element, such as between weather conditions, energy
demand and building efficiency. The dataset will be expanded to incorporate a large
number of extra parameters, from weather data—like air temperature, humidity and irradi-
ance information—to social data and energy data—like energy certification ratings—thus
expanding our understanding of the relevance of the specific parameters.
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Examining energy patterns at a yearly scale provides a general overview of high-
consumption dwellings and helps in categorising them in terms of their function and
efficiency. Information about potential energy saving can be obtained and comparisons
can be drawn about the overall energy performance of a city in relationship to the country
regulations. Examining energy patterns at a monthly scale, on the other hand, specifically
shows the relationship between energy demand and seasonal changes. This level of
detail makes it possible to see how a building performs under different circumstances.
For instance, some buildings might perform well in the winter and in the summer but might
require more energy for cooling due to high insulation or limited ventilation. Attention
should be paid to the relationship between the energy demand and weather conditions at a
larger scale, moving from years to months, days or even minute resolutions. In the spatial
context, moving from one dimension (data points) to two dimensions (data on a plane;
maps) expands the perception and interpretation of the data analysed, allowing spatial
relationships to be understood better. The next step is to expand the spatial data in such a
way that leads toward a 3D model, in which the data can be explored in a more direct and
realistic manner.

Energy master planning (EMP), at the district and city levels, provides the possibility
of untangling the challenges to the dynamics of energy needs and supply. The detailed 3D
city information model is an essential digital EMP platform to engage different stakeholders
in communication and thus help them to identify their roles in sustainable energy transition.
In this model, buildings have shape and volume, the sun casts shadows and vegetation is
present. These data explicitly convey a lot of extra information to stakeholders—energy
and urban planners—allowing them to explore the data through an interactive platform.

In future work, the main focus will be on creating a 3D model incorporating a high
level of detail for buildings, terrain, energy demand and other building characteristics.
Visualizing large amounts of information is challenging and for this purpose a graphical
user interface (GUI) must be created to enable interaction with the energy information in
the 3D model, making it possible to show, hide or filter various information either with
numbers or colour codes.

5. Conclusions

A dedicated spatial–temporal analysis of both electricity use and district heating
demand in a Swedish local-city context was provided in this study using a toolkit for top-
down digital mapping. The average electricity demand in the Borlänge building samples
was 24.47 kWh/m2, which was reasonably lower than the average value in Sweden. The
mean value of heating of the building samples was 268.78 kWh/m2, which was much
higher than either the building code or the passive house standard. The heating use in
Borlänge city remained at a high level when compared to the closest regions and the average
figure over the country. In particular, there was great potential for the improvement of
energy performance, amounting to savings of about 13,487 MWh/year for the buildings
built before 1980 and around 24,917 MWh/year for the rest of the buildings.

The digital maps provided a spatial representation of the identifiable hotspots for
electricity uses in high-occupancy/density areas and for district heating needs in districts
with buildings mostly constructed before 1980. Visualizing the energy use across the city
also showed that there was some apparent correlation in the electricity use and heating
demand hotspot locations, as, for example, in the increase of electricity use and decrease of
district heating in the periphery.

Further expanding the temporal scale from yearly to monthly values made it possible
to study the electricity use and the district heating pattern in relation to the changes of the
seasons and temperatures over the year. As expected, heating demand was increasingly
relational to the decrease of temperatures, as was the electricity demand, although at a
lower intensity.

The approach to generating the information map for the spatial–temporal energy
demand was finally concluded with the three datasets including spatial information from
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Lantmäteriet, geocoded addresses and temporal energy demand. This method also ex-
panded the potential to integrate energy information into city information models at a
3D level through parallel data transformation of the three data files with the Feature
Manipulation Engine tool. The overall result offers clear insights for the planning of ur-
ban energy infrastructure and distributions, as well as a potential contribution for local
RES implementation.
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