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Abstract: Currently, unmanned aerial vehicles are increasingly being used in various construction
projects such as housing developments, road construction, and bridge maintenance. If a drone is
used at a road construction site, elevation information and orthoimages can be generated to acquire
the construction status quantitatively. However, the detection of detailed changes in the site owing to
construction depends on visual video interpretation. This study develops a method for automatic
detection of the construction area using multitemporal images and a deep learning method. First,
a deep learning model was trained using images of the changing area as reference. Second, we
obtained an effective application method by applying various parameters to the deep learning
process. The application of the time-series images of a construction site to the selected deep learning
model enabled more effective identification of the changed areas than the existing pixel-based change
detection. The proposed method is expected to be very helpful in construction management by
aiding in the development of smart construction technology.

Keywords: convolutional Siamese network; multitemporal; construction project; change detection

1. Introduction

The fields where drones can be applied are very diverse, such as terrain information
construction, cadastral surveying, disaster management, environmental monitoring, inspec-
tion of various facilities, and exploration (mineral and gas) [1,2]. The field of construction
involves the merging of design and construction information, visualization using the over-
lay of orthoimages and two-dimensional (2D) drawings, digital work, three-dimensional
(3D) modeling and process comparison based on the process progress, construction quan-
tity confirmation, and workload distribution; in this field, unmanned aerial vehicle (UAV)
images and products are being used [3,4]. The life cycle of a road can be divided into four
stages: planning, design, construction, and maintenance. In the planning, design, and
maintenance stages, the use of drone images has developed, and drones can be used in a
less time-consuming and a cost-effective manner in the construction stage [5].

In drone-based construction management, construction supervisors can additionally
check whether the construction site has been constructed according to the design specifi-
cation using a drone [6]. If drone technology is applied to the advanced payment tasks
that are performed every month in construction projects, more accurate constructions
can be achieved, and construction progress can be recorded through construction history
management, which can be used for future maintenance or accident analysis.

UAV images are being used for point cloud extraction, digital surface and terrain
model production, orthoimages, topographic mapping, and 3D model production on
construction sites [4,7]. Airsight’s UAV-based next-generation airport road safety inspection
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technology uses orthoimages that can be reused at any time for maintenance activities,
quantity surveying, computer-aided design planning, or compliance inspections [8]. Drone
orthoimages and 3D terrain models enable periodic construction management at road
construction sites [4]. Various types of environmental management using orthoimages,
individual photos, and videos enable rapid observation, process management, and change
detection, while ensuring the safety of a wide construction section [9-13], and unattended
construction materials can be monitored through time-series images [14].

The progress map of construction work depicts the details of the construction per-
formed during the construction period on the floor plan. For drone construction manage-
ment, a 2D or 3D design plan is developed for the corresponding monthly period, and
the progress status chart is used for a time-series comparison of the corresponding work
section. However, the preparation of the status quo is costly and time-consuming; therefore,
it cannot be applied immediately to obtain the approximate status [15,16].

It is difficult for managers to survey a construction site that covers a large area using
traditional inspection methods. At the construction site, if managers can observe areas
of change using time-series images during the construction stage, they can conveniently
use them for environmental management such as construction management, safety man-
agement in vulnerable areas, and waste management. When a manager or supervisor is
unable to visit a construction site, the image-based history can be provided to present the
construction progress accurately and quickly. The use of a UAV supported by a high-level
computing device and an artificial neural network makes this inspection method more
efficient and more cost-effective than traditional methods.

Change detection using an image aims to detect the changed areas by utilizing images
of the same region captured at different points in time [17]. Many change detection methods
have been proposed to detect changing areas, with machine learning being used in recent
years [18-24]. Guo et al. proposed a convolutional neural network (CNN) architecture that
measures changes in a region using an implicitly learned metric with a contrastive loss
threshold [20]. To detect precise temporal changes in a region, a superpixel segmentation
method that integrates CNN features has been introduced [21]. Zhan et al. proposed a novel
model for change detection in UAV images based on a supervised deep Siamese CNN [22].
Shi et al. introduced an object-based change detection method that uses multitemporal
UAV images [23]. Change detection in urban areas is performed by finding an elevation
difference based on point cloud data from the aerial images acquired at different times [24].

