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Abstract: Educational facilities hold a higher degree of uncertainty in predicting maintenance and
repair costs than other types of facilities. Moreover, achieving accurate and reliable maintenance
and repair costs is essential, yet very little is known about a holistic approach to learning them by
incorporating multi-contextual factors that affect maintenance and repair costs. This study fills this
knowledge gap by modeling and validating deep neural networks to efficiently and accurately learn
maintenance and repair costs, drawing on 1213 high-confidence data points. The developed model
learns and generalizes claim payout records on the maintenance and repair costs from sets of facility
asset information, geographic profiles, natural hazard records, and other causes of financial losses.
The robustness of the developed model was tested and validated by measuring the root mean square
error and mean absolute error values. This study attempted to propose an analytical modeling
framework that can accurately learn various factors, significantly affecting the maintenance and
repair costs of educational facilities. The proposed approach can contribute to the existing body of
knowledge, serving as a reference for the facilities management of other functional types of facilities.

Keywords: educational facilities; deep learning; deep neural network; maintenance and repair cost;

facilities management

1. Introduction

Facility maintenance and repair management aim to appropriately operate and main-
tain the function of a building by responding to the requirements of the users, correcting
design and construction errors in the facility, and proactively preventing the aging of the
building from ineffective operation and maintenance management [1]. More effective and
efficient facility maintenance and repair management strategies have been underlined
because the function and size of buildings have become more advanced and larger with
their longer lifespans. In detail, the maintenance and repair phase accounts for about 85%
of the life cycle cost of a facility asset, representing the biggest economic impact throughout
its whole life cycle [1]. Nevertheless, it is difficult to maintain and improve upon the
initial performance of a facility. A large gap between the expected resource input and the
actual resource input (e.g., time and cost) often exists because a significant amount of data
generated during the maintenance and repair phase of the actual facility are not used ap-
propriately [2]. In addition, the relevant regulations and management manuals differ from
each institution or facilities management company. In turn, conventional budget plans have
often been developed and implemented, mainly reflecting the client’s subjective judgment
and wishes [3]. More recently, even though emerging technologies associated with the
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fourth industrial revolution (e.g., the internet of things, artificial intelligence, immersive
technologies such as augmented /virtual reality, smart construction machinery) have been
widely and rapidly applied for the phase of design and construction, these technologies
are still slowly implemented into the maintenance and repair phase of existing facilities.
Furthermore, most previous studies on facility maintenance and repair management sys-
tems mainly dealt with facilities, the aging of facilities, safety, energy, and the safety of the
facility users. For comprehensive facility maintenance and repair systems, it is necessary
to consider not only various everyday safety concerns (e.g., vandalism, fire, crime, power
outages, etc.) but also natural hazards that are often overlooked because their frequency
is low—though the damage severity is high. Natural hazard management should also be
conducted to identify, prepare for, and reduce the potential risks associated with natural
hazards (e.g., floods, typhoons, hail, earthquakes, heavy snow, lightning, etc.) [4]. In this
sense, in order to develop a proper mid- and long-term management plan underpinned
by predictive maintenance approaches, it is important to systematically incorporate those
multi-contextual characteristics of facilities into the maintenance and repair cost prediction
modeling process.

In the context of educational facilities, it is essential to secure and maintain the func-
tions of appropriate facilities. Thus, the quality of education is closely tied with the quality
of educational facilities, and investment and maintenance in such facilities should be
achieved in order to maintain an appropriately high quality of education [4]. However,
although enormous amounts of money are spent on facility maintenance every year, it is
difficult to maintain the original functions of educational facilities in accordance with the
needs of the trainees with existing post-maintenance systems [2]. Therefore, it is essential
to prepare for damage to facilities in advance to plan for all possible types of maintenance
needs, and to hold budgetary reserves to address such damages. For this reason, the
establishment of advanced strategies can be key to the successful budget management
of educational facilities. In response to these needs, the industry is concentrating on
building integrated facility maintenance and repair management systems to safeguard
educational assets. However, there are many challenges associated with estimating costs
for facility maintenance and repair [5]. One key reason is that facility maintenance and
repair management include a wide range of expenditures for the maintenance and repair
of the facility [6]. For example, accidents, fires, vehicular accidents, vandalism, and crimes
may all affect the use of the buildings, while leaks may occur due to the deterioration or
failure of the facilities and equipment, the overflowing of toilets and drainage pipes, power
failure, sprinkler failure, or structural damage. Natural disasters also result in the need
for maintenance work, such as hurricanes, heavy snowfall, rainfall, hail, lightning, and so
on [7]. In addition, refurbishing or remodeling the facilities is sometimes preferred over
maintenance and repair, and thus, it is difficult to make a better-informed decision on more
feasible budgeting [8].

