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Abstract: Risk identification and management are the two most important parts of construction
project management. Better risk management can help in determining the future consequences, but
identifying possible risk factors has a direct and indirect impact on the risk management process.
In this paper, a risk prediction system based on a cross analytical-machine learning model was
developed for construction megaprojects. A total of 63 risk factors pertaining to the cost, time, quality,
and scope of the megaproject and primary data were collected from industry experts on a five-point
Likert scale. The obtained sample was further processed statistically to generate a significantly
large set of features to perform K-means clustering based on high-risk factor and allied sub-risk
component identification. Descriptive analysis, followed by the synthetic minority over-sampling
technique (SMOTE) and the Wilcoxon rank-sum test was performed to retain the most significant
features pertaining to cost, time, quality, and scope. Eventually, unlike classical K-means clustering,
a genetic-algorithm-based K-means clustering algorithm (GA–K-means) was applied with dual-
objective functions to segment high-risk factors and allied sub-risk components. The proposed model
identified different high-risk factors and sub-risk factors, which cumulatively can impact overall
performance. Thus, identifying these high-risk factors and corresponding sub-risk components can
help stakeholders in achieving project success.

Keywords: risk management; risk identification; construction megaproject; quantitative; machine
learning; evolutionary computing

1. Introduction and Background

The exponential rise in global competitiveness has triggered every economy to strengthen
its socioeconomic aspects in terms of better social conditions, economic strengths, technological
prospects, and global recognition. This has motivated economies to improve their intrinsic
conditions, including infrastructures. This has resulted in the undertaking and execution of
large complex projects or megaprojects involving substantial funding and spanning over a long
duration of time. Typically, a megaproject can be characterized in terms of its complexity,
substantial investment [1–3] uncertainty, dynamism, dynamic interfaces, vital sociopolitical
and external influences, and large construction time [4,5]. Among the different kinds of
projects, megaprojects are often considered the most complex and uncertain due to multiple
stakeholder dependencies, substantial investment, greater community involvement, a
complex decision-making environment [2], and the likelihood of risk [5]. Moreover, the
unpredictable nature of megaprojects, even with precalculated and calibrated project
details, signifies a proneness to risk. Undeniably, the failure of a megaproject often results
in the collapse of funding agents, substantial financial losses, and project uphold for the
long term, sometimes forever [6]. As theses are projects involving multibillion investments
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and has a probability of undergoing various risk forces, there is a need to inculcate optimal
project management policies and execution control [6–9].

Identifying inherent risk and its timely avoidance has always been a challenge, es-
pecially with megaprojects. Construction megaprojects, being highly dependent on local
conditions, social acceptance, and government affirmation, undergo political risk that
prolongs project completion time and imposes substantial financial risk [10]. The lack of
timely funds and resources also adversely impacts the project. However, the severity and
complexity of these risk factors play different roles in different megaprojects. These risk
factors can more severely impact some projects, while they may have less impact on others.
For instance, a megaproject completely funded by private players has lower political risks,
provided it gains initial approval with certain standard terms and agreements. On the
contrary, a government-funded megaproject, especially one related to construction, under-
goes significant turbulence due to political regime changes and local conditions [9]. To
alleviate such risks in construction megaprojects, identifying risks and distributing them
across stakeholders can have an affirmative impact on project success.

Megaprojects also require an assessment of inter-association among the risks to seg-
ment them into proper categories. This can help in efficient risk management and handling.
The characteristics of megaprojects and associated risk probability broaden the horizon
for academic industries to assess the different cases and segment the key possible risks
and alleviating (optimal) measures to ensure proactive decision making across the project
cycle [11].

Since risks and their severity vary from one project to another based on their nature,
risk distribution, stakeholders, or investment assessing the risk for each kind of project
can be of great significance [11]. In order to alleviate any possible detrimental losses and
enduring problems in construction megaprojects, assessing the different risk factors is
especially important [12]. Identifying different risks, their inter-relationship, and eventual
driving forces, along with corresponding alleviation measures, can be of utmost significance.
It can help project management and allied decision-making environments become more
specific and favorable, especially for a megaproject [7,12].

In sync with contemporary construction megaprojects, the activities pertaining to
project planning, risk identification, qualitative risk analysis, quantitative risk analysis,
risk response planning, risk monitoring, and control are necessary [13–17]. Identifying,
assessing, and responding to potential risk can help construction megaprojects reduce
detrimental effects over project cycles [9,18,19]; however, being a multistakeholder, multia-
gent investment, or a locally sociopolitical-support-driven project, assessing their potential
risk associations is vital [14,16–18]. It can avoid detrimental effects and help in achieving
better rewards [13,18,20]. Interestingly, although many studies address risk management
in small-scale or medium-sized projects [21], very few have considered risk assessment in
construction megaprojects [11,22–26]. This broadens the horizon for researchers to assess
the risk management of megaprojects, so as to derive a holistic model that addresses the
different potential risks in (construction) megaprojects [9,18,19]. In the last few decades,
the high-pace rises in the number and value of megaprojects [27] and the heterogeneity of
different risk factors have been witnessed in varied or distinct megaprojects; therefore, the
same risk management model or framework cannot be adopted for all megaprojects [26].
This is because, as the size, complexity, and multiparty involvement increases, the prone-
ness to risk increases in parallel [19,25,28]. Therefore, assessing risks for construction
megaprojects as a distinct case is a must [26]. This, as a result, can help in achieving proper
risk identification, risk severity assessment, inter-risk association, and risk distribution
among the agents or stakeholders to avoid delayed projects and financial losses [9,13,26].

As stated, in major existing studies, a qualitative assessment has been made to identify
risk factors and probable avoidance measures. Ironically, the existing methods do not
contribute to a project-specific risk management framework and hence cannot be adopted
in all megaprojects [13]. On the contrary, despite the high-pace rise in the construction
sector across global economies and the allied likelihood of risks, very few studies address
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risk management in construction megaprojects [25,29]. Interestingly, the at-hand studies
identified execution risk, economic risk, political risk, environmental risk, technological risk,
and social risks as key risk factors impacting construction megaprojects [26,30]. Despite
the analytical-approach-based identification, these studies could not identify relationships
and near associations among other risk factors such that risk management and decisions
could be improved to accomplish target endeavors [26]. In addition to the above-stated key
risk factors (execution, economic, political, environmental, technological, and social), there
can be other inter-related risks that have a cumulative impact on the project cycle if they
remain unaddressed. Therefore, clustering different risk factors based on their association
closeness can help in segmenting key risks and (closing) sub-risk factors. This, as a result,
can enable better risk distribution and handling to ensure a project’s success.

To identify the different risk factors and allied sub-risk components, exploiting inter-
risk connectivity can be of utmost significance. Merely identifying risk factors based on
certain qualitative or quantitative methods cannot generalize a risk management frame-
work. Undeniably, quantitative methods or analytical methods with expert responses
toward risk factors can help researchers or industries to identify major (broad) risks; how-
ever, it might fail in addressing sub-risks, which can have a cumulative impact on the
overall project success.

The main aim of the study was to design a dynamic framework for the assessment of
the complexities of risks in megaproject development. With this aim of the study, a new
knowledge-driven, machine-learning-based risk identification framework is developed
for construction megaprojects. Since it is a cross model, we exploit both a quantitative
research method to collect and process experts’ perceptions and suggestions toward differ-
ent risk factors in construction megaprojects, as well as machine learning algorithms to
cluster the different risk factors based on their dependencies and cumulative impact on
project performance.

It can help in reducing any detrimental effects on the life cycle of a construction
megaproject. Key contributions in this research paper can be summarized as follows:

1. Unlike classical qualitative- or even limited quantitative-study-based risk identifica-
tion, in this study, we considered industry-expert-knowledge-driven risk identifica-
tion and verification. In other words, we obtained responses from experts handling
(or having handled) construction megaprojects toward different potential risk factors
and their impact on the project lifecycle;

2. Due to the study being a knowledge-driven risk management approach, we per-
formed a statistical assessment of the different risk factors and their impact on the
project lifecycle and performance. Moreover, deriving a cumulative risk score from
the major risk factors, machine learning was applied to segment other correlated
sub-risk factors for better decision making;

3. Since the study used a multiple risk scenario, we processed the statistical output of
the different risks and their severity using a GA-based K-means clustering algorithm.
The proposed GA K-means algorithm exploits the respective weights of major risks
as well as sub-risk factors to segment (or group) overall risks into broad categories;

4. The identification of the major risks along with the closest sub-risks can enable better
risk management in terms of risk awareness, risk distribution, proactive decisions,
and execution. Cumulatively, it can be of vital significance to avoid detrimental losses
that could be caused due to hidden risks or inferiorly weighted risks in construc-
tion megaprojects;

5. Since the proposed research contributes a risk identification framework based on
expert-driven knowledge and machine-learning-based predicted outcomes, its efficacy
toward project risk management is more justifiable and adoptable.
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2. Literature Review
2.1. Characteristics of the Megaproject