In this study, a change detection method that considers construction management
has been developed using high-resolution UAV images acquired for road construction
progress. A convolutional Siamese network was proposed to identify the changed region
using time-series images, in which the contrastive loss function was used to minimize the
distance between the two feature vectors in the areas with no change [22]. A convolutional
Siamese network is effective for change detection using high-resolution images, even when
problems such as a difference in viewpoints, shadows, and inaccurate image registration
occur [25]. However, at road construction sites, noises, such as vegetation changes and
vehicles, which are not related to the road construction, exist. A convolutional Siamese
network detects only the areas of significant change. In this study, we used deliberate
training samples to overcome this issue and monitor the progress of road construction. In
addition, an experiment was conducted using an appropriate image resolution for effective
processing. The remainder of this paper is structured as follows. The methodology is
described in Section 2. The experiment is presented in Section 3. The results and discussion
are described in Section 4. Finally, the conclusions of this study are drawn in Section 5.

2. Methodology
2.1. Orthoimage Generation
For construction management using drones, a 3D model must be developed by peri-

odically photographing the road construction process with a UAV and then recorded in a
time series. To analyze the road construction process through the time series, a standard
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image is required. In the case of an area with trees, the ground cannot be analyzed using a
UAV photo, and accurate ground shape data cannot be obtained. If the beehive removal
process and the earthmoving process are sequentially performed at the construction site,
the overall process flow must be properly managed to ensure that the drone photography
is performed after the removal of beehives and before the earthwork process.

Individual photos, orthoimages, and videos can be utilized as a basic output for
UAV-based time-series monitoring. Individual photos are single photos taken by a UAV,
which can be used to check the condition of an object. When an image is acquired with
the same path and geometry by the same sensor during a subsequent acquisition, the
site change can be estimated through comparison between individual photos. The digital
cameras, global navigation satellite systems, and inertial measurement units currently used
in UAVs generally have similar performances; however, if real-time kinematic positioning
is supported by a UAV [26], differences between multitemporal images for detecting
changes can be diminished in photographs acquired using the same flight path. The
ground sampling distance (GSD) in a UAV photo is the most important setting factor
in UAV photogrammetry for understanding the construction situation, and it is deeply
related to the UAV flight altitude. It is necessary for the appropriate GSD of an image to be
identified according to the road facilities and for characteristics to be distinguished at the
construction site.

An orthoimage refers to an image in which orthogonal projection has been performed,
and the geometric distortion of the terrain caused by elevation in the image acquired by
a UAV is corrected. In addition, all topographic features are converted into the image
with a vertical view using a digital surface model (DSM). In a DSM, regular grid data
represent the height of the ground surface and the artificial features of buildings, trees,
and vegetation. The orthoimages are produced through differential rectification using
commercial software and can be georeferenced and used to obtain the current status map
of topographical features [27]. In particular, even when there are differences in the camera,
flight path, and acquisition geometry between images, the image is converted into the
same field of view for more comprehensive use in the detection of changes.

2.2. Introduction to Convolutional Siamese Metric Networks

Machine learning enables computers to learn and act like humans by providing data
and information in the form of observations and real-world interactions and learning
improves autonomously over time. Deep learning is a form of machine learning, wherein a
model is trained based on a considerable amount of data and then data are classified. In
recent years, deep learning has been performing better than previously in various fields,
and it is particularly useful in image-based applications [28]. In particular, time-series
analysis for image classification and change detection is a promising area of application
for deep learning. Unsupervised deep learning change detection can be performed using
a deep learning model that is generally used for semantic segmentation. Some existing
studies were conducted by converting the networks applied to image classification, such
as SegNet, U-Net, Deeplab-V3+, and Siamese networks [29].

Siamese networks are a type of neural network, and they contain multiple identical
subnetwork components, as shown in Figure 1 [30]. The networks have the same model
characteristics, such as configuration, parameters, and weights. There are convolutional,
pooling, and fully connected layers in a conventional CNN. The convolutional layers
extract the hierarchical features from the input image. The functions of the pooling layers
are receptive field enlargement and dimensionality reduction to reduce the size of the
output feature maps. The objective of a fully connected layer is to use the results of the
convolution/pooling layers to predict the input image for each class.
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Figure 1. Siamese neural network architecture using convolutional neural networks (CNN).

