
buildings

Article

An Integrated Sensitivity Analysis Method for Energy
and Comfort Performance of an Office Building along
the Chinese Coastline

Ruijun Chen and Yaw-Shyan Tsay *

����������
�������

Citation: Chen, R.; Tsay, Y.-S. An

Integrated Sensitivity Analysis

Method for Energy and Comfort

Performance of an Office Building

along the Chinese Coastline. Buildings

2021, 11, 371. https://doi.org/

10.3390/buildings11080371

Academic Editor: Gianpiero Evola

Received: 12 July 2021

Accepted: 19 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Architecture, National Cheng Kung University, Tainan 701, Taiwan; N78083016@mail.ncku.edu.tw
* Correspondence: tsayys@mail.ncku.edu.tw; Tel.: +886-6-2757575 (ext. 54155)

Abstract: This study aimed to evaluate the comprehensive percentage influence of input parameters
on building energy and comfort performance by a new approach of sensitivity analysis (SA) and
explore the most reliable and neutral sampling and sensitivity assessment method. The research
combined 7 sampling methods with 13 SA methods to comprehensively integrate the percentage
influence of 25 input parameters on building energy and comfort performance in 24 coastal cities of
China. The results have found that the percentage influence of many important input parameters
is affected by geographical position. Considering both energy and comfort performance of the
building, the key parameters are heating setpoint, infiltration rate, cooling setpoint, roof U value,
roof solar absorptance, window solar heat gain coefficient, equipment, and occupant density, all
of which could comprehensively impact 70% of energy demand and comfort performance along
the Chinese coastline. This is of great significance for policymakers to formulate relative building
regulations. After comparing the F-test and the exceed percentage test, we recommended the
Pearson with Quasi-random sampling method as the most reliable SA assessment method in building
simulation, followed by the standardized regression coefficient in random sampling and Latin
hypercube sampling methods, which can achieve data closest to the average value.

Keywords: sensitivity analysis; building energy consumption; sampling method; indoor comfort

1. Introduction

With the development of utilization and economy, buildings play a critical role in the
maintenance of human society [1]. On one hand, buildings account for almost 40% of all
energy consumption [2]. On the other hand, most people currently spend approximately
90% of their time inside buildings [3]. The desire to improve building energy efficiency and
the built indoor environment is growing and is significantly influenced by the building
envelope and building system. Furthermore, the building energy consumption of office
buildings was predicted to be 10 to 20 times larger than that of residential buildings [4].
Therefore, improving building energy efficiency and thermal comfort in office buildings
are urgent topics in the building sector [5].

However, for designers and engineers, the impacts of influential parameters in the
early design stages of the building have not been systematically compared, and the key
parameters with critical impacts are still unknown [6]. SA plays a key role in this area,
which is a useful method for identifying the influential factors among complex building
envelope systems [7]. The SA of influential variables in building energy performance (BEP)
and a built environment is an important way to realize energy-saving design principles
and confirm the priority measures of energy-saving and thermal comfort [8].

BEP research has increased rapidly in the past decades, and many software programs
for building energy simulation have also been developed, such as DOE-2 [9], Energy-
Plus [10,11], IES-Virtual Environment [12], ESP-r [13], and TRNSYS [14]. Simulation
software can be combined with SA methods to evaluate the key design parameters for
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saving simulation time and improving energy efficiency [15]. The percentage influence
(PI) of building parameters for energy consumption could continue to quantify, which is
to evaluate the contribution rate of input parameters to influence the output [16,17]. The
biggest influence factor is easy to identify, but the influence rates of other factors are quite
different in different evaluation methods [18]. Meanwhile, the PI of each parameter can
also contribute to building retrofit and optimization research [19]. It could not only identify
the most appropriate retrofitting option for designers but also evaluate the optimal state of
case building [20,21].

Although considerable literature has been published around the theme of SA research,
much of it has focused on the total energy consumption of a building, but not on district
heating and cooling demands or indoor uncomfortable hours (IUH). The sensitivity of
building parameters of building performance still needs to be researched in some detail [22].
Meanwhile, various sampling and SA evaluation methods in the current research, as well as
their ranking results, still differ. Therefore, the reliability of SA methods and the efficiency
of the sampling method also require further research [16].