Typically, key factors characterizing a project as a megaproject include an investment
over USD 1 billion, high dynamism, feasible intangible benefits, and striking long-term
results and allied benefits [1,3]. Megaprojects are also characterized in terms of significantly
high complexity and design risk and therefore undergo high engineering and design
risks throughout the project development [18]. Some of the well-known megaprojects in
the world are Taipei 101 tower in Taipei, Taiwan (tallest building in the world, 508 m),
Roosevelt Dam Bridge in Arizona USA, (longest steel arch bridge), Big I reconstruction
project in New Mexico, USA, (largest freeway project in the state) [23], characterizing
high complexity in design, dynamism, huge budget, volatility, and uncertainty. This
imposes a proneness to risks that require identification and proactive management for
better project performance [31]. This may be facilitated by complexity measurement [31]
and monitoring project performance at preconstruction and construction phases. Some
of the tools at hand for performance measurement systems include cost/schedule-based
systems called earned value management systems (EVMSs), the balanced score card (BSC),
and key performance indicators [32]. Risk, on the other hand, is often measured by risk
performance index based on project performance tools [32]. Researchers at North Carolina
State University conducted a study to model the payout curve patterns for completed
design and build megaprojects using macro/micro approach during preconstruction phase
and model approach during construction phase [33]. The macro approach creates project
payout models based on data from past projects, while the micro approach builds the
project’s payout curve based on the anticipated cost of the various construction activities
involved. The model during the construction phase is based on the estimated expenditure
forecasts by the contractors. The outcomes from the study also revealed the “key factors”
influencing megaprojects such as let-date delay, merger process, scope creep, consent and
approval for railroad, permits, utility relocation during the preconstruction phase and
utilities, railroads, Right of Way (ROW), and permits during the construction phase [33].

In sync with megaprojects, risk can be defined as any unexpected event that degrades
the project’s goals, and as a result, the project might fail to serve the expected endeavors of
the allied stakeholders [34]. It is also defined as “an uncertain event that, in case [it] occurs,
can have affirmative as well as negative effect on a project’s goal and endeavours” [15].
Each risk factor often has certain visible affirmative and negative consequences. Risk is an
especially important factor that needs to be considered, as it can influence both the cost–
benefit analysis, local perceptions, construction costs, execution time, and major financial
variables [12].

The impact of risk relies on the causative event and on the way the responsible man-
agement addresses it and deals with it. A typical construction megaproject possesses
numerous risk factors that can cause prolonged construction delays, significantly substan-
tial financial losses over the project’s life cycle, and stakeholders’ perceptual differences. It
results in project failure, and therefore, certain optimistic and specific management actions,
including risk assessment and mitigation measures, need to be taken [6].

2.2. Risk Identification, Assessment, and Management: Current Scenario

Different researchers [35–38] have stated that the majority of probable risks pertaining
to the megaproject, and their root cause can be identified by assessing the organizational
dynamics and multidisciplinary characteristics of today’s business environment [39–41].
Due to megaprojects being a multi-stakeholder-based business environment, the proactive
participation of the varied autonomous processing elements, technologies, and stakeholders
in the extent or likelihood of uncertainty and risk distribution turns out to be broadened
over a wide area of enterprise and allied partners [39–41]. Under these circumstances,
managing megaprojects requires going beyond a simple analysis of the cost and dates and
understanding the cause of any uncertainty [42].
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Many studies have revealed that the predominant risks involved in megaprojects
are political risks, design risks, economic risks [2]. Among the major risks, political risks
represent uncertain financing that often results in potential revenue declination. Being
unpredicted in nature, catastrophic loss also affects megaprojects significantly in terms of
delay and financial losses. In reference to construction megaprojects, in addition to the
above-stated risk factors, environmental risks, execution risks, and social risks also have
a decisive impact on a project’s success and target endeavors. Notably, among the major
risks, those that can have a direct impact on a project’s execution, performance, and delay
turn out to be the most critical and hence require early identification and resolution [6,43].

Observing the above-stated risk classifications, it can easily be inferred that there is no
broad and homogenous classification approach in which authors can exploit both inter-
dependencies of the risk factors and their impact on overall project success. The at-hand
risk classification methods are undeniably confined because of their inability to identify
all types of risks with a certain probability over a mega construction project, especially
based on public and private stakeholders’ joint ventures. Moreover, most of the existing
risk identification or classification methods lack the source-oriented groupings, expert
consensus, and inter-risk dependency needed for precise risk exposure pertaining to a
mega construction project [44].

Although each project requires a multidimensional analysis to assess success prob-
ability, inherent risks, and viable solutions, it is especially important for megaprojects
because of their broader complexity and substantial investment. Harvet [45] stated that a
significantly large number of projects often fail due to the increases in project complexity
over time. This raises the question as to whether the at-hand industrial risk management
policies and allied standards are effective in avoiding uncertain losses and failure [44].
Additionally, risk management and allied practices are not the same in all projects, as risks
do not impact all projects in the same manner or to a similar extent [38].

Irrespective of the project size, the risk management process requires identifying
inherent risks and the project’s optimal avoidance measures [42]. More specifically, the
megaproject risk assessment and management practices involve identifying the optimal
strategies to reduce risk probability, comprising the way the possible risks are shared
among the stakeholders and the risks that could be transferred [6].

In reference to a megaproject, the key parameters of time, cost, and scope constitute
classical performance measurements, often collectively called the “triple constraint” or the
“iron triangle,” which need to be addressed, and project management practices need to be
performed to retain target endeavors [46]. Based on an analytical assessment method, lower
performance can be characterized in terms of multiple factors pertaining to a megaproject,
such as resource constraints, higher complexity, the lack of realism in estimates, inefficient
management, and public (stakeholders) resistance due to local causes and/or politically
motivated social agitation [6,47–49]. Additionally, there are also some hidden risk factors,
which are minimally addressed in the literature, especially in reference to megaprojects.
These are unfair bids, biased leasing, and unrealistic or undervalued bids. These factors
often push a megaproject to undergo financial losses and a default-driven delay and
often lead toward the risk of negotiation that, in general, turns out to cause delays for a
construction megaproject [22,47].

2.3. Significance of the Present Study

Even though, in the last few years, a significantly large number of studies have been
conducted on risk management practices in projects, very little research addresses risk
assessment and allied management policies for megaprojects [22]. On the contrary, the
need to assess risks pertaining to megaprojects has always been a key demand from in-
dustries [11,23], as it guides and sets up standards for management to make optimal
and calibrated decisions in project planning and execution while retaining stakeholders’
endeavors. Risk identification and a corresponding avoidance measure formulation are
especially important in a megaproject, especially when a megaproject undertakes both
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public and private agencies [30]. Although due to budgetary constraints, a few researchers
have contributed models toward public–private partnerships in megaprojects, they have
been primarily confined to financial management and resource optimization [30]. The ex-
ceedingly high uncertainty and risk impact of construction megaprojects make it especially
important to have optimal risk management policies [23,50]. Certain authors have found
that consideration of key factors such as “the imprecision, vagueness, and fuzziness of
the risk factors is [especially important] for a construction project to appropriately deal
with a contractor’s project risks by using Fuzzy Set Theory (FST)”; however, the lack of
specific methodologies, databases, and journals analyzed confine this generalization [14].
Taroun (2014) studied different risk models and measures in construction projects [51].
Assessing the different definitions, risk elements, and allied concepts of risk models in
construction projects, the authors identified key tools and theories and stated that there
is a lack of a general framework to assess the risks and their corresponding impact on
construction projects [19,50,51]. However, these authors could not address concerns toward
construction megaprojects, which have greater risk impacts and fluctuations than typical,
smaller projects.

To classify different risk factors in construction projects, different models have been
proposed. A generic classification model [52] was used, but it was aimed at classifying
different risks in the early phase of a construction project cycle. The authors identified
a few key risk factors such as cost risk, demand risk, financial market risk, and political
risk. Performing a more in-depth assessment, the authors classified the different risk
factors as follows: (1) cost risk: construction, maintenance, and operation; (2) demand risk:
traffic forecasts and revenues; (3) financial market risk: future interest rates; (4) political
risk: regulation, parallel public investment, and pricing in adjacent parts of the network.
However, these risk factors were not found to have generalizable significance or impacts
over the entire project cycle. Moreover, it failed to address any associations or dependencies
between one risk factor and another that might have a decisive impact on overall project
(megaproject) success.

A similar assessment was carried out by Little [53], who classified construction project
risk as political risk, construction (or execution) risk, operation and maintenance risk, legal
and contractual risk, income risk, and financial risk. Bing et al. [54], on the other hand, clas-
sified risks based on their severity, considering macro-, meso-, and microlevel risks. Here,
macro risks included exogenous risks, while endogenous risks were considered mesolevel
risks. On the contrary, the microlevel signifies risks caused by stakeholder relationships
constituted during the procurement process because of an inherent disparity between the
public and private sectors in contract management. Rolstadas and Johansen [55], Krane
et al. [56], and Westney and Dodson [57] differentiated in terms of contextual risk, in
which the former stated that there is a prospective impact on outcomes or capital due to
adverse business decisions, ineffective execution, and implementation decisions, or a lack
of responsiveness toward organizational changes.

