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Abstract: The stress values at the crack tip in bending reinforced concrete beams are considered.
The stress state is analytically determined with an initial and propagating crack. Equations of the
equilibrium of a part of the beam cut along the crack line are compiled. These equations are reduced
to a system of two nonlinear algebraic equations using the plane-sections hypothesis. The equations
determine the stress zone’s height and the nominal stress at the crack tip for a beam with an initial
crack and the crack length. The rest of the stress state parameters are expressed regarding the
zone stress height and the nominal stress or crack length. The same equation system determines
the external moment starting from which the crack length increases. The analytical method for
determining the stress intensity factor (SIF) with an initial and growing crack in bent reinforced
concrete beams is proposed. The method is based on the assumption that the size of the stress
concentration zone at the crack tip is determined by the equality of the nominal and local stresses at
the end of this zone. The method determines the value of the external moment starting from which
the crack length increases. The stress zone’s size is determined by the coincidence of the local stress
with the nominal stress. The same problem is solved in a three-dimensional formulation by the FE
method, considering the stress field’s peculiarities at the crack tip. The calculation results coincide
with the analytical solutions.

Keywords: reinforced concrete; beam; bending; compressive side; crack; reinforcement; stress state;
stress intensity factor

1. Introduction

Crack-like defects in reinforced concrete beams are very common [1,2]. They appear
both at the manufacturing stage and the operational stage. These defects appear at the edge
of the bending beam’s tension side and propagate along the beam’s cross-section towards
the zero line. The appearance of cracks in bent members does not mean the exhaustion
of its bearing capacity. However, cracks lead to an increase in internal forces in sections
with a crack, which reduces the element’s strength. In addition, the crack propagation
increases the crack opening, increasing the corrosion of the reinforcement and reducing the
structures’ durability. A large data amount of empirical evidence has been accumulated
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on this topic. The stress-strain state of reinforced concrete beams with cracks, the crack
opening width and crack propagation were studied in experiments [3–6].

Several monographs and articles were devoted to substantiating computational mod-
els and determining the stress-strain state of cracked beams. One paper [7] presents a
critical overview of existing empirical analytical and numerical models for predicting the
time to corrosion-induced cover cracking. In addition, a single comprehensive theory
of structural behavior for reinforced concrete members subjected to bending, axial load,
shear and torsion was proposed in a book [8]. The theory is based on a plasticity-oriented
approach and is mainly oriented to frame structures for determining the failure load.

The crack sliding theory for beams with arbitrarily curved shear cracks and solutions
for the implication of initial cracking on a load-carrying capacity was proposed in [9].

The problems of the fracture mechanics were formulated for the reinforced concrete
structures in the presence of cracks for the second group of limit states [10]. They focus on
the features of the predestruction zone. An approach for calculating reinforced concrete
with allowance for physical nonlinearity, cracking processes, the bond of reinforcement
with concrete and the effect of discontinuity were proposed based on the features of cutting
a two-cantilever concrete member, including a crack. The stressed-strained state of the
reinforced concrete element in the zone immediately adjacent to the crack was obtained.

One publication [11] was devoted to the stress-strain state of bending prestressed
concrete beams with cracks. Three problems are successively solved: determining prelimi-
nary stresses in a reinforced concrete element, determining the moment of crack formation,
determining the stress in a section with a crack. Analytical expressions have been obtained
for determining preliminary stresses, the external bending moment at which a crack normal
to the axis appears and the stress state parameters in the section with a crack, including the
crack height. The stress intensity factor was not used in this analysis.

Tension stiffening relationships were proposed in [12] based on reinforced concrete
beam tests. The method is based on the smeared crack approach. Average stress-strain
relations for concrete in the tension state and compression state are determined from exper-
imental moment-average strain and/or moment-curvature curves. Mainly, the smeared
crack approach, which does not allow for bond-slip of reinforcing bars, would not give any
crack widths.

In [13], an analytical analysis of reinforced concrete flexural members at the stage of
stabilized cracking was carried out. The mean spacing between the primary cracks was
established through the compatibility of the stress transfer and mean strain approaches.
The crack spacing parameters were obtained by equating the mean strains of the tension
reinforcement. The model is limited by assuming that one piece of a reinforced concrete
beam with the length of mean crack spacing represents the averaged deformation behavior
of the whole beam. It was shown that crack spacing is governed mainly by four geometrical
parameters given in the order of significance: section height, reinforcement ratio, bar
diameter and cover.