For policymakers, it is meaningful to identify the key parameters and improve the
building energy-saving design and comfort performance to determine the best design in
the early stage of the building design process. Policymakers can be guided to formulate
the energy codes by providing sufficient information in selecting and processing building
parameters that control changes in the energy demand. On the other hand, engineers
and designers need to know both building engineering and energy models to correctly
choose the influential building parameters [23]. Thus, all of them need relevant research to
provide guidance.

In this paper, we aimed to calculate the exact PI of each input parameter on building
energy and comfort performance through a new approach of SA, which was integrated
through 27 SA indices, including 6 sampling methods and 13 SA methods. Then, for these
27 SA indices, the study continued to explore the most reliable SA index as the recom-
mended sampling and SA method through the methods of F-test and exceed percentage.
The research was then applied to a real office building, and 25 input factors in 4 output
parameters were investigated through the building performance simulation, including
annual building energy consumption, IUH, district heating demand, and district cooling
demand. Finally, 24 different weather locations along the coastal line of China were input
to compare the influence of seaside weather on each parameter.

2. Literature Review
2.1. Key Parameters for Building Performance

The challenges of building envelope research mainly include SA of parameters, the
robustness of the model, personalized optimization, and resilience in building envelope de-
sign [24]. Clearly, SA has been widely used in the research of building energy performance.
Rui et al. [25] used SimLab and jEPlus software to investigate the influence of building
design parameters on night cooling performance. The results show that the window to
wall ratio (WWR), internal convective heat transfer coefficient, internal thermal mass level,
and night mechanical air change rate are the biggest influential design parameters for
night cooling. Amir et al. [23] carried out SA in thermal comfort and building energy
consumption to evaluate the effect of light shelves characteristics in residential buildings.
They found that the optimum light shelves were able to decrease 11.38% electrical energy
consumption of the building. Yelin et al. [8] researched 24 parameters through standardized
regression coefficient (SRC) in the building and detected key factors in energy loss. The
study identified key parameters for improving net-zero energy buildings (NZEB) for grid
interaction with limited power requirements.

Navid et al. [26] coupled MATLAB procedure with EnergyPlus through jEPlus and
researched annual building energy consumption by both local sensitivity analysis (LSA)
and global sensitivity analysis (GSA). The research found that three key factors affecting
annual cooling energy use were window size, the orientation of the building, and the
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glazing solar transmittance. Similarly, Mauro et al. [27] combined EnergyPlus with MAT-
LAB and used standardized rank correlation coefficients (SRRC) to investigate a proper
building retrofit plan. This study proposed that setpoint temperatures and glass type have
the greatest influence on energy demand and thermal comfort. Rasouli et al. [28] used
LSA to evaluate the impact of building and HVAC parameters through TRNSYS in small
office buildings and indicated that ventilation rate had the largest impact on both annual
heating and cooling consumption. Pannier et al. [29] identified the influential factors in
building life cycle assessment using six different SA method factors and recommended
Sobol indices. It can be noticed that the same parameters had different influence values
for energy demand in different SA methods. Menberg et al. [30] compared three different
sensitivity methods, including Morris, SRCs, and Sobol indices, for a building model in
TRNSYS and proposed that the setpoint temperature and thermal capacitance had the
largest computational cost. Vartholomaios [31] coupled EnergyPlus and SRRCs together
and found that the high compactness and the southern orientation of the building could
form low-energy combination.

2.2. Sensitivity Analysis

SA is a statistical method for energy simulation models and observational study and
is capable of quantifying the contributions of different inputs’ influence on the variability
of the outputs. In the beginning of SA, sampling methods were needed to propagate
the uncertainty of input parameters. Monte Carlo (MC) is a methodology that relies
on repeated random sampling to generate numerical parameters probabilistically under
different scenarios [32]. Random sampling (RS), Latin hypercube sampling (LHS), and
Quasi-random sampling (QRS) are the three main sampling methods used in MC [33]. The
RS method only samples parameters based on the Probability Density Function (PDF),
which has uniform and normal distribution [34]. It is easy to utilize in SA with simple
concepts and processes, but inefficient computation will appear if some sample points are
sparsely distributed while others cluster closely. The LHS method is another methodology
for producing a near-random sample of parameter values, between the RS and the stratified
sampling technique, from multi-dimensional distribution [35]. LHS can generate more
stable results than RS, but its drawbacks include space-filling and uncorrelated samples [36].
The Quasi-random subsequence is also known as the low-discrepancy sequence [37]. QRS
produces the sample points by considering previous points, which can generate a significant
convergence rate in MC simulation [38]. Morris sampling is only designed for Morris
SA. Morris parameters are generated by the predefined PDF in the whole range of each
parameter, and only one factor can vary at a time [39].