Since educational facilities have a longer life cycle than most other types of facilities,
there remains an especially high degree of uncertainty in predicting maintenance and
repair costs [2]. In addition, educational institutions seem to have relatively little interest
in the maintenance of their facilities compared to the managers of other residential or
commercial facilities. Although the maintenance and repair of educational facilities greatly
affect the satisfaction and sense of achievement of the educators, students, and faculty,
25% of educational facilities are not suitably maintained or repaired and, on average, these
buildings age at a faster rate than other types of facilities [9].

2. Point of Departure: Gaps in Existing Knowledge

The need for proper educational facility maintenance and repair strategies that can
enhance the effectiveness of education and decrease overall maintenance-related expendi-
tures is gradually increasing. However, many students have still led their lives in poorly
managed educational facilities [9]. To address this, many research efforts were made.
The existing research on facility operations and maintenance has focused on performance
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evaluation. For example, Baldry et al. (2000) developed a framework based on a balanced
scorecard and suggested a method of assessing facility performance that is related to the
characteristics of education [6]. Kaplan and Norton (2005) proposed the establishment of
short-term and long-term operation strategies for educational facilities from the perspec-
tives of users, management, learning, and finance [10]. Kok et al. (2011) investigated the
function of facility operations and maintenance for an educational environment through
various literature reviews, and analyzed the relationship between the quality of education
and performance of maintenance [11]. Tamosaitiene et al. (2013) identified various service
factors, such as the security level in a building, cleaning of the territory and building,
general management, and maintenance periods, and developed a maintenance assessment
program, applying game theory [12]. Lavy et al. (2014) identified functions, users, and
financial factors to evaluate the performance of facility operations and maintenance [13].
Other studies were also focused mainly on evaluating the potential risks within certain
facilities and their impacts on maintenance costs associated with a limited number of
factors, such as safety, accidents, and fires [1,6,14-18].

For effective facility operations and maintenance management, not only facility re-
placement/repair and equipment deterioration but also a variety of factors that can de-
crease the functioning of the actual facility (e.g., accidents, fires, crimes, theft, vandalism,
typhoons, earthquakes, floods, hail, heavy snow, and other natural disasters) should be
planned for in advance. However, very little is still known about the impacts of these
critical factors affecting maintenance and repair, although these potential risks are likely to
lead to the deterioration or malfunction of some part of a facility or of certain functions.
To prevent this outcome, potential risk factors should be identified in advance, and the
possible extent of financial damage should be reduced in advance.

In addition, to estimate the facility maintenance and repair costs associated with
these various potential risk factors, data on the potential costs during the whole life
cycle of the facility and the proper tools that are capable of quantitatively analyzing such
costs are required. However, to the best knowledge of the research team, existing facility
operation management research is far from empirical, as most of the calculations of each
potential risk factor are conducted based on literature surveys, questionnaires, and experts’
advice [1,18,19]. In turn, very little is still known about analytical modeling frameworks
that are underpinned by multiple factors affecting facility maintenance and repair costs.

Recently, technological advancements, such as big data, robotics, artificial intelligence,
and unmanned transportation, have been introduced and applied in a wide range of fields
such as finance, medical care, education, and construction, and their effects have been
widely recognized [20,21]. To fill the gaps in the existing knowledge delineated above,
applying one of these emerging technologies for developing a robust modeling framework
is needed.