The similarity between the feature vectors of the input images can be measured using
distance metrics, such as those induced by the norms, or with a similarity function such as
cosine similarity [31]. In this study, we used the Euclidean distance and the contrastive
loss function introduced by Chopra et al. during the training phase of the convolutional
Siamese network [22,32]. Let X = {x(i,j)|1 <i<h, 1 <j < w} be an image, and X; and
X3 be two input images, which each having a size of i X w x ¢, where w and h are spatial
dimensions and c is the channel dimension of the input image. The parameterized distance
function to be learned, Dy, between X7 and X is defined as the Euclidean distance between
the outputs of Gw:

;

Here, Gy (X7) and Gw (X>) are the output vector tensors, and GW(Xl)i,j and GW(XZ)i,j
are the feature vectors of the pixel with location (i, j) in image X. Dw (X3, Xz)i,]- is written as
D, for simplicity. During the training phase, we use the contrastive loss function, which

can be defined as follows:

Dw (X1, X2);; = HGW(Xl)i,j — Gw(X2);;

1 2 1 2
L(W, (Y, Xl,Xz)k) = Y(1— )5 (D) +y§ﬁj§{max(0,m ~Dk) }

7,

where Y is the binary ground-truth map assigned to the input image pair, and y(i,j) = 0
if the corresponding pixel pair is considered to be similar; otherwise, y(i,j) = 1 if it is
considered different. (Y, X, Xz)k is the kth training sample pair with labeling. m > 0is a
constant called a margin, and it was set to two in the experiment. Changed pairs contribute
to the loss function only if their parameterized distance is within this margin.

2.3. Image Change Detection

To perform change detection, a pair of images from two periods are input into the
convolutional Siamese network. The data for each feature pair are obtained for the input
images. We calculate the dissimilarity of the data of a feature pair using a predefined
distance metric (Euclidean distance function L2 in this study). At this time, the contrast
loss function is applied to differentiate between the unchanged pairs and the changed
pairs. Change distance images—which are converted from the different distances between
the feature pairs—were enhanced for visualization contrast. As visible in the last column,
“output,” in Figure 2, the detected area is exhibited using various colors such as green,
yellow, orange, and red. Blue represents the unchanged area. Depending on the training
data, the change detection result may not match the actual changed area; therefore, it is
important to specify the range of the changed area well. The flowchart of the proposed
method is presented in Figure 2.
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Figure 2. Overview of the proposed change detection method.

When the change detection was performed using simply the Siamese network model
from the general training data, satisfactory results were obtained; however, detection errors
owing to the construction equipment, automobiles, and shadows were observed in some
images (Figure 3). To address such errors caused by automobiles, we can use a technology
that can properly remove automobiles while generating orthoimages, or not consider
automobiles as an example of a changed area during change detection training. Small-scale
shadows were not recognized as change areas, but large-scale shadows were incorrectly
detected as change areas. In particular, the change due to the growth of vegetation is the
type of change considered in this study. To reduce such false positives, it is important to
reflect the changes caused by construction correctly during the creation of training data.

(b)

Figure 3. Cont.
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Figure 3. Cases of errors while detecting changes based on general change detection data: (a) Con-

struction equipment, (b) automobile, (c) shadow. The left figures are time 1 images, the middle
figures are time 2 images, and the right figures show the results obtained using change detection.

2.4. Evaluation Metrics

We evaluate our network based on the test data by computing the F-measure, which
is calculated using the precision and recall [18].

Recall : Re = szil’FN

Precision: P, = TPTEFP

_ . _ PrxRe
F —measure: F = 2Pr+Re

where Tp is the number of true positives, Fp is the number of false positives, and Fy is the
number of false negatives.

3. Experiment
3.1. Study Area and Devices

The study area is the construction site of Pyeongtaek-West Pyeongtaek Road, Gyeonggi-
do, South Korea. The site contains earthworks, drainage, and a structure (bridge), and
some paving works are also in progress. The slopes within the site are changing owing
to construction, and there are areas that require safety management, such as the slopes
and roads to and from the construction site. The placement of construction equipment and
materials around the construction site was confirmed. It is possible to identify materials
or construction waste other than those involved in current construction processes, during
UAV image acquisition.

To detect site changes, data were taken at different times using an eBee Plus (Table 1).
The eBee Plus, a fixed-wing drone, weighs 1.1 kg and is 110 cm long, with a maximum flight
time of 59 min. Fixed-wing drones use manual take-off and automatic landing methods,
and the flight type follows an automatic route during flight based on route information
generated in advance through eMotion. This drone supports various positioning accuracy
correction functions, such as the real-time kinematic method.

Table 1. SenseFly eBee Plus specifications.

Parameter Value
Wingspan 110 cm
Weight Approx. 1.1 kg
Maximum flight time 59 min
Oblique imagery 0 to —50°
Global navigation satellite systems Real-time and post-processed kinematic
Camera SenseFly S.0.D.A. 20 MP (5472 x 3648)

Ground sampling distance (100 m)

Down to 2.3 cm/pixel
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3.2. Data Acquisition

It is necessary to establish the flight plan well to obtain high-quality field data. We set
the acquisition area, check the construction control point, preempt the take-off and landing
sites, preempt the ground control point (GCP), and set the flight path before flight. In a
field survey, the flight checklist established at the planning stage is confirmed through a
field visit, and the key points to be considered are the flight restriction factors (high-rise
buildings, radio wave interference factors, flight obstacles, etc.) and the safety of the UAV.
The image parameters were checked to ensure that image acquisition could be performed
effectively by checking other important factors such as the flight height, image overlap,
and image ground resolution. Three time-series images were acquired using the planned
route when the target area was first photographed in subsequent photography.