The methods for SA can be divided into two main categories, LSA and GSA [40,41].
Both methods are widely used in building performance analysis. LSA, also known as
One-At-a-Time (OAT), is focused on varying only one design parameter at a time with
other parameters fixed to evaluate the effect of uncertain parameters around a point [42].
Meanwhile, the GSA is based on changing all the design parameters at the same time and
analyzing their impact on the entire input space. Although LSA can improve computation
efficiency, the result depends highly on the central values of the design parameters and
cannot estimate the uncertainty of the building model output [26]. Furthermore, the
results of LSA in some research have been quite different from GSA. Therefore, it is not
recommended to use the LSA method in the analysis of BEP [16]. GSA is regarded as a
more effective and reliable method and has already been widely used in the research of
important variables in BEP. Compared with LSA, the shortcomings of GSA are its high
computational demands and that it is time consuming [43].

GSA can mainly be divided into regression [30,44,45], variance-based [26,46], screening-
based [30,39], and regional-based approaches [47,48]. The regression models are easy to
implement and have a moderate computational cost for energy models, including the Pear-
son Correlation Coefficient (PEAR) [49], SRC [8], Partial Correlation Coefficient (PCC) [50],
Spearman’s Rank Correlation Coefficient (SPEA) [51], SRRC [52], and Partial Rank Cor-
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relation Coefficient (PRCC) [39]. The screening-based method is an extension of OAT.
The variance-based method, also known as Analysis of Variance (ANOVA), is used to
decompose the variance of the outputs into a sum of contributions of the inputs, which can
be applied in nonmonotonic and nonlinear models [53]. The Fourier Amplitude Sensitivity
Testing (FAST) method periodically samples the input data with sinusoidal function and
has a Fourier transformation to quantify its contributions [54]. The Sobol method is similar
to FAST but uses MC integration loops [29]. Morris is a type of screening approach that is a
qualitative measure for ranking factors and is suitable for a large number of inputs [55].
However, it is a model-free method and is not suitable for uncertainty analysis. Regional
sensitivity analysis (RSA) is also known as MC filtering and aims to identify the region of
input range that relates to particular values of the output. The Kolmogorov−Smirnov (KS)
test is a type of RSA and is suitable for any style of model outputs [43]. Table 1 summarizes
the characteristics of these SA methods.

Table 1. The characteristics of each SA method in this study.

Type Method Characteristics Ref.

Variance-based
sensitivity methods

Classic FAST

FAST is a variance-based global
sensitivity analysis method;
computational complexity for a large
number of inputs; model-independent
approach; could not address
high-order interactions.

[30]

Extended FAST Extended FAST could address
high-order interactions. [17]

Sobol
indices

Sobol is more robust than Classic and
Extended FAST; lower computational
efficiency; model-independent.

[29]

Regression-based
sensitivity indices

PEAR

PEAE is applied and is typically suitable
for linear models or systems; only
suitable for monotonic and
linear models.

[49]

SRC

SRC provides the strength of the
correlation between Y and a given input
Xj with linear regression model;
highly efficient.

[8]

PCC
PCC measures the sensitivity of Y to Xj
when the effects of the other inputs have
been cleaned; easy to implement.

[16]

Regression-based
sensitivity indices

(rank transformation)

SPEA SPEA is nearly the same as PEAR but
uses the rank of data. [51]

SRCC SRRC is used when the R2 of SRC is low;
good for monotonic models.

[52]

PRCC PRCC is the PCC calculated on the rank
of input variables. [39]

Regional sensitivity methods KS

KS could identify the region in the input
space that corresponds to the particular
values of the output; a useful and
general non-parametric method.

[43]

Screening-based method Morris

Morris only gives a new value to one
input parameter in each run;
model-independent approach; robust
and computationally efficient.