3. Research Objectives and Method

In order to reduce any potential financial losses during the operation and maintenance
phase, it is essential to reliably and accurately predict the maintenance and repair costs
of educational facilities. To this end, the main objective of this study was to develop and
validate a deep neural network model to efficiently and accurately learn the maintenance
and repair costs of educational facilities, drawing on 1213 high-confidence data points. The
developed model learns and generalizes claim payout records on the maintenance and
repair costs from facility asset information, geographic profiles, natural hazard records,
and other causes of financial losses. In this paper, we propose a new modeling approach
that can accurately learn various factors that significantly affect the maintenance and repair
costs of educational facilities. The objectives of this study were achieved based on the
following five steps:

(1) As the claim payouts were processed according to standardized procedures, objective
damage analysis could be performed by a certified loss adjuster to calculate damages,
which is highly reliable [22]. In this sense, insurance claim payouts associated with
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maintenance and repair records in educational facilities were collected from the
Canadian University Mutual Insurance Exchange (CURIE) 1988-2018.

(2) Maintenance and repair track records, basic information (building area, number of
students, geographic locations), facility asset information (capital assets, building
cost, building age), and information on the natural hazards in surrounding areas of
the educational facilities were then collected.

(3) A deep neural network model was developed by evaluating the learning performance
of 14 different network alternatives that learn the maintenance and repair costs of
educational facilities from multi-contextual factors gathered in Step 2. In this study,
Python 3.7 was used with the Keras and Scikit-Learn libraries.

(4) For the purpose of validation, a multiple regression analysis was conducted separately,
using the IBM Statistical Package for the Social Sciences (SPSS) V22.

(5) The robustness of the developed learning model was then validated by comparing it
with the multiple regression analysis results based on their root mean square error
and mean absolute error values.

4. Data Collection and Classification

This study collected claim payout records from 1988 to 2018 from the Canadian
University Mutual Insurance Exchange (CURIE). CURIE has been a Canadian university
insurance provider since 1988. In addition to providing general liability insurance, the
organization compensates for physical losses, such as loss of equipment, property, and
automobiles. In this study, the maintenance and repair costs per educational facility were
extracted from the claim payout amounts of the maintenance and repair records and
defined as the amount ratio to learn, seen in Equation (1).

Maintenance and repair cost ($)
Total cost of educational facility ($)

Maintenance and repair cost ratio = 1

Based on the collected claim payout records, maintenance and repair history and basic
information regarding the educational facilities (i.e., capital assets, number of students,
geographic locations) and buildings (i.e., building area, building cost, building age) were
gathered. In addition, the risk of natural disasters was investigated and linked with the
corresponding location information. Table 1 summarizes a set of variables collected. First,
capital assets, number of students, and geographic location were grouped as the basic
information of the educational facilities. Geographic locations were then classified as
rural, urban, or metropolitan. Second, building information includes the area, cost, and
age of each educational facility. Additionally, major causes of maintenance and repair
were classified as nominal variables. Third, the natural disaster grades of tropical cyclone,
tornado, lightning, hail, flood, and storm surge events were applied to evaluate the risk
of natural hazards. For the quantitative and objective assessment of natural hazards, the
risk rating of the Munich Reinsurance Company’s Natural Risk Assessment Network
(NATHAN) was adopted. NATHAN was developed through a comprehensive analysis of
public sources, scientific analyses, and the severity and frequency of past natural hazards,
aimed at estimating the risk of natural hazards around the world through the risk of various
natural hazards according to geographical locations [23]. The risk rating of each natural
disaster was used as the nominal variable. The descriptive statistics of the variables are
shown in Table 2.
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Table 1. Descriptions of the variables.