Recently, Krane et al. [56] and Krane et al. [58] distinguished risk factors based on the
project’s goals. They classified risk as operational risks (mainly pertaining to the project’s
operational goals, confined to the direct outcomes of the project), short-term strategic
risks, and long-term strategic risks. Turner [59] differentiated risks as business risks and
insurable risks (because of the unexpected set of events during a project cycle).

3. Materials and Methods

In principle, there are many research methods needed to fulfill various research
needs [60]. The irony is that, while there are indeed many research methods, there is
no perfect option. Nevertheless, some methods are better suited for tackling specific
issues than others. This research is based on a mixed research paradigm involving both
qualitative and quantitative approaches. Figure 1 illustrates the overall flow of the proposed
framework for this study.
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Figure 1. Process flow chart for the proposed methodology of research.

3.1. Qualitative Phase

As a part of the qualitative phase, a content analysis was performed with the help
of a focus group based on the review of literature from articles, journals, textbooks, and
other internet sources. A theme-based categorization of broad risk factors was performed,
followed by coding and finding the various risks under each category. In total, 10 members
were identified as a part of the focus group with 15–25 years of experience, ranging from
industry experts to academicians in the area of construction management practice. Experts
from the focus group were given two rounds of questions. The first round had two open-
ended questions seeking their opinion on what major categories of risks megaprojects
may be subjected to, while the second round had 63 different risk factors identified from
the literature and sought their agreement. A content analysis [61] was conducted from
the transcripts of the interview with the help of the codes used. The codes depicting the
greatest number of agreements were considered for further analysis. The consensus was
supposed to have been achieved when 80% of the experts agreed that the 63 risk factors
were suitable for further quantitative analysis. This could eventually help in arriving at the
different risk factors and allied sub-risk components and also inter-risk connectivity that
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could affect project performance. Thus, by conducting the interviews, it was possible to
consider the relevance of the risk factors identified in the literature.

3.2. Quantitative Phase

The instrument for the quantitative phase comprised a questionnaire (mailed and
online). The approach was considered necessary because it provides stronger empirical
research evidence for explaining phenomena that will enable the researcher to address
“how much” and “how many.” Thus, after successfully identifying the different risk factors
pertaining to the aspects of time, cost, quality, and scope, the experts were asked to state
their views toward the impact of the different risk factors on project success and endeavors,
using a scale from 1 to 5. The analysis was based on the inputs from the respondents on a
five-point scale in which the respondents were asked to quantify the impact of each risk
factor on the project objective of time cost quality and scope. Responses with an impact of
1 signify disagreement (interpreted as extremely low impact), while that with an impact
of 5 indicate strong agreement (extremely high impact). The linguistic definition of the
impact of risk factors was interpreted as shown below (Table 1).

Table 1. Linguistic definition of impact of risk factors adapted from Andric et al [62].

Impact Rating

Extremely Low 1
Low 2

Moderate 3
High 4

Extremely High 5

A total of 150 questionnaires (Appendix A) were distributed, and among these, 91 com-
pleted questionnaires were successfully received. This represented a response rate of above
60%. From the responses received, 70 were considered to be valid and were used for the
analysis part. Among the 70 valid responses in this research, 5 (7.14%) responses were from
individual consultants, 40 (57.14%) were from Engineers, 4 (5.71%) were from Project Man-
agers, 5 (7.14%) were from contractors or vendors, and 16 (22.86%) project team members.
Most of the respondents had worked on the project for between 5 and 15 years. First, the
responses from different experts toward varied contemporary risk factors, and their impact
on project endeavors or success were obtained and processed for cumulative averaging.
Thus, for obtaining the average rank for the different risk factors and their impact on a
project’s endeavors (success), a new heuristic-based, K-means clustering algorithm that
clusters different risk components into optimal groups, containing different sub-risk factors
to be handled cumulatively, was designed. Notably, unlike classical K-means-based cluster-
ing, in this research, a GA algorithm was applied to optimize the centroid estimation of the
K-means algorithm, which identifies the central risk factors with a decisive impact and the
closely connected sub-risk factors having an undeniable impact on project performance.
This, as a result, provides identification of broad or major risk factors with corresponding
sub-risk factors, which can help the management framework to distribute the risk factors
optimally among the multiple stakeholders.

3.3. Research Questions

Considering the overall research goals and allied methodological paradigms, some
research questions have been formulated. These questions assess whether the proposed
methodology can accomplish overall research goals or not. The key questions defined are
given as follows:

• Research Question 1 (RQ1): Are the risk factors pertaining to small- and midsize
projects different from those of construction megaprojects?

• Research Question 2 (RQ2): What are the key risk and sub-risk components impacting
construction megaprojects with respect to cost, time, quality, and scope?
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• Research Question 3 (RQ3): Can the use of quantitatively or empirically driven risk
factors and their severity assessment help in conceptualizing a risk management
framework with risk–sub-risk segmentation for better multistakeholder megaproject
(risk) management?

• Research Question 4 (RQ4): Can descriptive analysis of expert consensus toward the
risk severity feature with the Wilcoxon rank-sum test as a feature selection method
and a multi-objective-based GA–K-means algorithm yield optimal risk identification
in construction megaprojects?

• Research Question 5 (RQ5): Can the use of expert-knowledge-driven, heuristic-assisted
K-means clustering enable the segmenting of key risks and allied sub-risk factors for
better risk management distribution in construction megaprojects?

3.4. System Model

As indicated in the previous sections, the proposed model encompasses both quantita-
tive (say, empirical) analysis, followed by machine-learning-based risk segmentation, so as
to identify the most critical risk factors along with sub-risk components. Thus, the overall
method consists of the following steps:

1. Data Collection and Statistical Analysis;
2. Data Sub-Sampling;
3. Feature Selection;
4. GA–K-Means-Assisted Risk and Sub-Risk Segmentation.

Details of the above-stated research methods are given in the subsequent section.

3.4.1. Data Collection and Preprocessing

This phase can be stated as the initial and fundamental stage toward targeted risk and
sub-risk segmentation (RSRS). Since there are no standard data available so far toward risk
assessment and prediction in construction megaproject(s), we performed the quantitative
method to collect different risk components and their impact on construction megapro-
ject(s) under the current socioeconomic and political dynamism. Additionally, to ensure
the reliability of the risk identified and its relevance toward contemporary megaproject con-
ditions, we applied semi-structured interviews with industrial experts who have already
handled construction megaprojects or are still working on one. Due to the study being a
primary-data-based approach, we identified a total of 63 risk variables pertaining to the
four key project aspects of cost, time, quality, and scope. These key risk factors, obtained
and agreed upon during the qualitative phase, are presented in Table 2.

Table 2. Different risk factors found to have an impact on project performance [63].

Serial Number Risk Categories Risk Variables

1

Execution Risk Factors

Utility diversion
2 Inappropriate equipment and material quality
3 Permits and licenses
4 Poor equipment performance
5 Machinery failure/breakdown
6 Unforeseen site conditions
7 Incorrect take off calculation
8 Delayed supply of material and equipment
9 Delay in obtaining working drawings/reports/designs
10 Low skilled/incompetent workforce
11 Unavailability of materials, equipment, and labor.
12 Delay in obtaining temporary traffic regulation orders

13

Construction Risk Factors

Poor site coordination/work organization
14 Construction failure
15 Land acquisition for ROW
16 Inadequate preliminary survey and site information
17 Unrecognized soil structure/unforeseen ground condition
18 Delay in transport of ready-mix concrete (RMC)
19 Construction and implementation error from faulty design



Buildings 2021, 11, 172 10 of 28

Table 2. Cont.