[55]

3. Methodology
3.1. Framework

Figure 1 shows the framework for this study. At the beginning of the research, the
case building model was built by Grasshopper. Then we used seven different Monte-Carlo
sampling methods in SimLab to establish input scenarios for EnergyPlus and jEPlus to
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simulate the annual total energy consumption, IUH, district heating demand, and district
cooling demand of a building in 24 climate locations. Then, the simulation results were
input back into SimLab for SA with 27 different indices, and all SA results were input into
the influence index formula from Equations (1)–(3) to calculate the comprehensive value of
PI, which could evaluate the influence of parameters more accurately compared with other
studies. The following research was divided into two parts. In the first part, we evaluated
the PI of each parameter on energy demands and IUH and determined their relationship
with geographical locations. In the second part, we explored the reliable and neutral SA
method by F-test and exceed percentage among 27 SA indices.
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Figure 1. The research framework of this paper.

3.2. Case Study

The case building is a typical office building in the international academician park
of Qingdao, China (36◦11′ N, 120◦29′ E) that meets China’s energy-saving building stan-
dards [56,57]. The details of the case building are shown in Table 2. This building is 36.7 m
long, 16.6 m wide, and 22.2 m high, with six stories and a total area of 3741.7 m2. In this
study, we selected Honeybee in Grasshopper from Software Rhino to build the model in
Figure 2, in which N indicates the orientation as north. Four other office buildings with the
same size are located around the case building, which were set up as opaque shadings in
the building energy model.

Table 2. Building model form details.

Building Details Value

Dimension 36.7 × 16.6 × 22.2 m (length × width × height)
Total area 3741.7 m2

Floors 6 stories
Aspect ratio 0.23

Glazing area ratio 0.31 (south); 0.25 (north); 0.04 (east); 0.03 (west)
Thermal zones 9 per floor
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Figure 2. A real office building model in Qingdao, China.

Table 3 presents the list of input parameters and their variation range on the input
space of the building model. Twenty-five parameters in the building envelope, internal gain,
and system operation were researched in this building. The selection of input parameters
was based on factors that have commonly been researched for the energy demand and
comfort of buildings in the relevant literature [58–60]. We applied the ideal load air system
to the model, and the people, lighting, and equipment schedules were set based on the
statistic of the working schedule in the field, as shown in Figure 3. The lighting and
equipment in the building gradually worked from 6 a.m. and closed at 8 p.m., with a lunch
break between 12 a.m. and 1 p.m.
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Figure 3. Schedule of lighting and people (right), schedule of equipment (left).

Afterward, the building model was simulated with the climate data of different
locations to compare the changes of sensitivity in parameters. We selected these places
from 24 cities along the eastern coastline of China, as shown in Figure 4, which are arranged
from north to south with a change of serial number. According to the climatological zoning
for buildings in the relevant standard [61], these cities belong to three climatic zones: Cold
area (II), Hot summer and cold winter area (III), and Hot summer and warm winter area
(IV). All information about these locations is shown in Table 4.
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Table 3. Input parameters for SA.

Category Parameter Abbreviation Range Unit

Building envelope

Wall U value Wall U 0.14–0.8 W/(m2 K)
Wall solar absorptance Wall SolarA 0.1–0.9

Wall thermal absorptance Wall ThermalA 0.1–0.9
Wall visible absorptance Wall VisibleA 0.1–0.9

Wall density 400–1250 Kg/m3

Roof U value Roof U 0.16–2 W/(m2 K)
Roof solar absorptance Roof SolarA 0.1–0.9

Roof thermal absorptance Roof ThermalA 0.1–0.9
Roof visible absorptance Roof VisibleA 0.1–0.9

Roof density 700–1650 Kg/m3

Window U value Window U 1–6 W/(m2 K)
Window visible transmittance Window VisibleT 0.1–0.9

Window solar heat gain coefficient Window SHGC 0.1–0.9
Infiltration rate, ACH 0.1–0.8 1/h
Window to wall ratio WWR 0.16–0.4
Building orientation Orientation 0–360

Overhang projection ratio Overhang ratio 0.05–0.6

Internal gain

Equipment 4–12 W/m2

Light 2–7 W/m2

Occupant density 0.02–0.15 Psn/m2

Occupant fraction radiant Occupant FR 0.25–0.4
Occupant sensible heat fraction Occupant SH 0.45–0.68

System operation
Heating setpoint 18–22.5 ◦C
Cooling setpoint 23.5–28 ◦C

Outdoor air flow rate Outdoor Air FlowR 0–0.03 m3/s/psn
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Table 4. Characteristics of cities in this study.