Variable Description Data Type

Maintenance and repair cost ratio Amount ratio used for maintenance  Continuous
and repair

Capital asset Total amount of capital assets ($) Continuous

Student Number of students Continuous

Location Location of the facility Nominal

1: Rural area
2: Urban area
3: Metropolitan area

Building area

Total area of building (acres)

Continuous

Building cost

Total price of the building ($)

Continuous

Building age

The age of the building at the time
the loss occurred

Continuous

Loss cause

The main cause of loss

Nominal

: Vehicle

: Theft

: Vandalism
Maintenance
: Lightening
Snow
Water
Other

: Wind storm
10: Fire

11: Hail storm

Tropical cyclone

Risk rating of tropical cyclone based
on the maximum wind speed in a
100-year return period at the facility

Nominal
0: Zone 0
1: Zone 1
2: Zone 2
3: Zone 3
4: Zone 4
5: Zone 5

Tornado

Risk rating of tornado based on the
tornado frequency and intensity
interpolation at the facility

Nominal
1: Zone 1
2: Zone 2
3: Zone 3
4: Zone 4

Lightning

Risk rating of lightning based on the
lightning frequency per km? per
year at the facility

Nominal
1: Zone 1
2: Zone 2
3: Zone 3
4: Zone 4
5: Zone 5
6: Zone 6

Hail

Risk rating of hail storm based on
the hail storm frequency and
intensity interpolation at the facility

Nominal
1: Zone 1
2: Zone 2
3: Zone 3
4: Zone 4
5: Zone 5
6: Zone 6

Flood

Flood rating according to FEMA
flood area classification

Nominal
0: FEMA flood zone 0
1: FEMA flood zone 100
2: FEMA flood zone 500

Storm surge

Risk rating of storm surge based on
the risk of storm surge by return
period at the facility

Nominal
0: 100-year return period
1: 500-year return period
2: 1000-year return period
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Table 2. Descriptive statistics.

Variables N Minimum Maximum Mean Std. Deviation
Maintenance and repair cost ratio 1213 3.37 20.69 12.36 2.70
Capital asset 1213 10.17 20.15 14.30 1.70
Building area 1213 11.36 16.71 15.06 0.84
Building cost 1213 15.26 24.10 21.59 1.11
Building age 1213 2 226 96.62 52.36
Number of students 1213 224 52,300 24,140.67 13,361.62
Location 1213 1 3 2.62 0.73
Loss cause 1213 1 11 6.90 2.08
Tropical cyclone 1213 0 3 0.43 0.99
Tornado 1213 1 4 2.46 0.73
Lightning 1213 1 4 2.18 0.80
Hail 1213 1 3 1.93 0.39
Flood 1213 0 2 0.16 0.48
Storm surge 1213 0 2 0.39 0.79

5. Deep Neural Networks to Learn Maintenance and Repair Costs of
Educational Facilities

Deep learning has been widely applied in prediction and recognition studies as one of
the machine learning techniques that employ regression or type classification approaches.
In general, deep learning algorithms have a neural network that consists of several layers
and various structures [24]. A typical learning framework of deep learning models is drawn
in the same way as other types of neural networks, but it highlights the use of multiple
hidden layers to learn numerous datasets more effectively, in addition to input and output
layers [25]. Deep learning algorithms can be mainly classified into five different structure
and processing methods: (1) deep neural network (DNN); (2) generative adversarial
network (GAN); (3) recurrent neural network (RNN); (4) convolutional neural network
(CNN); and (5) autoencoder (AE) [26]. A DNN is a standard neural network with a
depth that is determined by the number of hidden layers between the input and output
layers [27]. A GAN is underpinned by a generator that produces artificial data to be
identical to real data and a discriminator that detects real or false data, which is competitive
for image or text-based data systems. Similarly, a CNN is powerful for recognizing,
analyzing, and segmenting image data. An RNN is widely used for time-based data
prediction systems, and an AE operates automatically based on input data first before it
takes activation functions.