One of the main criteria for the limiting state of cracked reinforced concrete structures
is the crack opening width. The crack opening width is determined in discrete crack
models where the crack opening is associated with the bond-slip of reinforcing bars. The
finite element method for discrete crack analysis, which does not require discrete crack
elements, was developed [14,15]. Discrete bar elements model the reinforcing bars, and
their bond-slip is allowed for using interface elements.

New engineering rules for crack width and space assessment of cracking patterns were
proposed [16]. The opening of possible cracks produced at an early age due to restrained
thermal or desiccation shrinkage, mechanical loadings during the execution phases and
the crack opening due to further service loadings were considered.

A simple nonlinear finite element was formulated and validated in [7]. The finite
element model was compared with analytical simplified formulated models of the nonlinear
behavior of concrete without accounting for the objective location of reinforcing bars.
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In [17], a global-local post-treatment cracking model was used to quantify the cracking
behavior of reinforced concrete structures. First, a continuous damage finite element model
was used to perform a full resolution at a global scale. Then a reanalysis of the damaged
zones was performed at the local scale with a discrete element model [18]. The steel
reinforcement bars were also taken into account at the local scale. The comparison with
experimental results confirmed the necessity of using a three-dimensional analysis of the
crack pattern.

The numerical method was developed to predict concrete crack width induced by
reinforcement corrosion [19]. A cohesive crack numerical formulated model for concrete
was implemented to simulate crack initiation and propagation. The surface crack width is
obtained as a function of service time. The numerical results were in good agreement with
the analytical results, with an average difference of 4% within ten years.

Certain articles [20] were devoted to calculating crack resistance and the change in
the stiffness of the beam and deflections during the formation of cracks. The stress-strain
state is analyzed using the theory of elasticity and plasticity for a solid body. The resulting
dependence makes it possible to find tangential stresses in the zone immediately adjacent
to the crack.

There are still no generally accepted fracture mechanics criteria for assessing reinforced
concrete structures’ fracture toughness; such approaches were widely discussed. The
paper [21] presented a two-dimension model based on nonlinear fracture mechanics for
analyzing crack propagation in concrete. The fracture modes are pure tension or pure
shear. The fracture is simulated through a discrete crack represented by the interface with a
cohesive crack stress-separation relation. The relation is derived from the fracture criterion,
together with a flow rule and a softening law. The model is used in the experimental
studies’ finite element simulations of different sizes of geometrically-similar three-point
bend concrete specimens with mid-span and eccentric notches.

Under certain conditions, a crack in a beam can have an uneven development, es-
timated through fracture mechanics parameters. Most often, the stress intensity factor
(SIF) was used. The SIF is the main parameter of linear fracture mechanics and is in good
agreement with experimental data for brittle fractures. The stress intensity factor is used in
linear fracture mechanics to describe stress fields at the crack tip. The definition itself arose
from consideration of the problem of stress in a body with a crack. The stress field at the
crack tips has a singularity of the form 1/

√
r, where r is the distance from the crack tip to

the point where the stress is considered [22]. In short, it is a measure of the singularity of
stresses in the crack-tip vicinity.

The SIF was calculated by the finite element method (FEM) in a linear formulation [23].
The numerical analysis was performed on the reinforced concrete beam with an initial
crack depth to assess the beam’s damage with a different beam’s width. Variations SIF for
different beam widths and the force transmitted by the reinforcement bars to the concrete
element with the change in the protective concrete layer’s thickness was evaluated. Addi-
tionally, analytical studies were carried out on the reinforced concrete beam strengthened
by the fiber-reinforced polymer. From the study, it can be concluded that the member’s
geometry plays a significant role in deciding the crack properties. Since the relationship
between stress and deformation in concrete is not linear, nonlinearity introduces errors in
SIF determination in a reinforced concrete element by the FE method, especially at high
stresses. The development of a crack during bending of a reinforced concrete element is
limited by the reinforcement in the tensioned zone and is blocked by the compression
side’s presence; therefore, the definition of SIF is different for the compression side and the
tensioned side.

The critical stress intensity factor for various concrete grades and the influence of
various factors on it were determined experimentally in [24–26].

Fracture mechanics parameters of fine-grained concrete with polypropylene fibers
were studied in [24]. The critical SIF and the critical tip opening displacement were
determined using the three-point bend test on beams with initial notches. The variations
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of SIF of the concrete beam versus type and volume fraction of synthetic fibers were
received. A considerable increase in SIF was observed by increasing the fiber volume
fraction in the concrete. The results showed that the pre-peak behavior of material was
slightly affected by fibers to the cement matrix. The cement matrix properties dominated
the deformation regime. The synthetic fibers also had a slight effect on the peak-load
value and the strength properties. However, the post-peak behavior revealed an essential
improvement in the energy-absorption characteristics compared to the reference concrete.
All energy-absorption characteristics were strongly influenced by the content, type (length)
and flexibility of the synthetic fibers.