The study site was confirmed by superimposing the blueprint provided by the road
construction corporation on the satellite image and photographed by setting a width of
50 m based on the road center line and the outline of the road plan. The width of the test
section is approximately 450 m, and the length is 3500 m.

When the flight area was selected, 14 GCPs and 5 check points (CPs) were surveyed
by checking the location of the construction control point, leveling point, and integrated
control point located in the study area. The GCPs were selected such that they were evenly
distributed across the left and right sections of the construction site, and the control points
were selected as far outside as possible because the road was in operation. The GCP
survey was divided into a plane control point survey and an elevation control point survey.
Figure 4 shows the study area, layout of the GCPs and CPs, and the imaging position. The
ground spatial resolution was approximately 4 cm/pixel, the forward overlap was 80%,
and the lateral overlap was 70%.

Figure 4. (left) Ground control points (GCPs), represented by the red triangles, and check points (CPs), represented by the

blue squares, (right) image acquisition position.
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The photographs were taken three times on 17 July, 22 August, and 29 September 2019.
On 17 July, 731 images were obtained in the first flight, 698 images in the second flight, and
747 images in the third flight.

3.3. Creation of an Orthoimage

To create an orthoimage using the captured images, “Pix4D mapper” with a concise
user interface was used. The processing sequence of Pix4D mapper is divided into a total
of six steps: photo input, GCP selection, tie point creation and aerotriangulation, point
densification, DSM, and orthoimage production.

The orientation accuracy obtained using 14 GCPs demonstrated that the root mean
square errors in the X, Y, and Z directions were 2.7 cm, 3.3 cm, and 10.6 cm, respectively,
with a total error of 11.4 cm. At a GSD of approximately 4 cm, the orthoimages were
generated by processing point clouds (Figure 5).

Figure 5. Orthoimages of some areas using (left) the first flight data and (right) third flight data.

3.4. Change Detection Implementation

Changed areas were extracted using a full convolutional Siamese network, which
is a network that can learn different images through deep learning and has a structure
comprising two CNNs that share weights. The network model is refined based on the
pretrained model using the CDnet dataset [33]. The CDnet dataset consists of 91,595 image
pairs from 31 indoor and outdoor scene videos. The CDRnet dataset that we created
was used to train the pretrained network. The CDRnet dataset consists of 134 image
pairs from multitemporal road construction orthoimages and was created with a size of
720 x 480 pixels in part of the test area, including the visually interpreted reference change
detection data.

The proposed network was processed using Facebook’s PyTorch framework in a Linux
environment. All of our experiments were performed on a Xeon 20-core CPU and two
NVidia Tesla V100 GPUs. The learning rate, weight decay, momentum, and batch size were
0.00001, 0.00005, 0.9, and 32, respectively. These parameters were set by conducting several
experiments. The change detection accuracy was calculated by inputting independent
image pairs for the optimal model generated in training. As the processing time for change
detection varies according to the size of the input image, the accuracy based on the image
size was investigated.

4. Results
4.1. Change Detection

The change detection accuracy of the proposed method was evaluated for the training
image pair using the original image resolution. The quantitative results reveal the compar-
atively good results obtained using our method because it achieves a higher F-measure of
85.98%, Re of 89.70%, and Pr of 82.57%.

To evaluate the proposed method, we compared it to the conventional image difference.
A few qualitative change detection examples are presented in Figures 6 and 7. In Figure 6,
the surrounding area under construction and roads under construction can be observed.
Through the image difference method shown in Figure 6, it can be confirmed that there is a
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high possibility of misclassification in areas with differences owing to shadows, vegetation,
and cars. There is also difficulty in determining a pixel value difference to obtain the
change detection area. Figure 7 shows the true changed area with the white value, the
overlay of the true changed area and the image for the same area as in Figure 6, and the
change detection result obtained using the proposed method. Unlike the image difference
result, the proposed method yields change detection results similar to the true changed
area, and misclassifications owing to vehicles, shadows, and vegetation rarely occur.

(@)

(b) (©)

Figure 6. Results obtained using the image difference method; (a) and (b) display bitemporal images. (c) Result obtained

using the image difference method.