Among these, a DNN is designed to identify specific functions of multiple layers and
trained to model complex nonlinear relationships [28]. Although a DNN may be susceptible
to overfitting, it is largely used for prediction and cataloging in various industries and
academic areas [29]. Given the complex nonlinearity of datasets collected in this study, a
DNN model for learning the maintenance and repair costs of educational facilities was
developed. The learning performance of 14 different DNN alternatives (i.e., 7 different
cases of hidden layers x 2 different dropouts for each hidden layered structure) were then
evaluated on the basis of its root mean square error (RMSE) and mean absolute error
(MAE). RMSE and MAE are typical indicators that express the magnitude of the error
by comparing the prediction result of the artificial neural network model with the real
result [30]. The RMSE is underpinned by a quadratic scoring method to measure the
average value of error’s magnitude, as seen in Equation (2). Comparing it with RMSE,
MAE is calculated by weighting all the errors equally and linearly, as shown in Equation (3).
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The results of the RMSE and MAE are interpreted as when the error value is closer to zero,
the predictability increases.

1 ]
RMSE =4 Y (i — i) )
i=1
1 A
MAE =} lyi — i 3)
i=1

where y; is the ith actual value, §; is the corresponding predicted value, and n represents
the number of samples used.

5.1. Pre-Processing for Deep Learning

A total of 1213 data points were collected for 13 input variables (i.e., capital asset,
building area, building cost, building age, number of students, location, cause of loss,
tropical cyclone, tornado, lightning, hail, flood zone status, and storm surge status). The
data were scaled using the z-score normalization method for data preprocessing. Data
preprocessing aimed to adjust the range of units and quantities that are difficult to compare.
The preprocessed input data was divided into training (learning and validation data) and
test sets. The training set is intended to learn datasets deeply, while validating the data
is for learning if its performance is optimal. The test set is used to evaluate whether the
model is suitable for prediction purposes. It is well known that a 60:20:20 split is generally
used for the training, validation, and test set, respectively, within a large set of original
data. Given the smaller dataset gathered in this study for deep learning, to improve the
efficiency and effectiveness of learning performance, a 70:30 holdout method was adopted
by dividing the data into 70% training and 30% test sets. In order to tune hyperparameters,
30% of the training set was assigned to the validation set, which was not used for training.

5.2. Setting Key Components of Deep Neural Networks (DNN) and Exploring DNN Alternatives

The DNN model updates the weights of the neural network nodes and uses a back-
propagation algorithm to adjust the model. The optimum arrangement of the model is
identified through a trial-and-error basis since the optimal combination is dependent on
the input and output variables. In this study, a total of 14 different network structure sce-
narios were considered for the learning model selection process, in line with two different
hyperparameter tuning values for seven different hidden layered network structures.

In a network structure scenario, the number of layers and nodes is determined. The
hyperparameters include the optimizer, activation function, dropout, batch size, and
epoch [31]. The optimizer is a way to make learning both stable and fast, and the activation
function is a way of discovering the weight of each node to arrive at an optimal output
(i.e., maintenance and repair cost ratio). The dropout is a way to prevent overfitting with
a normalization penalty. If the model is overfitted, its performance deteriorates due to a
rise in errors in the test data due to excessive learning of the training data. Overfitting
sometimes occurs when the learning model is complicated by a large number of hidden
layers and nodes, or when there are many input variables. To identify the overfitting, the
original data can be classified into two subsets for training and testing. By using these two
data sets, the learning performance is measured by looking at the percentage of accuracy
shown in both data sets, which could identify the presence of overfitting. More specifically,
if the training performance is better than the data in the test set, it represents that the model
tends to be overfitted. A batch is an assemblage of data that is used for efficient calculations.
The epoch defines the number of learning periods [31,32]. The network structure scenarios
in this study were structured in 3 hidden layers. In general, 1 to 2 hidden layers in deep
learning are sufficient if the characteristics of the data are less complex. However, as stated
earlier, this study adopted various types of data (i.e., continuous, ordinal, and nominal) for
deep learning. Given the complexity of the data, 3 hidden layers were considered for this
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study, as a way to achieve the optimal solution. It was assumed that more than three layers
increase the possibility of overfitting.