One study [25] aimed to determine the influence of the steel fibers on the fracture
parameters of concrete. The notched steel-fiber-reinforced concrete beams were subjected
to a three-point bending test. The effects of the steel fiber volume fraction on the critical
SIF, fracture energy, the deflection at failure, the critical crack mouth opening displacement
and the critical crack tip opening displacement were studied. The addition of steel fiber to
concrete can improve the fracture toughness of concrete. With the increase of steel fiber
volume fraction, the critical SIF of steel-fiber-reinforced concrete specimens showed a good
increasing trend. For every 0.5% increase in the fiber volume rate, the average increase of
SIF was 33.7%, and the average gain ratio was 2.275.

Another study [26] aimed to determine the fracture parameters of steel fiber-reinforced
notched geopolymer cement concrete beams with steel fiber reinforcement. The beams
were submitted to bending tests. The fracture parameters obtained were crack mouth
opening displacement, SIF, stored energy rate and J-integral. The results confirm the effi-
ciency of steel fibers in decreasing crack propagation and preventing brittle fractures in
composites. All the fracture parameters increased with fiber reinforcement, primarily by
0.5%. Furthermore, post-peak behavior displayed higher bearing capacity, in addition to
significant deformation up to a crack mouth opening displacement of 4 mm. This behav-
ior demonstrated the good fracture resistance obtained by geopolymer cement concrete
with fibers.

A two-parameter fracture model was proposed to include nonlinear slow crack propa-
gation in the concrete beam [27]. The critical stress intensity factor (SIF) was calculated at
the tip of the propagated crack. Tests on notched concrete beam specimens showed the pro-
posed fracture criteria to be size-independent. An accurate simulation of the experimentally
observed tension and beam test results demonstrated the model’s validity.

In [28], the definition of stress intensity factor based on physical dimensions different
from the classical ones was considered by exploiting concepts of fractal geometry. First,
the crack growth rate was expressed against the stress intensity factor range. Then, the
size-dependent crack growth law was proposed.

Despite the many studies mentioned above, they pay little attention to the analytical
determination of the stress state parameters of bending reinforced concrete beams with
cracks, especially determining the length of the growing crack. There are also no publi-
cations devoted to determining the stress intensity factor in reinforced concrete beams
with cracks.

In this article, the research object is a bending reinforced concrete beam with an initial
and propagating crack. The subject of the study was the stress intensity factor at the crack
tip. The aim of the study is a method for calculating the stress intensity factor at the crack
tip in a reinforced concrete beam.

2. Methods
2.1. Analytical Method

An arbitrary design scheme of a bending reinforced concrete beam was considered.
The support reactions were assumed to be found; the bending moments’ epures were
assumed to be known. It was assumed that the plane-sections hypothesis outside the crack
zone is correct for calculating the stress state. The section method was used to determine
the stress state in the beam. The beam was cut along the cross-section with a crack and
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the equilibrium equations of the cut-off part of the beam were compiled. The equilibrium
equations express the condition that the sum of all forces’ projection on the beam axis is
zero. Therefore, the sum of all forces’ moments relative to the section’s transverse axis is
zero when the beam is bent.

Two types of cracks were considered, for which the SIF must be determined:
(i) an initial crack that exists before the loads are applied,
(ii) a propagating crack that appears when external loads are applied.
The length of the initial crack was considered known. The initial length of this crack

increases when the external moment exceeds a certain value of Mm. The moment Mm
causing crack propagation was determined from the equation of moments [29] by equating
the nominal stress at the crack tip σm to the tensile strength of concrete Rbt.

If the external moment is less than Mm, then the main unknowns in the equilibrium
equations are the height of the compressive side of concrete beam x and the nominal stress
at the crack tip σm (Figure 1). If the external moment exceeds Mm, then σm = Rbt; and the
second unknown is the new crack length, which enters the resolving equations through the
length of the tension side above the crack zp (Figure 1).
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The length of the propagating crack is unknown; it depends on the external moment.
Therefore, in the case of a propagating crack, the main unknowns are the compressed
zone’s height x and the size of the tension side above the crack. In this case, the moment
Mm takes on the meaning of the moment of crack formation. In subsequent calculations, it
is assumed that Mm.