No. Location Latitude Longitude Elevation Climate Zone

1 Dandong 40.05◦ N 124.33◦ E 14 m II
2 Dalian 38.90◦ N 121.63◦ E 97 m II
3 Jinzhou 41.10◦ N 121.13◦ E 70 m II
4 Qinglong 40.40◦ N 118.95◦ E 228 m II
5 Beijing 39.93◦ N 116.28◦ E 55 m II
6 Cangzhou 38.33◦ N 116.83◦ E 11 m II
7 Weifang 36.77◦ N 119.18◦ E 22 m II
8 Weihai 37.50◦ N 122.12◦ E 47 m II
9 Qingdao 36.07◦ N 120.33◦ E 77 m II

10 Ganyu 34.83◦ N 119.13◦ E 10 m II
11 Dongtai 32.87◦ N 120.32◦ E 4 m III
12 Nanjing 32.00◦ N 118.80◦ E 7 m III
13 Shanghai 31.17◦ N 121.43◦ E 3 m III
14 Ningbo 29.83◦ N 121.47◦ E 4 m III
15 Wenzhou 28.02◦ N 120.67◦ E 7 m III
16 Fuzhou 26.08◦ N 119.28◦ E 84 m IV
17 Xiamen 24.48◦ N 118.07◦ E 139 m IV
18 Shantou 23.40◦ N 116.68◦ E 3 m IV
19 Guangzhou 23.17◦ N 113.33◦ E 41 m IV
20 Hong Kong 22.31◦ N 113.92◦ E 8.5 m IV
21 Zhanjiang 21.15◦ N 110.30◦ E 53 m IV
22 Beihai 21.45◦ N 109.13◦ E 13 m IV
23 Haikou 20.00◦ N 110.25◦ E 64 m IV
24 Sanya 18.23◦ N 109.52◦ E 6 m IV

3.3. Sensitivity Analysis
3.3.1. Sensitivity Analysis Methods

In the early stage of the building design process, it is important to identify the key
parameters and improve the building energy-saving and comfort performance for the best
design. Thus, the SA methods are applied in our study to calculate the PI of input factors.

Since the uncertainty on the probabilistic distribution for input parameters is an
important process for SA, we adopted SimLab in this study. This software is designed for
uncertainty and SA using the Monte Carlo method, which generates samples based on the
input design parameters. The 25 parameters and their ranges in Table 3 were input into
SimLab and generated the discreet values by seven different sampling methods, including
FASTC, FASTE, Sobol, RS, LHS, QRS, and Morris.

For sampling these input parameters, FASTC and FASTE samples were performed
14,249 and 1625 times, respectively: Sobol samples 1664 times; RS, LHS, and QRS samples
1024 times individually; and Morris samples 260 times; therefore, the computer needed to
execute 20,870 intermediate data format (IDF) files per city. At last, jEPlus received the input
parameter sampling from SimLab and used the model built by EnergyPlus to carry out
parametric simulations. The computers used in this study were two ASUSPRO D840MB,
with an Intel Core i7-8700 12-logical-core, an 8 GB random-access memory (RAM), and a
hard disk drive of 1 TB storage. The execution of 542,620 IDF files lasted about four months.

After that, the simulation results were transferred back to SimLab and calculated using
SA methods. As shown in Table 4, 13 SA methods were applied in this study, including
classic Fourier Amplitude Sensitivity Testing (FAST), extended FAST (first order and total
order), Sobol (first order and total order), PEAR, SPEA, PCC, PRCC, SRC, SRRC, KS, and
Morris. Furthermore, three sampling methods (RS, LHS, QRS) were used in this paper,
which were individually evaluated using PEAR, SPEA, PCC, PRCC, SRC, SRRC, and KS.
Therefore, pursuant to the 7 sampling methods and 13 SA methods, this study proposed
27 different SA indices for each influence parameter.
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3.3.2. Percentage Influence

In many studies, the PI of input parameters were different in different SA methods [16].
Thus, this research generated 27 SA indices and integrated them together to calculate the
mean PI. To evaluate the comprehensive PI among these SA values in each city, the values
of the SA index in the same method were input into Equation (1), and the sensitivity index
SI(x,y,z) of their effect was calculated. Then, the mean sensitivity percentage among the
27 SA indices was proposed in Equation (3).