A dropout of 0 or 0.2 was then determined considering the amount of training data,
and simulations were conducted to find an optimal combination. In addition, the optimizer
adopted the Adaptive Moment Estimation (Adam) method, while the ReLu (Rectified
Linear Unit) function was used as an activation function. The ReLlu is an activation
function that yields 0 if the input value is smaller than 0, and leaves the input value as it
is if the input value is larger than 0. This was developed to address the problem of the
loss of the slope of the existing Sigmoid function [33]. The Adam Method, an optimization
algorithm, is the first-order gradient algorithm that adds the conception of moment to a
stochastic objective function. As one of the widely-used algorithms, it was developed in
2015 with regard to computational efficacy and affluence of applications [34]. The batch
was set to 5, and the number of epochs was set to 1000. Learning was halted in an epoch
when there was no more enhancement of the maintenance and repair cost ratio values.

5.3. Selecting the Final DNN Model

As seen in Table 3, the network structure scenario results clearly present the trend of
accuracy associated with MAE and RMSE with two different dropout values of 0 and 0.2.
The structures ranging from 25-25-25 hidden layers to 200-200-200 hold larger error values,
which is less accurate than the 5-5-5 and 10-10-10 structure scenarios. Hence, 5-5-5 and
10-10-10 were nominated as the finalists of the DNN model. Compared to 10-10-10, the
5-5-5 hidden layered model resulted in producing larger error values. Given the trend of
errors between these two structures, it can be expected that any number of hidden layers
greater than 5 and less than 10 are less accurate than the final structure of 10-10-10. This
investigation concludes that the 10-10-10 hidden-layer DNN structure (a dropout value of
0.2) is the optimal model for this study. Accordingly, the final model is revealed in Table 4,
along with the confirmed network structure and the hyperparameters.

Table 3. Learning performance of 14 different deep neural network (DNN) alternatives: Mean
absolute error (MAE) and root mean square error (RMSE).

Dropout (0) Dropout (0.2)
Network Structure Scenario
MAE RMSE MAE RMSE

5-5-5 3.630 4.587 2.424 2.846

10-10-10 3.616 4.476 2.371 2.789

25-25-25 5.235 6.536 2.434 2.835

50-50-50 5.303 6.543 2.442 2.840

75-75-75 5.378 6.598 2.447 2.845
100-100-100 5.431 6.602 2.453 2.854
200-200-200 5.975 6.830 2.454 2.852

Table 4. Configuration of the final DNN model.

Group Composition Detail
Network Structure Number of Hidden Layers 3
Node 10-10-10
Optimizer Adaptive Moment Estimation Method
Activation Function Rectified Linear Unit function
Hyperparameter Dropout 0.2
Batch Size 5

Epoch 1000




Buildings 2021, 11, 165

9of 12

6. Robustness Validation of the Model

Traditionally, a multiple regression analysis (MRA) method has been widely used
for quantitative prediction model development. To scientifically validate the robustness
of the final DNN model, MRA was conducted further. Then, the prediction results of
the MRA were compared to the DNN model by measuring their own MAE and RMSE
values and comparing their error values. To improve the quality of the MRA, satisfying
the essential assumption of normal distribution, particular variables were log-transformed,
including maintenance and repair costs, capital assets, building areas, and building costs.
As this study highlights the DNN-driven analytical framework, the MRA process has
been omitted.

Table 5 summarizes the results of the robustness validation. First, the overfitting
issue on the developed DNN model was tested and validated. More specifically, the
validation data results were an MAE of 2.028 and an RMSE of 2.331, while the test data
results were an MAE of 2.001 and an RMSE of 2.228. These results indicate that the issue of
overfitting is negligible because the difference in the error values between the datasets is
not far from each other. When it comes to the robustness validation of the DNN model,
it produced lower error rates of 9.1% for MAE and 8.5% for RMSE, compared to the
MRA. This concludes that the developed DNN model is more powerful for learning the
maintenance and repair costs of educational facilities associated with the multi-contextual
factors applied for this study.

Table 5. Model validation results: DNN vs. Multiple regression analysis (MRA).