Serial Number Risk Categories Risk Variables

20 Changes in material during construction
21 Deviations between specification and implementation
22 Supply chain breakdown/improper equipment and material quality
23 Site inaccessibility
24 Lack of site security for personnel and asset

25

Technical Risk Factors

Incompetency of designers
26 Design changes
27 Inadequate design and design errors
28 Modification to drawing/design
29 Unforeseen multiple modifications to project scope
30 Delay in obtaining preliminary drawings/reports
31 Revision in design standard
32 Inadequate project complexity analysis

33

Economic and Financial Risk Factors

Inflation
34 Foreign exchange rate and interest rate fluctuation
35 Changes in market conditions
36 Changes in taxes
37 Incorrect cost estimate
38 Financial difficulties/failure of subcontractor

39

Environmental Risk Factors

Natural Disaster
40 Adverse weather condition
41 Pollution and vibration
42 Geology, soil, and topography
43 Drainage pattern
44 Inadequate environmental analysis
45 Land cover (grass, asphalt, trees, water bodies)
46 Presence of quarries and mines

47

Social Risk Factors

Demands of local people
48 Public objections
49 Social issues (tree cutting, shrine removal)
50 Cultural and heritage sights
51 New stakeholders with changed request
52 Damage to property and persons
53 Multilevel decision-making bodies

54

Political Risk Factors

Changing government regulations/funding policy
55 Lack of moderators
56 Legal disputes
57 Political instability
58 Changes in local laws and standards (tax imposition)
59 Lack of political support
60 Political indecision
61 Change in government
62 Multilevel decision-making by government bodies for consent and approvals
63 Government intervention

Descriptive Statistics

We obtained experts’ responses on a five-point scale, in which the above-stated risk
variables (Table 1) were considered independent, while the performance (cost, quality, time,
and scope) or the success parameters of the construction megaproject was considered as the
common dependent variable. A total of 70 samples were collected from the respondents,
thus obtaining 70 (expert) responses for 63 risk factors. We prepared a data table with
average (using a mean statistical tool) values. The statistical analysis estimated the level of
significance of each risk variable on the aforementioned project performance objectives. To
enhance the data suitability and reliability further toward optimal risk segmentation, we
performed descriptive analysis over the collected primary dataset or sample. We obtained
13 statistical parameters, as follows:

1. Minimum;
2. Maximum;
3. Mean;
4. Median;
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5. Standard deviation;
6. Variance;
7. Percentile (First quartile, below 25%);
8. Percentile (Third quartile, below 75%);
9. Sum of responses with an impact of 1;
10. Sum of responses with an impact of 2;
11. Sum of responses with an impact of 3;
12. Sum of responses with an impact of 4;
13. Sum of responses with an impact of 5.

By finding the above-stated statistical parameters, an objective function has been
obtained that signifies a threshold value characterizing significance or decisive impact or
relation of each risk factor toward the stated four constructs of time, cost, quality, and scope.
Since the minimum consensus of experts (i.e., the average of responses with an impact
of 1 on the five-point scale) or the different consensus toward the varied risk variables
can also have decisive significance in terms of characterizing contemporary risk factors
in construction megaprojects, in addition to the classical statistical (descriptive) tools, we
obtained the sums of responses with impacts of 1, 2, 3, 4 and 5, distinctly. Here, the sum of
responses with an impact of 1 signifies disagreement (interpreted as having an extremely
low impact), while that with an impact of 5 indicates strong agreement (interpreted as
having a very high impact). Risk factors with 5 as the impact value were considered
high-risk components (HRCs). Once obtaining the HRCs, we estimated the Euclidean
distance between the HRCs and other risk parameters (Table 3). Thus, the risk factors near
an HRC were obtained for each risk type (i.e., cost, time, quality, and scope) across the
63 risk factors given in Table 2. To find an optimal cumulative critical risk value (CRV) that
has cumulative significance toward the four project aspects, we derived Equation (1).

Optimal CRVi =

√
(COSTi)

2 + (TIMEi)
2 + (QUALITYi)

2 + (SCOPEi)
2 (1)

Table 3. Numbers of clusters vs. the silhouette coefficient with the standard K-means clustering
algorithm for risk identification.

No. of Clusters
Silhouette Coefficient (K-Means)

Euclidian Manhattan City-Block Minkowski

2 0.479 0.473 0.489 0.489
3 0.518 0.478 0.538 0.551
4 0.589 0.544 0.499 0.528
5 0.590 * 0.524 0.438 0.421
6 0.514 0.543 0.484 0.488
7 0.542 0.559 * 0.551 0.461
8 0.580 0.550 0.555 * 0.563 *
9 0.540 0.551 0.552 0.552
10 0.517 0.519 0.511 0.511

* Highest values.

As indicated in (1), we obtained the optimal CRV values Optimal CRVi for each risk
factor (where i = 1, . . . , 63).

3.4.2. SMOTE Sub-Sampling

Obtaining the optimal CRV values, we synthesized a total of 10,000 samples using
the synthetic minority over-sampling technique (SMOTE) [64]. This proposed a random
sampling method that first obtains 10,000 samples pertaining to the project performance
aspects (i.e., cost, time, quality, and scope). In this process, the Optimal CRVi for each
aspect has been applied as a reference value. While applying 95% of the confidence, it
generates a total of 40,000 samples (10,000 samples from each category, i.e., cost, time,
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quality, and scope). Considering data imbalance conditions in the problem at hand, we
applied SMOTE to generate a sufficiently large number of data samples. In our proposed
work, the SMOTE algorithm generated synthetic samples on the basis of feature space
similarities between the existing samples (i.e., risk components and corresponding CRVs)
in the minority class. In the proposed model, first, we employed a CRV sample (1) from
the dataset and considered its K-nearest neighbor (k-NN) based on Euclidean distance so
as to form a vector between the current data points and one of these k-neighbors. The new
or updated synthetic data sample was retrieved by multiplying this vector by a random
number or weight factor (here, we used four weight factors a, b, c, d to be multiplied with
cost, time, quality, and scope, respectively). Notably, the sum of these weight factors was
confined as 1. Thus, by multiplying the respective weight factors by each risk element
and adding the product to the current data points, we obtained a total of 40,000 samples
(2). Thus, the proposed sampling method enabled a balancing of minority class instances
and its distribution across the samples (these are those risk components that were given a
low rank on the Likert scale but can have a vital impact on project success or performance
aspects (i.e., cost, time, quality, and scope).

CRV_Sample = aA(COST) + bB(TIME) + cD(QUALITY) + dD(SCOPE) (2)

In (2), ∑(a, b, c, d) = 1. Additionally, in sync with dynamic socioeconomic and political
(contemporary risk changes over project cycle), the weight parameters (a, b, c, d) were
varied randomly to generate 40,000 sampled data. Thus, the data prepared can have
sufficient information to make learning better and can help in achieving more relevant risk
identification toward construction megaprojects.

3.4.3. Feature Selection Based on the Wilcoxon Rank-Sum Test

As discussed in the above section, to retain sufficiently large feature sets (i.e., risk
components or factors having an impact on project success or performance), we retrieved
a total of 40,000 data elements, constituting features. However, learning over such a
significantly large number might force a machine learning method to undergo local minima
and convergence. On the other hand, processing a large feature set, irrespective of the level
of significance of data elements, can reduce overall accuracy and computing performance.
Considering this fact, we performed a significant predictor test, often called the Wilcoxon
rank-sum test (WRST), which retains the most significant features having an impact on risk
identification. As discussed in previous sections, we used a total of 15 features for each risk
factor; hence, the total feature set for 40,000 samples cannot be inevitably significant toward
risk characterization or prediction. In other words, not all samples can have a decisive
impact on the final prediction output. Moreover, these less significant feature sets often
impose substantial computational overhead. Considering this fact, we applied a WRST
algorithm to select the most significant features for further computation. The WRST is a type
of nonparametric test with independent samples (risk factors). This approach examines the
correlation between risk variables and allied samples, as well as their impact probability
on the construction project’s performance aspects (cost, time, quality, and scope). In our
proposed model, the WRST algorithm estimated the correlation between the different
features and the respective impact on the aforementioned megaproject’s performance
variables (i.e., cost, time, quality, and scope). This method obtained a p-value for each
feature variable in reference to its significance toward the performance variables. Thus,
based on the p-value, each feature element was labeled as significant or insignificant, where
the level of significance was assigned as p = 0.05. In this manner, only those features and
allied instances with a significant correlation were retained to perform further computation.
This process primarily focused on retaining significant features to avail a further analytics
solution while maintaining low computational complexity.
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3.4.4. GA–K-Means-Assisted Risk and Sub-Risk Segmentation

In this research, our key goal is to identify the most decisive risk factor along with
sub-risk factors that are highly correlated with key risk factors so that risk distribution
and management among the multiple stakeholders can be carried out appropriately. This
problem can be easily solved as a clustering problem in which the key risk can be identified
as the cluster centroid, while the closest or nearer risk components can be obtained as
sub-risk factors. With this motive, once the optimal set of feature elements toward risk
identification was obtained, we applied the K-means clustering algorithm to segment
the different key risks. However, given that the major classical K-means models often
undergo detrimental performance due to random initial centroid assignment, we applied an
evolutionary computing algorithm, i.e., a genetic algorithm (GA), for centroid estimation. A
detailed discussion of the risk identification based on the proposed GA–K-means clustering
algorithm is provided as follows.