The sensitivity index SI(x,y,z) was proposed in Equation (1), which could represent the
sensitivity percentage for SA index (x), input parameter (y), and location (z):

SI(x,y,z) =

∣∣∣m(x,y,z)

∣∣∣
∑x=a

x=1

∣∣∣m(x,y,z)

∣∣∣ (1)

where m(x,y,z) is the result value of each SA index; x is the order of SA index, x = 1, 2, . . . ,
27; y means the order of input parameter, y = 1, 2, . . . , 25; z represents the order of location
in Table 4, z = 1, 2, 3, . . . , 24; and a is the total number of influence factor and is equal to 25.

Therefore, the SI(x,y,z) with different parameters and methods in the same location
can be shown as a SI matrix in Equation (2). The row means SI in the same parameter and
different SA indices, while the column shows the SI in the same SA index and different SI.

SI =

 SI(1,1,z) · · · SI(27,1,z)
...

. . .
...

SI(1,25,z) · · · SI(27,25,z)

 (2)

The percentage influence index PI(x,y,z) of each input parameter was proposed in
Equation (3), which represents the average PI of each parameter based on the 27 SA indices:

PI(x,y,z) =
1
b ∑y=b

y=1 SI(x,y,z) (3)

where the SI(x,y,z) is the sensitivity percentage in Equation (1), and b is the total number of SA
indices and is equal to 27; PI(x,y,z) can be seen as the average value of the row in matrix SI.

3.3.3. F-Test and Exceed Percentage

Because many studies did not compare a variety of sampling and SA methods for
building energy modeling, this study adopted the methods of F-test and exceed percentage
to explore the most reliable SA index as the recommended sampling and SA method among
the 27 SA indices [30]. In previous studies, the Analysis of Variance (ANOVA) used the
F-test to determine whether there were significant differences between the mean responses
of main effects or interactions between factors. The relative magnitude of F values can be
used to rank the factors in SA. The higher the F value is, the more sensitive the response
variable is to the factor. Therefore, factors with higher F values have a higher ranking. If
the F-test value was closer to 1, the two data sets were closer to each other. The closer the
value was to 0, the more different the two sets of data were. Therefore, to find the most
reliable and neutral influence assessment method, the F-test is applied to distinguish the
data set closest to the average value among the 27 SA indices.

In the F-test, the X = {X1 , . . . , Xn} and Y = {Y1, . . . , Ym} are independent and
identically distributed samples from two data arrays that each have a normal distribution.
The influence index PI(x,y,z) of each SA index is applied to X, which averages the PI(x,y,z)
values of all locations, while the average value of influence index PI(x,y,z) in all SA indices
is applied to Y. In the F-test, the X and Y are the mean values of the data array, as shown in
Equations (4) and (5).

X =
1
n ∑n

i=1 Xi (4)
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Y =
1
m ∑m

i=1 Yi (5)

Then, the variances of both data arrays are calculated in Equations (6) and (7).

S2
X =

1
n− 1 ∑n

i=1

(
Xi − X

)2 (6)

S2
Y =

1
m− 1 ∑m

i=1

(
Yi −Y

)2 (7)

Then, the test statistic F value is calculated by the variance of data array in Equation (8).

F =
S2

X
S2

Y
(8)

If the variances have the same value, the F-distribution with (n − 1) and (m − 1)
degrees of freedom is obtained. Otherwise, it will follow an F-distribution scaled by the
true variance ratio.