The reinforcement’s adhesion to the concrete is disrupted in the crack zone; the
reinforcement mainly perceives tensile forces. As a result, deformations and stresses
change in reinforcement and concrete, and the height of the compressed zone above the
crack changes. These changes are taken into account in the calculations by transforming
the planar section law. The coefficients of non-uniformity in the crack zone ψs, ψb are
introduced to transform the epure of deformations into the linear epure [8,30]. These
coefficients are equal to the ratios of the average deformations in the perturbed section εsm,
εbm, to the deformations in the section with a crack εs, εb:

ψs = εsm/εs, ψb = εbm/εb, (1)

where the subindex s refers to reinforcement and the subindex b refers to concrete.
The crack is usually on the tension side. The rated stress at the crack tip is equal to

the tensile strength of the concrete. The exponential law [31,32] was used to describe the
nonlinear relationship between stress σ and strain ε in concrete

σ = 1.1Rb[1− exp(−0.9εEb/Rb)], (2)
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where Eb is the modulus of elasticity and Rb is the ultimate strength of concrete.
If the initial crack does not propagate at the beam where bending, then the maximum

stress in the compression zone is much less than the limiting value. In this case, the
relationship between stress and strain in the compressed zone can be assumed to be linear.
When propagating cracks appear, this relationship is also described by expression (2).

The used analytical method is based on the standard equilibrium equations system.
After solving the equilibrium equations system, all stress state parameters are determined:
the maximum compressive stress in concrete σb, the stress in reinforcement σs, the crack
length l or the maximum tensile stress in concrete σm.

As already mentioned above, the stress intensity factor (SIF) measures the singularity
of stresses in the crack-tip vicinity. The assumption was introduced to determine the SIF in
this paper. It assumed that the longitudinal forces in the stress concentrations zone (from
local stresses) are equal to the longitudinal forces from the nominal stresses in this zone.

The stress concentration zone size is determined as the zone where the local stress
equals the nominal stress. The nominal stresses are taken from the solution of the equilib-
rium equations. The local stresses are taken from the plane problem of the elasticity theory
for bodies with cracks.

2.2. Numerical Calculation of the Stress Intensity Factor

The SIF in a flexible reinforced concrete beam was calculated by the finite element
method in a linear formulation based on a three-dimensional model. The SIF was de-
termined from the displacement or stress field at the crack tip. ANSYS (Ansys, Inc.,
Canonsburg, PA, USA) was used in Interactive Workbench mode. The main stages of
solving the problem were as follows.

In the Geometry menu, a geometric model of the beam was created and its settings
were specified: coordinate system, material, dimensions. In the presence of several inde-
pendent bodies in a geometric model, an additional Connections component appeared in
the project tree, which allowed for setting up connections between surfaces. First, the beam
was cut by two planes into four parts for the crack simulation, then bodies were glued
along solid surfaces.

One plane was located vertically and perpendicularly to the beam axis in the place of
the crack. The second plane was located horizontally at a distance of the crack length from
the cracked beam’s edge. First, the reinforcement was specified at one of the ends of the
beam by specifying the center of gravity coordinates and the diameter of the reinforcing
bar. Then the resulting circle was extruded to the length of the beam. Next, the materials of
the obtained volumetric elements were specified, then the volumetric elements were glued
along adjacent surfaces, except for the crack surface.

A tetrahedral volumetric finite element of the second-order Solid 187 with 10 nodes
was used by default to SIF calculations. This element can take initial stresses into account
using the ANSYS user subroutine USTRESS. The finite element size was chosen by gradu-
ally decreasing the size until the corresponding change in the oil recovery factor practically
did not stop.

Boundary conditions and loads were set in the StaticStructural module using a named
set of elements. In addition, the FractureTool option was specified to display SIF values at
selected points of the crack front.

3. Results and Discussion
3.1. Analytical Determination of the Stress State

Pure bending of a reinforced concrete beam with two flanges with prestressed lower
reinforcement and a transverse vertical crack was considered (Figure 1a). Figure 2 shows
the general view of a beam with a crack.
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Figure 2. General view of a bent beam with a crack.

The following designations have been introduced:
Act, Ac are the areas of overhangs of the shelves in the stretched and compressed zone;
ht, hc are the thicknesses of the shelves in the stretched and compressed zone;
a, a′ are the thicknesses of the concrete cover in the tensioned and compressed zone;
As, A′s are the areas of reinforcement in the tensioned and compressed zone;
Na, N′a are the internal forces in the reinforcement of the tensioned and compressed zone.
Two cases are analyzed:
(i) The rated stress at the crack tip σm is less than or equal to the concrete’s ultimate

tensile strength Rbt, and the crack length does not increase.
(ii) The rated stress at the crack tip σm exceeds the concrete’s tensile strength Rbt,

increasing the initial crack length l.
First, an initial non-propagating crack (M < Mm) is considered. Then, the beam is cut

with a section through the crack. Considering the above-accepted assumptions, the stress
epure in this section takes the form shown in Figure 1b.