K-Means Clustering Algorithm

Typically, K-means clustering is a kind of unsupervised learning approach that groups
unlabeled data in multiple clusters or groups. Mainly it focuses on identifying groups
within large unstructured data, in which the total number of clusters used to be presented
as K. The K-means algorithm operates iteratively to assign each data element (here, the risk
components of factors) to one of the K clusters based on the input features provided. In this
manner, it clusters the overall data elements into certain groups based on the corresponding
feature similarity. K-means clustering estimates the centroid of each cluster, signifying the
collection of data elements with similar features or traits. Thus, it generates the centroid
for each cluster signifying the definition of each group. In sync with our proposed risk
identification system, a centroid states the key risk (decisive or high-risk value component)
around which other sub-risks (like connected elements of clusters) can be found. For this
reason, in estimating the centroid, signifying high-risk components is vital. On the contrary,
the classical K-means algorithm applies random centroid information to perform clustering
and can therefore exhibit inaccurate clustering output, especially in our research scenario,
where the identification of high-risk value is a must. Realizing this fact, we developed the
GA–K-means clustering algorithm, in which, unlike the classical K-means algorithm, a GA
was applied as a heuristic model to identify the optimal centroid information. The details
of the proposed GA–K-means algorithm are presented in the subsequent section; however,
before centroid optimization, understanding the data assignment for initial clustering is
a must. Being an iterative refinement-based concept, the K-means algorithm first takes
the total number of clusters K and the feature set as input and subsequently exploits
data features such as homogeneity heterogeneity and inter-element distance, grouping
them into certain distinct clusters. Notably, it clusters the data elements on the basis of
inter-element (feature) similarity. The overall clustering method undergoes two sequential
steps: first, data assignment, and second, centroid estimation and updates. In a typical data
assignment, each element is assigned to its nearest centroid based on distance information
such as the squared Euclidean distance, Makowski, and City-Block. While the efficacy of
such distance parameters toward optimal clustering remains an open research area, in this
research, we applied a different distance estimation method to perform data assignment.
The performance with the different distance estimation algorithms is discussed in the next
section (Results and Discussion). Considering data assignment using squared Euclidean
distance measure, let cj be the centroids for a feature set C. Each data element x can then be
assigned to a cluster based on the condition defined in (3).

arg min
cj∈C

dist
(
cj, x

)2 (3)

In (4), dist (.) signifies the standard (L2) (Euclidean) distance; however, in this paper,
we applied different methods such as Makowski and City-Block. Considering the set of
data points allocated to each ith cluster, the centroid estimation is provided as si, which
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is estimated using a centroid estimation and update method (4). In the centroid update
method, the centroid of each cluster is updated dynamically by employing the average of
all data elements allocated to that specific (centroid’s) cluster. Equation (4) is applied to
estimate the centroid of each cluster, iteratively.

ci =
1
|si| ∑

xi∈si

xi (4)

The process of the centroid update continues until all data elements are assigned to
the most suitable cluster. As discussed above, the classical K-means algorithm applied
an average value of the connected elements to decide the centroid but failed to consider
inter-element and inter-cluster features to perform cluster enhancement. This could have
improved clustering accuracy and the eventual risk segmentation (or clustering) outputs.
Considering this as an objective, we applied the GA-based K-means (or GA–K-means)
algorithm, in which the GA primarily focuses on exploiting inter-cluster similarity and
intra-element associations to perform clustering. In sync with the at-hand research problem,
the proposed GA method exploits the relationship between the different risk components
pertaining to the different high-risk components and the association between the different
high-risk components so as to group different risk factors in different clusters. Before
discussing the proposed GA–K-means-based clustering method, a description of the GA
algorithm and its significance is provided as follows.

Genetic Algorithm (GA)

A GA is one of the most commonly used evolutionary computing algorithms, derived
mainly on the basis of natural events and Darwin’s principle of natural selection. Similar
to the other heuristic approaches, the GA aims to identify or retrieve an optimal or sub-
optimal solution from a large set of solutions. The ability to perform parameter estimation,
optimization, and tuning makes the GA one of the best and most used algorithms for
solving convex optimization problems. Functionally, the GA applies an objective function,
in reference to which it estimates the fitness value of each candidate solution, and reaching
a stopping criterion (such as the number of generations), it estimates the eventual solution,
often called the best solution, with respect to which a program estimates the final system
output or performance. In sync with the at-hand risk identification problem, the GA was
used to exploit the different features pertaining to the risk variables and their severity
toward a megaproject’s performance to cluster them into different groups along with
corresponding sub-risk factors.

Functionally, the GA at first initializes a set of chromosomes called the population,
signifying a candidate solution. Thus, for each solution, it estimates a fitness value, which
is shortened in decreasing order. Again, being a Darwin-principle-based approach, the GA
retains only those chromosomes or solutions with a higher fitness value. The low-fitness
candidates are subsequently dropped, and hence, it reduces the search space to make
computation efficient. To perform controlled reproduction, the GA applied two parameters
called crossover and mutation parameters; the former decides what fraction of solutions
or candidates will be carried for next-generation crossover, while the latter decides the
fraction of candidates or chromosomes to be dropped to retain a productive search space.
This process continues with reference to an objective function, also called the cost function,
which is reduced over the increasing generation or iterations to yield an optimal solution
(post cessation criteria). As stated in this research, the GA is expected to perform a dual
task—centroid enhancement and cluster enhancement. Therefore, to enhance the centroid
value, it employs a different DB (database) index as an objective function, while for cluster
optimization, it uses a silhouette coefficient. The details of the proposed GA–K-means
clustering model for risk segmentation or identification are provided as follows.
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GA–K-Means Clustering

In the proposed GA–K-means model, clustering can be defined as a stochastic model
with data elements known as the population (often called chromosome), where the popula-
tion P = {Ch1, Ch2, . . . , ChP}. In this method, each chromosome signifies a solution to the
clustering problem. Here, the candidate solution Chi is estimated by means of its “fitness
value,” which helps in identifying the best centroid to perform clustering. In the case of an
inappropriate centroid, the proposed GA–K-means algorithm performs regeneration of the
new population with better-hypothesized fitness values to improve clustering accuracy.
The key sequential steps involved in the proposed GA–K-means algorithm implementation
are as follows:

I. Binary Data Presentation

In this step, each risk component or sample obtained after WRST feature selection is
assigned as a population to estimate high-risk components or the centroid. In the proposed
model, we maintained a length of chromosomes equal to the total number of data elements
or feature elements, where the ith gene of the chromosome represented the ith elements
in the dataset. Now, for an element i (say, population) to be the centroid for a cluster, the
ith gene is labeled as “1”; otherwise, it is labeled “0.” Here, we selected a value of K in the
range [Kmin, Kmax], where we assigned Kmin as 2, while Kmax was hypothesized to be 15,
considering the risk variables and their possible categories. However, in practical cases,
the size of Kmax can be either l/2 or

√
l, where l states the chromosome’s length.

II. Population Initialization

Consider SP as the population size, while Chp is the population encompassing p
distinct chromosomes, (i.e., p = 1, 2, . . . , SP). Here, a non-negative integer value Kp is
randomly chosen from [Kmin, Kmax], and thus, the gene associated with the index of the
chosen data elements is labeled as “1,” while the remaining are labeled as “0.” Deploying
chromosomes signifying the sub-solution or candidate solution, we estimated the fitness
value for each chromosome. In the proposed risk identification model, we focused on
improving both the centroid value (i.e., the high-risk component) and the cluster value (i.e.,
optimally grouped sub-risk values pertaining to an accurately identified high-risk value).
Considering this motive, we applied a dual-objective-function concept—one function
dedicated for centroid optimization and one for cluster enhancement. More precisely,
we applied homogeneity and heterogeneity among the data elements with the different
distance functions to perform centroid optimization. On the contrary, we applied the
silhouette coefficient as the second objective function to ensure and verify whether the
risk components have been assigned to the corresponding closest and dependent high-risk
components. The details of these objective functions or the fitness functions are presented
as follows.

III. DB-Index Fitness Value Estimation

While the different risk factors in construction megaprojects can have a different
level of significance, a few can be highly correlated and have a similar impact on project
performance (see Table 1). In this case, assessing features signifying chromosomes (a set
of data elements obtained after WRST-based feature selection) for their homogeneity and
heterogeneity can help to identify the best chromosome with a higher fitness value. To
achieve it, at first, we split input data into small subsets on the basis of homogeneity within
the cluster and heterogeneity among the clusters. In this reference, we obtained a DB
index, which validates whether the centroid selected has highly connected data elements
or vice versa. To achieve it, we estimated the dispersion measure of a cluster Ci, where
i = 1, . . . , Kr is available in the chromosome set ChP, using (5).

Si,q =

(
1
|Ci| ∑

x∈Ci

‖x− zi‖
q
2

) 1
q

(5)



Buildings 2021, 11, 172 16 of 28

In (5), Si,q presents the dispersion between the data element i and the feasible cen-
troid candidate q. Here, the centroid of the ith cluster Ci is given as zi. In the proposed
method, the maximum value of intra-cluster similarity was obtained signifying the sim-
ilarity between the ith cluster Ci and another cluster using (6). Here, the distance vec-
tor dij,t = d

(
Ci, Cj

)
applied three different kinds of algorithms: the Euclidean distance,

Minkowski, and City-Block algorithms. These algorithms were used distinctly (to assess
relative performance) to estimate the distance between clusters Ci and Cj.