The exceed percentage (EP) of the influence index is the cumulative percentage dif-
ference between the influence index value PI(x,y,z) of the parameters in each method and
the average value My

m of the parameters in all methods. To obtain a general and extensive
result, all the values in EP are the average values at all locations, which is represented by
PI(x,y,z) in Equation (9). The equation of EP is:

PI(x,y,z) =
1
c ∑z=24

z=1 PI(x,y,z) (9)

My
m =

1
b ∑x=27

x=1 PI(x,y,z) (10)

EPx = ∑y=25
y=1

∣∣∣PI(x,y,z) −My
m

∣∣∣ (11)

where x is the order of SA index, x = 1, 2, . . . , 27; y means the order of input parameter,
y = 1, 2, . . . , 25; z represents the order of location in Table 4, z = 1, 2, 3, . . . , 24; a is the
total number of influence factor and is equal to 25; b is the total number of SA indices in
this study and is equal to 27; c is the total location number and is equal to 24; EPx means
the exceed percentage value in method x; and My

m does not change with method x in
Equation (11).

4. Results and Analysis
4.1. Weather Analysis

The first step of our research was to analyze the climate data of these 24 coastal cities,
which were taken from EPW climate files, and then compare dry bulb temperature (DBT),
relative humidity (RH), global horizontal radiation (GHR), heating degree day (HDD), and
cooling degree day (CDD), respectively.

The order of location in the chart was arranged according to the longitude and latitude
in Table 4, from north to south. In Figure 5, the DBT clearly changes with the longitude
and latitude of the geographical location, and the overall average DBT was found to rise
from 10.8 ◦C in Dandong to 27 ◦C in Sanya. Then, again in Figure 5, since all the cities
were chosen from the coastline, the RH of these cities had a consistently high value, but
the average RH increased with southward location, rising from nearly 50% in Jinzhou to
almost 80% in Haikou. The third diagram in Figure 5, representing the GHR, shows that
the overall level of GHR is almost the same and is not significantly affected by latitude
and longitude. The average value remained between 300–400 W/m2, and the maximum
value was about 1000 W/m2. The last weather analysis chart is the HDD and CDD. The
base temperatures for HDD and CDD were 18 ◦C and 26 ◦C, respectively. The changing
trend of HDD with geographical location is clear, from 3566 in Dandong to almost 0 in the
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Sanya. In contrast, the CDD increased when moving southward, from 6 to 498 at the end.
It needs to be mentioned that the value of HDD in the northernmost city is several times
larger than the CDD value in the southernmost city.
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4.2. Analysis of Simulation Results in Different Locations

After analyzing the climate data, the box chart was used to compare the simulation
results of different locations, including annual total building energy consumption, annual
district heating demand, annual district cooling demand, and annual IUH, in order to
observe the impact of the climate conditions of different latitude on their simulation output.
The results of the simulated data from all seven sampling methods in each city were
synthesized and are shown in the box chart. In the next section, these values are imported
into their corresponding SA and then compared with the influence of each parameter. Since
we evaluated the PI of each input parameter on the output value by corresponding SA
methods in the next section, this step could show the weight of input parameters in output
value more comprehensively. The first chart in Figure 6 shows the comparison of the
annual total building energy consumption of the building in each place. Of particular note,
the average value of each city decreases from north to south with the change of latitude.
Jinzhou is the northernmost city, so the maximum average value of energy consumption
is 135 kWh/m2. From Dandong to Weihai, the average value changes are small, keeping
around 125 kWh/m2. However, the downward trend of total energy consumption only
lasted until Wenzhou, and then its average value in the following cities began to be almost
the same, floating around 80 kWh/W2.
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The second output is the IUH, shown in Figure 6b, which is evaluated according to
the ASHRAE 55-2004 standard. The chart shows that the maximum IUH of buildings
in each city has the same value, 3300 h, but their average value and upper and lower
quartile differed. Meanwhile, although the changing law of IUH is not pursuant to latitude,
it is worth noting that northern cities have more extreme values of less than 1000 h of
discomfort, which are gradually increased with the latitude from north to south. In Sanya,
the value of IUH is the largest among the 24 cities, as high as 3300 h, and the change range
of upper and lower quantile value is the smallest, which shows that the IUH of the building
is longer in the climate conditions of Sanya.