The main unknown variables of the problem are the tensile stress at the crack tip σm
and the height of the compression zone x. Dimensionless stress at the crack tip c and a
dimensionless parameter y are introduced

c = σm/1.1Rbt, y = − ln(1− c) (3)

for the subsequent writing of the equilibrium equations. Then the deformation at the crack
tip is determined by the expression

εm = 1.1yRbt/Eb. (4)

The deformation and stress at the edge of the compressed zone, taking into account
the flat cross-section hypothesis, are

εb = εmx/zp, σb = Ebεb = 1.1yRbtx/zp, (5)

where zp is the height of the tension zone.
Taking into account the previously introduced coefficients of non-uniformity in the

crack zone (1), the deformation and stresses in the reinforcement are equal:

εs = εmψbs(h− a–x)/zp,

σs = Esεs = 1.1yRbtαψbs(h− a–x)/zp,

σ′s = σ′sp − Esε′s = σ′sp − 1.1αyRbt(x− a′)/zp,

(6)

where α is the ratio of the moduli of elasticity of reinforcement and concrete; ψbs = ψb/ψs;
σ′sp is a prestress in the reinforcement of the compression zone.

The tensile stress at a distance z from the zero line, taking into account (3) and the
hypothesis of flat sections, has the form

σ = 1.1Rbt[1− exp(−yz/zp)] (7)
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The resultant internal forces in the tension side Np, the moment of internal forces
relative to the zero line Mpo and the moment about the central axis Mpc are determined by
integration over the height of the stretched zone as:

Np = nbσmzp,

Mpo = mσmbz2
p,

Mpc = Mpo − Np(h/2− x),

(8)

where n = 1/c− 1/y, m = [0.5 + (1− c)(1 + y)/y2 − 1/y2]/c.
The equilibrium equations are as follows.

(i) The equilibrium equation of the beam’s cut-off part in the form of the sum of the
projection of forces on the beam axis is as follows:

Np + σs As–σbbx/2 + σ′s A′s − σb Ac(x− hc/2)/x = 0. (9)

(ii) The equilibrium equation in the form of the sum of the moments of all forces relative
to the central axis of concrete has the form

Mpc + σs As(h/2− a) + 0.5σbbx(h/2− x/3) + σb Ac(x− hc/2)(h− hc)/2x−
−σ′s A′s(h/2− a′) + 1.1yαRbt A′s(x− a′)(h/2− a′)/zp = Mbn.

(10)

For the case of reinforcement in a tension side without prestressing, the external
moment is equal to the bending moment in the section with a crack.

For the case of prestressed reinforcement on the tension side, the stress arises after the
moment of the external forces M exceeds the moment of the pre-tensioning force. Then in
this equation, the total external moment will be equal to

Mbn = M–σsp As(h/2− a). (11)

Equilibrium Equations (9) and (10) are common for all reinforced concrete elements
with and without prestressing, with different sectional shapes: I-beams, T-beams, rectan-
gular. For T-beams, the area of overhang (Ac or Act) equals zero. For rectangular beams,
the areas of both overhangs are zero. In order to obtain explicit design relationships, we
will carry out a further solution for the most common case of a rectangular section with
reinforcement on the tension side.

Next, the following dimensionless parameters are introduced:

ξ = x/h, z = l/h,
λ = zp/h = 1− z− ξ,

h = (h− a)/h,
µ = As/bh.

(12)

Then, taking into account expressions (5) and (6) for σb and σs, equilibrium Equa-
tions (9) and (10) can be written in the dimensionless form:

ncλ2 − 0.5yξ2 + yαµψbs(h –ξ) = 0.

L = Mbn/bh2Rbt = cλ[mλ− n(0.5− ξ)]+

+ yαµψbs

(
h− ξ

)(
h− 0.5

)
/λ + 0.5y(0.5− ξ/3)ξ2/λ.