Ri,qt = max
j,j 6=i

{
Si,q + Sj,q

dij,t

}
(6)

In (6), t states the order. In this manner, we derived the value of the DB index DBP
for a chromosome ChP by applying (7).

DBP =
1
kr

kr

∑
i=1

Ri,qt (7)

With the estimated value of the DB index for each chromosome of the candidate
solution, we obtained the fitness value (8).

Fitness(ChP) =
1

DBP
(8)

To enhance the computational efficiency, we assigned q and t as 1 and 2, respectively.
Once the fitness value of each chromosome was calculated, a candidate with the

highest fitness value (8) was chosen as the centroid, while other subsolutions with a
relatively lower fitness value were considered for reproduction (next generation). Finding
a selected chromosome (with the temporarily highest fitness value) with an insufficient
fitness value, the GA executes the crossover and mutation process so as to gain a candidate
with a better fitness value to cluster risk parameters optimally. In the GA, crossover goals
to generate new solutions with a better fitness value are assessed toward its suitability
as the centroid. The key goal behind using this crossover method was to achieve the
chromosomes or population with better fitness and hence a higher probability of being
considered as a centroid value. Thus, the proposed crossover model generates a new
chromosome Chnew by manipulating the chromosome with the highest fitness value in a
manner such that each centroid candidate is substituted by the data element nearest to
the mean center. If Chnew possesses a higher fitness value than Chj, then Chj is substituted
by ChNew. In this manner, a data element (signifying risk factor) with the highest impact
or significance toward construction megaproject performance is selected as the centroid.
In this manner, it segments the high-risk factors along with the highly correlated sub-risk
components, which can be vital for risk management practices.

IV. Silhouette-Coefficient-Based Fitness Estimation

As stated, to serve the dual-objective function, the GA employs DB-index-based
centroid optimization, while the silhouette coefficient is applied to improve clustering. In
other words, the silhouette coefficient verifies whether each data element (representing risk
factors) is clustered in the most appropriate cluster with the optimal centroid. Typically,
a higher silhouette coefficient means that the two data points or risk factors are highly
correlated or connected. Therefore, estimating this coefficient for each data element can
help in aligning the most correlated risk factors to the corresponding (optimal) cluster.

In the GA–K-means model, we estimated the silhouette coefficient by using the
average distance between the data elements in the same cluster in comparison to the
average distances between data points in other clusters (signifying another high-risk
factor). Let K be the cluster encompassing data elements x(i). Similarly, let the average
distance between each data element in cluster K be ax(i). Let bx(i) be the minimum average
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distance between x(i) and each comprising element in other clusters, which are not the
member in cluster K. Thus, the silhouette coefficient of x(i) is obtained using (9).

Sx(i) =
bx(i) − ax(i)

max
(

ax(i), bx(i)

) (9)

where x(i) represents the data elements available in the cluster, and i = 1, 2, 3, . . . n, ax(i)
presents the average distance between each data element and x(i). The other variable
bx(i) signifies the minimum average distance between x(i) and each data element in other
clusters. With these available attributes, the silhouette average of each cluster can be
obtained using (10).

Sk =
1
n

n

∑
i=1

Sx(i) (10)

In (10), k presents the number of clusters, and n states the total number of data
elements (or sub-risk factors) in the same cluster (with the specific high-risk factor). Now,
the silhouette average of all the clusters can be obtained using (11).

SAvg =
1
m

m

∑
k=1

Sk (11)

In (11), m presents the total number of clusters. Thus, when implementing the dual-
objective GA–K-means algorithm, all data points signifying risk factors in construction
megaprojects were clustered into key high-risk components, followed by highly connected
risk subcomponents. Such risk segmentation can be vital for a risk management framework
to distribute different risk factors among the different stakeholders. This, as a result, can
ensure higher risk avoidance and also minimize the conflict of responsibility in supporting
the project’s endeavors. Notably, the data considered in this research were primary samples,
processed with SMOTE sampling with varying risk impact weightage. It syncs well with
dynamic socioeconomic and political conditions, and hence, the eventually segmented
high-risk components and allied sub-risks factors can be more vital toward an optimal
risk management practice. To validate the performance by the proposed risk assessment
and segmentation approach, we obtained performance outputs in terms of the different
parameters. The details of the simulation results and allied inferences are given in the
subsequent section.

4. Results and Discussion

Considering the significance of earlier risk identification toward construction megapro-
jects, the key emphasis in this research is on exploiting different risk factors and their
impacts on the performance aspects of construction megaprojects. In other words, unlike
classical methods, in which either author performs a qualitative study to identify risk
variables in midsized projects or megaprojects, we considered a cross, empirical, machine-
learning-based approach to identify high-risk components or factors and allied sub-risk
components based on their corresponding impact on a project’s overall endeavors (cost,
time, quality, and scope). Due to the study using a cross, empirical, machine-learning
model, we applied an empirical study or a quantitative method to collect expert responses
on different key risk factors that have an impact on construction megaproject success,
especially in the form of its cost, time, quality, and scope. The respondents were asked
to state their opinions toward the impact of 63 different risk factors on a construction
megaproject’s endeavors or performance aspects. To collect their responses, we applied a
five-item Likert scale, where 1 signifies their disagreement of the impact of a specific risk
factor (Table 1) on a megaproject’s performance, and 5 signifies an undeniable impact on a
project’s endeavors (cost, time, quality, and scope). In other studies, a quantitative method
enabled the identification of different risk factors based on experts’ responses; however,
the cumulative impact of those risk factors and the interrelation among different risk
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factors could not be examined, which could have helped in identifying the most decisive
risk factors along with the related sub-risk factors to make risk distribution and allied
management more effective. Considering this, we processed the collected primary data
in a machine-learning model to predict the risk of higher severity and determine impact
significance. Since this problem is similar to a clustering issue (i.e., identifying high-risk
components and allied sub-risk factors among the 63 risk variables (Table 1)), we applied
K-means clustering as a machine-learning model. However, given the key limitation of the
standard K-means clustering algorithm, i.e., the impact of inappropriate cluster centroids
on classification accuracy, we applied a GA. A GA can serve a dual purpose: It can improve
centroid estimation for K-means and apply the silhouette coefficient as an objective function
to ensure that the risk components are optimally clustered with the most relevant high-risk
components or cluster centroids. Thus, the use of GA–K-means algorithm was used to
achieve accurate high-risk factor identification and most associated sub-risk component
segmentation so that those identified risks in different clusters could be assigned across the
different stakeholders in megaproject management and execution.

In addition to clustering enhancement, to map the relationship between the different
risk variables, their severity, and the corresponding impact on megaproject performance
endeavors (in terms of cost, quality, time, and scope), we performed extensive data process-
ing with SMOTE sampling. This subsampling approach obtained a total of 40,000 samples,
signifying the different risk variables, with different or distinct severity and inclusive
impacts on project performance. In this manner, we employed a sufficiently large amount
of data inputs to perform clustering-based risk identification. Thus, implementing our
proposed GA–K-means model with quantitatively derived risk-oriented data samples, the
proposed model yielded a set of high-risk components and corresponding highly correlated
sub-risk factors, which can be applied for real-time risk management practices, especially
pertaining to construction megaprojects. To assess performance, we first examined the
different distance-based clustering models. To estimate cluster centroids and allied initial
connected elements (subcomponents), the K-means algorithm applies different types of
distance information, i.e., Euclidean distance, Manhattan, Minkowski distance, and City-
Block. Here, we applied the different distance algorithms to cluster the data elements, and
the corresponding efficiency was examined in terms of silhouette coefficients. We varied
the number of clusters to obtain corresponding silhouette coefficients, in which a higher
silhouette coefficient value signified a higher accuracy of the clustering achieved. Results
are presented in Tables 3 and 4.

Table 4. Numbers of clusters vs. the silhouette coefficient with the standard K-means clustering
algorithm for risk identification.

Silhouette Coefficient (GA K-Means)

No. of Clusters Euclidian Manhattan City-Block Minkowski

2 0.618 0.611 0.639 0.618
3 0.626 0.609 0.616 0.611
4 0.689 0.662 * 0.651 0.618
5 0.693 * 0.671 0.669 * 0.660 *
6 0.611 0.613 0.610 0.605
7 0.621 0.600 0.619 0.610
8 0.631 0.644 0.662 0.608
9 0.640 0.683 0.661 0.601
10 0.671 0.628 0.623 0.609

* Highest values.

These results present a clustering efficacy over varying cluster sizes, where, by ob-
serving overall performance, one can find that the silhouette coefficient for four clusters,
especially with the Euclidean distance measure, yields a better performance (i.e., a higher
silhouette coefficient). On the other hand, the above results also revealed that, in com-
parison to the classical or native K-means-based clustering, the GA–K-means algorithm
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exhibited a better performance in terms of a higher silhouette coefficient with the Euclidean
distance measure. This confirms the suitability of the proposed GA–K-means clustering
algorithm to at-hand risk identification and sub-risk segmentation problems. In sync with
the above results (Table 3), for further performance assessment, we applied the Euclidean
distance model in (3) to perform further computation.