Validation Test
Model
MAE RMSE MAE RMSE
DNN 2.028 2.331. 2.001 2.228
MRA - - 2.184 2417
DNN/MRA (%) —9.1% —8.5%

7. Discussion

This study proposed a robust modeling framework by developing a DNN model
that learns educational facility maintenance and repair costs from various factors. The
developed model was scientifically validated by comparing it with a conventional multiple
regression analysis method on the aspects of RMSE and MAE. When comparing the
prediction results of the final learning model with those of traditional MRA, the DNN
model had a lower prediction error rate than the MRA method. Therefore, to appropriately
reveal the nonlinear features of the maintenance and repair costs of educational facilities,
the nonparametric DNN model is a better fit than the MRA model, which can be translated
into enhanced management of educational facilities by proactively identifying the potential
risk of financial losses and enabling active investments in educational facilities. The main
finding of this study is that the proposed analytical modeling framework was effective
in learning educational facility maintenance and repair costs, which is comparable to
other previous studies focused on a limited number of factors affecting maintenance and
repair management.

Nevertheless, it should be noted that there are limitations of this study. This study
used the claim payout records of one insurance company. Due to the limited dataset
available, it was difficult to collect new sets of data experimentally. Further research is
needed to compare and verify claim payout records from different insurance companies in
the future. In order to more accurately predict maintenance and repair costs using deep
learning algorithms, supplementary studies are desired to advance the model by increasing
the amount of available data and inputting additional variables, such as maintenance and
repair activities and cost components of those activities.
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8. Conclusions

Considering the characteristics of current facilities, the need for efficient facility main-
tenance and management strategies is being emphasized day after day. Effective facility
management can have a positive effect not only on the operation and maintenance of
facilities, but also on the residents of those facilities. The maintenance of educational
facilities is especially vital because proper maintenance and repair of educational facilities
can have a great influence on the quality of education. In this sense, it is important to
accurately know about maintenance and repair costs.

To address this need, many research efforts have been made by evaluating potential risks
within certain facilities and their impacts on maintenance costs. However, the factors applied
in previous studies are limited, which are incapable of assessing maintenance and repair costs
systematically. For effective facility operations and maintenance management, not only facility
replacement/repair and equipment deterioration but also a variety of factors that can decrease
the functioning of the actual facility (e.g., accidents, fires, crimes, theft, vandalism, typhoons,
earthquakes, floods, hail, heavy snow, and other natural disasters) should be planned for in
advance. However, there is still very little known about the impacts of these critical factors
that affect maintenance and repairs, although these potential risks are likely to lead to the
deterioration or malfunction of some part of a facility or of certain functions. In addition,
existing facility operation management research is far from empirical, as most of the calculation
of risk for each potential risk factor is done through literature surveys, questionnaires, and
expert advice. Therefore, there is still very little known about analytical modeling frameworks
that are underpinned by multiple factors affecting facility maintenance and repair costs.

This study attempted to fill these knowledge gaps by modeling and validating a
DNN model to efficiently and accurately learn maintenance and repair costs, drawing
on 1213 high-confidence data points. The developed model learns and generalizes claim
payout records on the maintenance and repair costs in line with facility asset information,
geographic profiles, natural hazard records, and other causes of financial losses. By
evaluating the learning performance of 14 different DNN alternatives based on their RMSE
and MAE values, the 10-10-10 hidden layer with a dropout of 0.2 structure was selected as
the optimal learning model. The robustness of the developed model was then scientifically
validated by comparing it with a conventional multiple regression analysis method on
the aspects of RMSE and MAE. The validation results confirm that the nonparametric
DNN model is a better fit than the regression method to appropriately reveal the nonlinear
features of the maintenance and repair costs of educational facilities.

This study is the first of its kind and provides a holistic analytical modeling framework
that learns high confidence claim payout data from multi-contextual factors affecting
maintenance and repair costs of educational facilities. The proposed modeling approach
can help industrial practitioners in the discipline of educational facilities consider more
critical factors affecting maintenance and repair costs and evaluate their impacts more
effectively. The proposed approach can also contribute to the existing body of knowledge,
serving as a reference for the facilities management of other functional types of buildings.
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