(13)

Here L is the dimensionless total external moment.
It is possible to determine the moment upon reaching at which a crack propagates

from the system (13). If the crack propagates, then, in this case, Rbt is equal to σm, c = 0.909,
y = 2.4, n = 0.683, m = 0.418.
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Now, taking into account from (12) that λ = 1 − z − ξ, the first equation of the
system (13) can be written in this form:

0.256(1− z)2 − 0.512(1− z)ξ − 0.244ξ2 + αµψbs

(
h− ξ

)
= 0. (14)

Equation (14) is a quadratic equation for the dimensionless height of the compressed
zone ξ. The solution of Equation (14) is:

ξ = −P±
√

P2 + q,

where P = 1.049(1− z) + 2.049αµψbs,

q = 1.049(1− z)2 + 4.098αµψbsh.

(15)

Further, from the second equation of system (13), the moment of crack propagation
is found

Lm = Mm/bh2Rbt = 0.418λ2 − 0.683λ(0.5− ξ)+

+
[
2.667αµψbs

(
h− ξ

)(
h− 0.5

)
+ 0.667(1− ξ)ξ2

]
/λ

(16)

The system (13) solution is greatly simplified if the dependence of the dimensionless
stress at the crack tip c on the dimensionless load parameter L is precalculated for a known
relative crack length z. The first equation of system (13) is a quadratic equation concerning
the height of the compressed zone ξ. The parameter ξ is determined from this equation by
setting the dimensionless stress c. After substitution into the second equation of system (13),
the dimensionless moment L is found, which corresponds to the given stress.

Calculations of the dependence of the dimensionless stress at the crack tip c on the
dimensionless load parameter L are easily programmable. For example, Figure 3 shows
such dependence for the different relative crack length z.
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The sequencing for determining the maximum compressive stresses and the stresses
in reinforcement from a known external bending moment M is as follows:

- finding the dimensionless moment L from the Equation (16);
- finding the dimensionless stress at the crack tip c from the dimensionless load param-

eter L at a known relative crack length z (Figure 3);
- finding ξ from the Equation (15);
- and then we determine λ from ξ using (12).

And then, using Formulas (5) and (6), the maximum compressive stresses in concrete
and the stresses in reinforcement are determined.
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Figure 4 shows the relative height of the stretched zone (tension side) λ on the param-
eter c obtained during the calculation of the previous graph. This relationship is useful
both for determining stresses and for calculating SIF later on.
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Such a solution to system (13) is valid as long as the nominal stress σm is less than or
equal to the tensile strength of concrete Rbt. Otherwise, the initial crack length will increase.
The new crack length, corresponding to the effective moment M > Mm, is also determined
from the system (13) at σm = Rbt. To determine the stresses by Formulas (5) and (6) and
calculate the SIF, it is sufficient to determine the dimensionless parameters ξ and λ from
this system.

The compressive stress epure should also be considered nonlinear and described by
expression (2) to obtain more accurate results in the crack propagation case. The resultant
internal forces in the compressed zone and their moment relative to the zero line will
be found by integrating over the zone height. The stress state parameters’ calculations
show that replacing a linear epure of compressive stresses with a nonlinear one does not
introduce significant refinements into the system (13) solution if the maximum compressive
stress σb does not exceed 70% standard resistance Rbn.

At high compressive stresses (σb > 0.7Rbn), this epure can be taken as rectangular,
taking into account the completeness coefficient of the epure ω (Figure 1c). In this case,
in the formulas for stresses (5) and (6), expression 1.1y will be a constant value equal
to 2.667. Then the equilibrium Equations (9) and (10) for a section of the general form will
be rewritten as follows:

Np + σs As–ωσb(bx + Ac)+σ′s A′s = 0,

Mpc + σs As(h/2− a) + 0.5ωσb[bx(h− x) + Ac(h− hc)]−
−σ′s A′s(h/2− a′) + 2.667αRbt A′s(x− a′)(h/2− a′)/zp = Mbn.

(17)

Equation (17) is also valid for propagating cracks.
For a reinforced concrete rectangular beam, Equation (17) can be rewritten in the

dimensionless form:

0.256λ2– 0.5ξ2 + αµψbs(h –ξ) = 0.

Mbn/bh2Rbt = 0.44λ2 − 0.717λ(0.5− ξ)+

+2.8αµψbs

(
h− ξ

)(
h− 0.5

)
/λ + 0.7(1− ξ)ξ2/λ.

(18)
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In this system of nonlinear Equation (18), the dimensionless parameters ξ and λ (x,zp)
are determined.

3.2. Determination of the Stress Intensity Factor

Let us determine the SIF at the crack tip KI . The crack tip is a strong stress concentrator.
According to the linear theory of elasticity [32], the stress there is determined by the formula

σθ = KI/
√

2πr, (19)

where r is the distance from the crack tip to the point under consideration.
The definition of SIF is based on the equality of the longitudinal forces at the crack tip

with and without stress concentration. Local stresses are determined by Formula (19) and
nominal stresses are determined by Formula (6).