One of the key objectives of the proposed research was also to identify the key risks
pertaining to the “targeted performance aspect” (risk factors pertaining to time, cost,
quality, and scope). In other words, considering a typical construction megaproject with a
long-term development plan, in which the likelihood of performance dynamism cannot
be ignored, we estimated the most critical risk factor with targeted performance aspects,
such as preference toward either “timely execution,” “cost-efficient development,” “quality
construction,” and “higher success scope over a period.” To achieve this, our proposed
GA–K-means clustering model identified the different risk variables with distinct targeted
performance aspects. Executing the program randomly, we obtained the set of different
weight parameters a, b, c and d in (2), with respect to which the proposed model identified
the key risk components and allied sub-risk variables. To make the further discussion
easier, we redefine the critical risk (2) as (12).

= wtime · va(k, 1) + wcost · va(k, 2) + wquality · va(k, 3) + wscope · va(k, 4) (12)

In (12), the different weight parameters including wtime, wcost, wquality, and wscope
presents the project target or endeavors, and with the higher weightage value, the proposed
system is expected to provide the set of risk factors to be addressed. In the proposed work,
the weight components wtime, wcost, wquality, and wscope were selected as per project targets
or goals, with respect to which the data samples are generated, as discussed in the previous
section, and key risk factors including high-risk components and sub-risk components are
identified by performing clustering. We simulated our proposed model with the different
set of weight values pertaining to wtime, wcost, wquality, and wscope and obtained the optimal
set of risk components to be addressed to achieve that targeted performance aspect. Some
of the simulation outputs and their inferences are discussed in the following.

For the above-stated results (Table 5), we assigned wtime = 0.0806, wcost = 0.4761,
wquality = 0.3269, and wscope = 0.1161. In this case, considering the weightage toward
cost-effective construction or performance, a higher weightage was assigned to the cost
aspect (wcost = 0.4761), signifying a megaproject with cost efficiency as a project goal. In
this case, “delay in obtaining traffic regulation order” was identified as the most critical
or high-risk component, while other sub-risk components identified were inappropriate
equipment, political and legal issues, political instability, government intervention, and
unforeseen circumstances. As indicated in Table 5, the weightage (interest) toward time
is at a minimum, signifying that the at-hand project does not focus more on reducing
execution time; rather, it targets cost-efficient project completion. In this case, the key risk
factors to be considered are segmented, as given in Table 5.

As depicted in Table 6, considering the project goal of time-efficient construction and
completion, we simulated our proposed model with different weightage values, where the
weight for wtime was the highest (0.875) among the other project performance endeavors.
The simulation results (Table 6) show that to achieve timely project delivery or completion,
retrieving all related public or private acknowledgments and orders, including local gov-
erning bodies, traffic, and allied regulation orders, is a must. In major cases, due to the lack
of regulatory issues, a megaproject often becomes delayed for a long time. In addition to
the regulatory confirmation and regulation orders, the proposed model identifies faulty
engineering design, political instability, a lack of political support, inappropriate equipment
and materials (Table 6), as risk factors that can prolong a project (especially a megaproject)
completion period. However, since a megaproject handling vendor or firm would have
sufficient infrastructure with suitable tools and materials, flaws in engineering designs can
increase project completion time, as indicated through the proposed model (Table 6).
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Table 5. Test Case 1. Cost efficiency.

Weightage High-Risk Component Sub-Risk Component

wtime = 0.0806
wcost = 0.4761

wquality = 0.3269
wscope = 0.1161

Delay in obtaining temporary traffic regulation orders

Inappropriate equipment and material quality
Unforeseen site conditions

Incorrect take off calculation
Construction and implementation error from faulty design

Pollution and vibration
Political instability

Lack of political support
Change in government

Government intervention

Political and Legal

Table 6. Test Case 2. Time efficiency.

Weightage High-Risk Component Sub-Risk Component

wtime = 0.875
wcost = 0.6351

wquality = 0.2207
wscope = 0.0567

Delay in obtaining temporary traffic regulation orders Pollution and vibration
Construction and implementation error from faulty design

Political instability
Lack of political support
Change in government

Unforeseen site conditions
Government intervention

Permits and licenses
Inappropriate equipment and material quality

From Table 7, in which the weightage toward project scope is the highest among the
other performance aspects, it can be found that, in a construction megaproject, inadequate
preliminary surveys and site information are high-risk factors. Undeniably, a megaproject
involving billions of investments requires optimal surveys regarding the locality, regional
demands, the ease of construction and site reachability, and future endeavors. Therefore,
inappropriate assessments and allied decisions might force a megaproject to undergo
significant loss. On the contrary, to enhance the scope of a megaproject, retaining better
reachability or connectivity, meeting local or regional demands, acquiring suitable quality-
oriented material and equipment can help in achieving target performance. In sync with the
targeted scope as a performance aspect, the proposed risk identification model showed that
optimal risk management policies or practices require addressing unforeseen project change
problems, changes in government or local bodies, government interventions, pollution and
vibration, implementation (here, construction) errors. Thus, the risk management team
must address these risk factors (Table 7) if it aims to retain a better project scope.

Table 8 presents the risk identified when targeting quality-centric construction megaproject
completion. When giving the highest priority or preference to the quality aspect, the proposed
prediction model identified “Inappropriate equipment and material quality” as the key risk
factor, demanding its enhancement in achieving target endeavors. In addition to equipment
and material quality as a risk factor, the proposed model identifies other similar quality con-
structs that need to be addressed. These sub-risk factors are machinery failure risk, unforeseen
site conditions, poor equipment performance, unorganized soil or local ground conditions,
implementation errors, design errors, and multiple modifications. Thus, a risk management
team of a construction megaproject needs to address these key risk factors to accomplish a
quality construction outcome. Thus, our proposed GA–K-means clustering model identified
the different kinds of high-risk factors and closely related sub-risk components, the addressing
of which can lead to better project outcomes in terms of timely project completion, quality
construction, cost-efficient construction, and construction with a better scope. Addressing the
allied risk factors across the project cycle can help in achieving targeted performance endeavors
(cost, time, quality, and scope).
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Table 7. Test Case 3. Project scope.

Weightage High-Risk Component Sub-Risk Component

wtime = 0.3299
wcost = 0.2694

wquality = 0.0335
wscope = 0. 3671

Inadequate preliminary survey and site information Unforeseen modification to project scope

Construction and implementation error from faulty design
Pollution and vibration

Inadequate preliminary survey and site information
Political instability

Inadequate environmental analysis
Demands of local people
Lack of political support
Change in government

Unforeseen site conditions
Government intervention

Inappropriate equipment and material quality

Table 8. Test Case 4. Project quality.

Weightage High-Risk Component Sub-Risk Component

wtime = 0.2349
wcost = 0.2162

wquality = 0.3446
wscope = 0.2044

Inappropriate equipment and material quality

Machinery Failure/breakdown
Unforeseen site conditions

Poor Equipment performance
Low skilled/incompetent workforce

Poor site coordination/work organization
Unrecognized soil structure/unforeseen ground condition
Construction and implementation error from faulty design

Incompetency of Designers
Inadequate design and design errors

Unforeseen multiple modifications to project scope

Research Question Reasoning

Regarding RQ1 and the research outcomes (Tables 4–8), a megaproject is less affected
due to the impulsive risk factors or the short-term risk factors. On the contrary, it often is
influenced by long-term decisions inculcating over the complete project cycle. A small or
midsize project, which often has limited investment and time, is relatively less affected by
government changes, policy changes, local regional support and changes, cost increases.
On the contrary, a megaproject, especially in construction, continues for a long period,
even for decades or at least 4–5 years. Undeniably, over such a long time, the cost of
materials, equipment, resources, policies, the government is often changed. These factors,
as a cumulative risk component, influence the performance of a construction megaproject.
On the contrary, small or midsized construction projects are less affected. These facts affirm
the acceptability of RQ1. Considering RQ2, which is intended to assess the key risk factors
that often affect a project’s endeavors, such as its cost, time of completion, quality, and
scope, the results obtained in Tables 3, 4, 5, 6 and 7show that legal or regulatory support
on time (time), government changes and construction errors (cost), inferior materials
and equipment, inappropriate designs (quality), and redesigns with inferior construction
quality (scope) are the key high-risk factors in construction megaprojects. The overall results
and their respective impacts on a construction megaproject’s risk management affirm that
the use of expert inputs and machine-learning-based high-risk identification, followed
by sub-risk identification, is an appropriate tool for risk management in construction
megaprojects. This affirms the acceptability of RQ3. These results affirm the acceptability
of RQ4; moreover, signifying the use of descriptive analysis of expert consensus on the
risk severity feature with the Wilcoxon rank-sum test as a feature selection method and
the multiconstraint (cost, time, quality, and scope), objective-function-based GA–K-means
algorithm yields optimal risk identification and segmentation in construction megaprojects.
The comparison of the performance outcomes in Tables 2 and 3 affirm that, unlike classical
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K-means clustering, the use of heuristic driven GA–K-means clustering can yield more
reliable results (due to higher silhouette coefficients with four clusters, signifying four
project goals—time, cost, quality, and scope) and is a more effective risk identification
solution for construction megaprojects. This also confirms the acceptance of RQ5.