Binary images in first column of Figure 7 represent the true changed area. The white
and black areas represent the changed and unchanged areas, respectively. As visible in
the last column of Figure 7, the various colors represent different distances between the
feature pairs of the bitemporal images. The change distance images were enhanced using
a rainbow color map ranging from blue to red for visualization clarity. In the result of
the change detection for the last column, the blue area represents the unchanged area,
whereas the area extending from the sky blue to red color represents the changed area.
The proposed method demonstrates the detection of road surface changes, such as asphalt
construction, and the detection of changes owing to road slope construction. However,
errors may occur in some small areas rather than large areas, as shown in the last row of
Figure 7, and the need for future improvements remains.
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(a) (b) ()

Figure 7. Experiment results for some test samples. (a) True changed area with visual interpretation,

(b) overlay of true changed area and image, and (c) result obtained using the proposed method. The
images from the original two periods shown in Figure 6 were used in this experiment.

4.2. Image Size Effect

To apply the proposed method efficiently, the accuracy was examined based on
the image size. Road construction sites are usually several kilometers long or more.
Although this varies depending on the purpose, the GSDs of images taken using UAVs
are approximately several centimeters. In other words, there are a considerable number
of images to process. It is necessary to find an effective image resolution such that a large
number of construction images can be rapidly processed for change detection. In this
experiment, we evaluated the change detection accuracy of the proposed method while
reducing the image size. Starting with the original image, the image scale was changed by
0.1 to 0.1 times the image and processed in a total of 10 steps.

Furthermore, to observe the effect of normalization of the image pixel values, the
accuracy of the proposed method was compared by changing the range of the image pixel
values. Case 1 uses the original image, case 2 uses the image after subtracting 127.5, which
is the middle of the 8-bit image pixel value, from each image, and case 3 subtracts the
average value of each image from the image.

As shown in Figure 8, the average accuracy for the three cases, from scale 0.5 to 1.0, is
84.5-85.2%. The accuracy is the highest in the original image with a scale of 1.0, but the
difference in accuracy is not as large as 1%. The image scale is slightly off from 0.3 and 0.4,
but the difference in accuracy is not significant. As shown in Figure 9, as the image size
increases, the execution time has a linear relationship that increases proportionally. There-
fore, if the execution time is important, change detection can be performed by decreasing
the image scale to 0.3. Moreover, the change detection accuracy based on the image pixel
range was not significantly different in the three cases. Instead, the accuracy of the image
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where the average value of the pixels has been subtracted is not good, even though its
difference is not large.

90%
85% ,_._tg—‘———_h——a—-—o—o-—%
80%
75%

70%

accuracy (%)

65%
60%
55%

50%
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

image scale ratio

—@—casel —@—case?2 case 3

Figure 8. F-measure accuracy of change detection according to the image size and image pixel value
range. Case 1—original image, case 2—image minus 127.5, case 3—image minus average pixel value.

160
140
120
100

80

time (min)

60
40
20

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

image scale ratio

Figure 9. Processing time according to the image size.

5. Conclusions

The purpose of this study was to develop a methodology to help in smooth construc-
tion management by acquiring the changes caused by construction through images taken
at the construction site. The study presented a method for producing orthoimages of a
construction site using a UAV and a method for automatically detecting the changes in the
images using a convolutional Siamese network. The proposed method can detect color
changes, such as for asphalt construction, and the presence or absence of changes owing
to the construction of facilities. It is possible to provide reliable information regarding
the construction progress by removing the effects of shadows, vegetation, automobiles,
and work equipment, which act as false positives in the existing image change detection
technique. Furthermore, to apply change detection efficiently, the detection accuracy based
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on the image size was analyzed to select the image size that should be applied according to
the processing time.

At the construction site, videos are mainly taken using a UAV, and the construction
status is checked manually by site managers or supervisors while viewing the video by
eye. Simply viewing the video makes it difficult to accumulate construction progress
records or to analyze the construction status quantitatively. Therefore, further research is
necessary to develop a method capable of performing quantitative analysis by producing a
video-based orthoimage so that it can be easily used for identifying and recording changes
in the construction site. Video-based analysis is expected to be more applicable to straight
or gently curved road sections than to structures. Using the ground control points, an
accurate combination of adjacent sections is possible. Conversely, owing to the complex
shape of the structure section, data are acquired by securing visibility for several parts
of the structure; the difficulty in detecting changes in such structures is greater. If the
detection model of the proposed method is updated using detailed changed objects for the
road construction site, the change type can be determined in the future. To achieve this, it
will also be necessary to build and train time-series images of various construction sites.
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