Let us determine the length of the stress concentration zone d from the condition of
equality of the nominal and local stresses at the end of this zone (Figure 1d). The nominal
stresses at distance d from the crack tip are

σn = 1.1Rbt

[
1− (1− c)1−t

]
, t = d/zp. (20)

Longitudinal forces per unit beam’s width in the concentration zone are

I1 =

d∫
0

σθdr = KI
√

2d/π = K2
I
/πσn. (21)

Longitudinal forces in the same zone without taking into account the stress concentra-
tion are

I2 =

zp∫
zp−d

σdz =1.1Rbtzp

{
t +
[
1− c− (1− c)1−t

]
/y
}

. (22)

Equating these forces I1 = I2, we get

f (t) = t− (1− c)1−t(2t− 1/y)− (1− c)/y = 0. (23)

Solving this equation with a known value c(y), we find the parameter t. Figure 5
shows the dependence of this parameter on the stress at the crack tip.
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KI =
√

2πd · σn =
√

2π · 1.1Rbt

[
1− (1− c)1−t

]√
tλh.

σm = Rbt, c = 0.909, t = 0.808
(24)

If the external moment M is greater than Mm, then

KI = 0.914Rbt
√

zp. (25)

3.3. Calculation Example

The design ratios set out in Sections 3.1 and 3.2 represent the proposed calculation
method. This subsection provides an example of a calculation.

Calculations show that the SIF decreases to zero with increasing crack length. The
decrease is because during bending, there is necessarily a minimum zone of compressive
stresses. As the crack length grows, this zone’s presence reduces the length of the tensile
stress zone to zero. When tensile forces are perceived only by the reinforcement, the crack
does not develop. In this case, the SIF becomes zero. Moreover, the destruction of the
beam occurs not due to an increase in the crack length but due to the achievement of the
yield strength by the stress in the reinforcement or due to crushing of the concrete in the
compressed zone when the stress reaches the ultimate strength.

The dependence of the SIF on the external moment is analyzed by using system (13)
and expression (24). The calculations were carried out for a rectangular 2-m long beam
with a size of 15 × 30 cm made of B25 grade concrete (Rb = 1.6 MPa, Rb = 14.5 MPa) with
reinforcement made of AIII steel (design resistance Rs = 370 MPa, αµψbs = 0.15). The beam
length is not directly used in the calculation. Instead, the calculation uses the moment
in the section with a crack. The beam has an initial crack l0 6 cm long. For this case, the
crack growth moment is determined from expression (16) and is equal to Mm = 9.96 kN·m.
Figure 6 shows the calculation results.
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Figure 6 shows that at M < Mm, the SIF grows with the increasing external moment,
but nonlinearly. The SIF growth rate is less than with a linear calculation. At M > Mm,
crack propagation occurs and the SIF decreases with an increase in the external moment
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M. Similar calculations for the same beam without an initial crack show that the same
dependence of the SIF on the external moment is observed for growing cracks.

If for a known crack length and a given external moment, the SIF becomes less than
the limiting value for a given material, then stable crack propagation occurs. For the
concrete under consideration, it is approximately equal to 0.42 MN/m3/2. That is, until
the moment when M = 8.2 kN·m, the crack will propagate steadily. If the crack is unstable,
rapid crack propagation is possible with a slight increase in the external moment. The
growth of the crack length continues until the SIF decreases to a value. This SIF value
corresponds to a certain value of the crack length, which is determined from system (13)
or (18) and expression (24).

The stress value in the reinforcement (6) estimates the beam’s load-bearing capacity
and the maximum compressive stress in the concrete (5). Parameters found for the initial
or growing length of the crack are substituted into these formulas.

At the end of the calculations’ examples, the following should be noted. The method
proposed in this article in Sections 3.1 and 3.2 is still the only analytical method for
determining the SIF in bent reinforced concrete beams.

The method is approximate since the determination of the size of the stress con-
centration zone does not have a rigorous mathematical formulation. The derivation of
Formula (24) for the SIF is based on the assumption that the size of the stress concentration
zone at the crack tip is determined by the equality of the nominal and local stresses at the
end of this zone (Figure 1d).

In [33], a similar approach was used to determine the SIFs in various fractured plane
problems with an exact solution. The author concluded that the error of the method does
not exceed 20% in the direction of decreasing SIF.