5. Conclusions

In this paper, key emphasis was placed on exploiting expert-response-driven data anal-
ysis to predict high-risk factors and the corresponding closely related sub-risk components
pertaining to construction megaprojects.

Unlike classical methods, in which authors have either applied qualitative or quantita-
tive approaches to identify key risk factors in projects, to avoid any possibility of biasing
impact, this research exploited the efficiency of different state-of-the-art statistical analysis
tools and machine learning and artificial intelligence concepts. It performed an analysis of
experts’ perceptions toward the different risk factors having an impact on project endeavors
or aspects such as time, cost, quality, and scope. It also exploited experts’ perceptions as
input data to mine the associations among the different risk components and clustered
them together to determine high-risk factors with decisive impacts on project endeavors
(i.e., time, cost, quality, and scope), along with the highly correlated risk factors. Thus,
this identification of high-risk factors and related sub-risk factors can enable risk man-
agement teams or project management teams to distribute risk optimally across different
stakeholders to make optimal risk avoidance measures.

To alleviate the impact of any possible biasing (of the experts’ responses), the proposed
work performed a descriptive analysis of the samples collected, which was followed by
data subsampling. The proposed model performs SMOTE sampling, which distributes and
generates a sufficiently large number of samples with a corresponding impact on project
endeavors. The use of weightage adaptive sample generation or subsampling enabled
the retrieval of samples over varying dynamic project conditions and expectations. Thus,
with the prepared large risk factors (in sync with the different project aspect), this research
applied GA-based K-means clustering, i.e., GA–K-means, with the Euclidean distance
method and dual-objective functions of the silhouette coefficient (for cluster enhancement
and verification) and the DB index (for centroid optimization) to identify high-risk factors,
along with highly correlated or closely related sub-risk factors.

Considering the eventual outcome of the proposed model, for a construction megapro-
ject to achieve cost-efficient performance, as shown in Table 5, delay in obtaining traffic reg-
ulation order is identified as a high-risk factor. The related sub-risk components are inappro-
priate equipment, political and legal issues, political instability, government intervention,
and unforeseen circumstances, which are expected to be addressed optimally by the allied
risk management team to accomplish overall project endeavors. Similarly, factors such as
regulatory confirmation and regulation order delays, wrong engineering designs, political
instability, a lack of political support, and inappropriate equipment and materials turned
out to be key risk factors influencing the time efficiency of a construction megaproject.

A construction megaproject, being a far-long targeted infrastructure, demands the
addressing of different risk adversaries to retain a better scope. This study revealed that
inadequate preliminary surveys and site information are high-risk factors impacting the
scope of a megaproject. Retaining better reachability or connectivity, meeting local or
regional demands, and acquiring suitable quality-oriented material and equipment are
needed to achieve target performance.

The proposed risk identification model also showed that optimal risk management
policies or practices require the addressing of unforeseen project-change problems, changes
in government or local bodies, government interventions, pollution and vibration, and im-
plementation (here, construction) errors. The research also showed that equipment and ma-
terial quality is a high-risk factor affecting the quality of construction, (as shown in Table 8)
and machinery failure risks, unforeseen site conditions, poor equipment performance,
unorganized soil or local ground conditions, implementation errors, design errors, and
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multiple modifications also impact quality. Therefore, a risk management team must
handle these key risk factors to achieve target performance with cost efficiency, timely
project accomplishment, quality construction, and better project scope.

However, as with every other research using human inputs in the form of expert
opinion and interviews, this research had the limitation of efficiently obtaining inputs from
experts since it was often difficult to convince the participants regarding the importance of
their inputs. The focus group consensus was also difficult to achieve, and sometimes, there
were instances of missed appointments and rescheduling due to the busy schedule of the
focus group participants.

This contribution (risk identification in construction megaproject) could be vital for
construction firms, allied decision makers, and risk assessment and allied strategic solution
providers to make optimal dynamic or proactive decisions to achieve various project
endeavors. The study could also be extended for future endeavors in applying similar
models for other forms of the construction industry such as public–private partnership
(PPPs) and on medium- and small-scale projects.
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Appendix A Questionnaire

Appendix A.1 Sociodemographic Variables

Q1. Please specify your gender.

• Male
• Female

Q2. Please specify your age range.

• 21 years to 30 years
• 31 years to 40 years
• 41 years to 50 years
• >50 years

Q3. Please specify your role/designation in the project.

• Project Manager
• Contractor/Vendor
• Consultant
• Supplier
• Others

Q4. Please specify your total years of experience in construction industry.

• 0–5 years
• 6–10 years
• 11–15 years
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• 16–25 years
• >25 years

Q5. Please specify the project phase for your involvement.

• Initiation and Planning
• Execution
• Monitoring and Control
• Closure
• Others

Q6. Please specify the project size.

• ≤Rs. 100,00,000
• Rs. 100,00,001–Rs. 500,00,000
• Rs. 500,00,001–Rs. 1000,000,000
• >Rs. 100,000,000

Q7. Is there any risk associated with megaproject delivery that alters the project
performance in terms of time, cost, quality, and scope?

• Yes
• No

Q8. Based on your experience, what do you think about the following risk cate-
gories impacting the project performance in terms of time, cost, quality, and scope for
a megaproject?

Risk Categories
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A
gr

ee
(5

)

A
gr
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(4

)

N
eu
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(3
)

D
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(2

)
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ng
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D
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ag
re
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(1

)

1 Execution Risks
2 Construction Risks
3 Technical, Engineering, and Design Risks
4 Economic and Financial Risks
5 Social Risks
6 Environmental Risks
7 Political and Legal Risks

Appendix A.2 Project Performance: Risk Impact Identification on Project Objectives

Listed below are the risk factors identified under various risk categories for mega-
projects. Please select your response based on your experience to rate the impact of these
risk factors on project objectives of time, cost, quality, and scope.

Risk Factors
Rate (1 to 5) Impact of Risk Factors on

Time Cost Quality Scope

Execution

1 Utility diversion
2 Inappropriate equipment and material quality
3 Permits and licenses
4 Poor equipment performance
5 Machinery failure/breakdown
6 Unforeseen site conditions
7 Incorrect take off calculation
8 Delayed supply of material and equipment
9 Delay in obtaining working drawings/reports/designs

10 Low skilled/incompetent workforce
11 Unavailability of materials, equipment, and labor
12 Delay in obtaining temporary traffic regulation orders
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Risk Factors
Rate (1 to 5) Impact of Risk Factors on

Time Cost Quality Scope

Construction

13 Poor site coordination/work organization
14 Construction failure
15 Land acquisition for ROW
16 Inadequate preliminary survey and site information
17 Unrecognized soil structure/unforeseen ground condition
18 Delay in transport of ready-mix concrete (RMC)
19 Construction and implementation error from faulty design
20 Changes in material during construction
21 Deviations between specification and implementation
22 Supply chain breakdown/improper equipment and material quality
23 Site inaccessibility
24 Lack of site security for personnel and asset

Technical, Engineering and Design

25 Incompetency of designers
26 Design changes
27 Inadequate design and design errors
28 Modification to drawing/design
29 Unforeseen multiple modifications to project scope
30 Delay in obtaining preliminary drawings/reports
31 Revision in design standard
32 Inadequate project complexity analysis

Economic

33 Inflation
34 Foreign exchange rate and interest rate fluctuation
35 Changes in market conditions
36 Changes in taxes
37 Incorrect cost estimate
38 Financial difficulties/failure of subcontractor

Environmental

39 Natural Disaster
40 Adverse weather condition
41 Pollution and vibration
42 Geology, soil, and topography
43 Drainage pattern
44 Inadequate environmental analysis
45 Land cover (grass, asphalt, trees, water bodies)
46 Presence of quarries and mines

Social

47 Demands of local people
48 Public objections
49 Social issues (tree cutting, shrine removal)
50 Cultural and heritage sights
51 New stakeholders with change request
52 Damage to property and persons
53 Multilevel decision-making bodies

Political and Legal

54 Changing government regulations/funding policy
55 Lack of moderators
56 Legal disputes
57 Political instability
58 Changes in local laws and standards (tax imposition)
59 Lack of political support
60 Political indecision
61 Change in government
62 Multilevel decision-making by government bodies for consent and approvals
63 Government intervention
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