3.4. Numerical Calculation

This study also performed calculations to determine the SIF by the finite element
method, as described in Section 2.2. To carry out these calculations, it is necessary to know
the length of the crack. This calculation is possible for an initial non-propagating crack. For
propagating cracks, in the general case, it must be preliminarily determined depending on
the external moment based on a nonlinear calculation of the stress-strain state. In this case,
three-dimensional beam or volumetric elements should be used, which have additional
options that exclude destroyed elements from the calculation. The specifics of calculating
reinforced concrete beams by the finite element method are described in [34].

The calculation of the above-considered reinforced concrete beam with an initial crack
under the action of a moment of 6 kN·m was carried out (Figure 7).
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A 2-m long beam is hinged at the ends and loaded at the same distance of 0.4 m from
the supports by equal shear forces (Figure 7). Then a state of pure bending arises between
the points of forces’ application. The magnitude of the moment depends on the magnitude
of the applied forces. The calculations assumed that the modulus of elasticity of concrete
was Eb = 24,000 MPa and the cross-sectional area of the reinforcement was As = 6.75 cm2

(µ = 1.5%).
The beam was split into 1,762,663 finite elements with 2,387,736 nodes. The character-

istic dimension of the end element was 5 mm. As a result of the calculation, the SIF was
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KI = 0.321 MN/m3/2, which differs from the analytical calculation by only 1.3%. As the
bending moment increases, the SIF increases linearly, which leads to an increase in the
discrepancy between the results. Thus, under the action of a bending moment of 10 kN·m,
the SIF is equal to 0.466 MN/m3/2 and the discrepancy with the analytical solution is 12.4%.
This discrepancy is a consequence of the linear approach in the numerical calculation of
SIF. With a further increase in the bending moment, the results become incomparable due
to the increase in the initial crack length.

Now the SIF could be analytically calculated for the same beam under the action of
a moment of 16 kN·m, considering the crack length determined by the above method
(Sections 3.1 and 3.2). From system (18), we find ξ = 0.418, λ = 0.232. Then the crack length.

l = h(1 − ξ − λ) = 10.5 sm. (26)

The SIF calculation by the finite element method gives KI = 0.533 MN/m3/2 and the
discrepancy with the analytical solution given in Figure 6 is 20.8%.

These calculations show that for bending reinforced concrete beams, the error in
determining SIF by the finite element method increases with an increase in the bending
moment. This increase is due to the growing influence of physical nonlinearity at high
stresses. Under these conditions, it is recommended to calculate the SIF only by the
analytical method.

Some preliminary partial results of this study were reported at an international confer-
ence [35] and received the participants’ approval.

4. Conclusions

The study determined the stress state of reinforced concrete beams with an initial
and growing crack. For beams with an initial crack, the value of the external moment
is determined, above which the crack length increases. If this moment is exceeded, then
a growing crack appears. The length of the growing crack is determined by calculating
the stress state along with the maximum compressive stress in concrete and stress in
reinforcement. These calculations make it possible to assess the bearing capacity of cracked
reinforced concrete beams.

The stress intensity factor (SIF) is used to assess the beam’s fracture toughness based on
the strength criterion of fracture mechanics. SIF at the crack tip is determined analytically
by analyzing the stress state in the crack zone. In addition, the influence of the crack length
and external moment on the SIF value is analyzed. The paper also compares the results
obtained by analytical and numerical methods.

Based on the results of the work, the following conclusions can be drawn.

1. The analytical method for determining the stress intensity factor (SIF) with an initial
and growing crack in bent reinforced concrete beams is proposed. The method is
based on the assumption that the size of the stress concentration zone at the crack tip
is determined by the equality of the nominal and local stresses at the end of this zone
(Figure 1d). The method determines the value of the external moment starting from
which the crack length increases.

2. The results obtained make it possible to assess the bearing capacity of reinforced
concrete beams with a crack and assess the crack resistance of the beam by the
force criterion of fracture mechanics. The analytical calculation method is valid for
beams of arbitrary cross-sections, but explicit dependencies and numerical results
are given for rectangular cross-section beams, which are most often used. Numerical
calculation of SIF is recommended for non-growing initial cracks or a low-stress level
if the maximum compressive stresses in concrete do not exceed 70% of the ultimate
compressive strength.

3. The same problem is solved in a three-dimensional formulation by the FE method,
considering the stress field’s peculiarities at the crack tip. The calculation results
coincide with the analytical solutions.
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4. It was found that SIF decreases with increasing crack length in a reinforced concrete
beam. Consequently, unstable crack propagation reduces its bearing capacity but
does not lead to rapid beam destruction.
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