Then, we analyzed the annual total district heating and cooling demand. The annual
total energy consumption of the building can be divided into three parts: district heating
demand, district cooling demand, and interior equipment energy demand. As shown in
Figure 6c, the upper and lower quartile range and average value in the annual district
heating demand change significantly with latitude. The average value of Dandong in the
northernmost area is the largest, reaching 89.9 kWh/m2, and then decreases from north to
south with latitude, dropping to almost 0 kWh/m2 in Sanya. Therefore, the district heating
demand is greatly affected by climate conditions. At the same time, starting from Xiamen,
the average values of the later cities tend to be close to 0, and the upper and lower quartile
range become almost the same, thus indicating that the change of annual district heating
demands of buildings after the climate of Xiamen is very small. The southern cities are
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warm enough in winter and do not have too much district heating demands, while the
cities in the north are colder in winter and consume considerable heating energy.

The annual district cooling demand is shown in Figure 6d, which has the opposite
trend of heating energy demand from north to south. The average value in the northern-
most area was 13.1 kWh/m2, which continued rising until it reached the maximum value
of 61.2 kWh/m2 in Sanya. This finding indicates that the climate in the north is colder, and
the district cooling demand is low in summer, while the temperature in the south is higher
in summer, so reducing the temperature with air conditioning is necessary. The change
and usage of district cooling demands are not as big as heating energy consumption.

4.3. Percentage Influence of Input Parameters

After analyzing the simulated output values, the output data of different sampling
methods were input into the corresponding sensitivity methods for SA analysis to syn-
thesize the 27 SA indices with the formulas in the methods to obtain the results of the
SA index shown in Figures 7–10. The results show the percentages of 25 building impact
parameters in 24 different cities. This index integrates the results of 27 SA evaluation
methods, which could reduce the impact of extreme values on the results and accurately
express the percentage of the building factor’s impact on energy consumption.
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Figure 7 shows the analysis results of the influence index in 25 input parameters on
annual total building energy consumption. The ranking of input parameters in the chart is
determined by the PI of the first city. The parameters with the highest PI are ranked below,
and the one with the lowest percentage is ranked above. The sum of influence values of
all parameters in each city is 100%. The detailed relationship of each parameter will be
discussed in the next section.

The infiltration rate was the biggest factor affecting the total energy consumption in
the northern cities. In Dandong, the impact of infiltration rate on total energy consumption
was 28.4%, which gradually decreased with the change of location from north to south and
reached only 11.2% in Sanya. It is also worth noting that the PI of infiltration rate from
Xiamen was maintained at about 12%, indicating that the climate change with location is
not obvious. The second influencing factor was the heating setpoint of the building. The
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influence index in Dandong was 15.6%, which was significantly lower than the infiltration
rate. With the change of location from north to south, it reached a maximum value of
17.3% in Weihai and then decreased to 0.9% in Sanya, which only ranked 16th among the
25 influencing parameters in Sanya.
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The next parameters were the window U value and cooling setpoint. The PI of
window U value gradually decreased with the location moving southward, from 7.9%
to 1.6%, ranking from 3rd in Dandong to 13th in Sanya. However, the PI of the cooling
setpoint increased from north to south and remained at 18.9% between Xiamen and Sanya.
Interestingly, the percentages of heating and cooling setpoints on total energy consumption
did not change from Xiamen, whose values were 12% and 19%, respectively, where the
cooling setpoint became the most influential factor on annual building energy consumption.
Notably, roof solar absorptance in Dandong was only 1.2%, making it the 13th influencing
parameter, while it increased to 10.8% in Sanya.

In Figure 8, the average value of the IUH in each city is between 2800 h and 3200 h;
only Sanya reaches 3300 h. In most cities, the heating setpoint has the greatest influence on
IUH, and the influence index between Shanghai and Fuzhou is greater than 35%. Although
the heating setpoint did not change with location, it reached 0.9% in Sanya, where it
ranked as the second-lowest influencing factor. Furthermore, the cooling setpoint is the
first influencing factor between Jinzhou and Cangzhou, which can exceed 20% impact on
IUH and was also maintained at more than 10% in other places.
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The PI of each parameter on the district heating demand is shown in Figure 9. Since
district heating energy consumption approached zero after Xiamen, as shown in Figure 6,
the research of important parameters should focus on northern cities. The PI of infiltration
rate on district heating demand is similar to that of total energy consumption, reaching
28.5% in Dandong and 8.9% in Sanya. However, the heating setpoint increased from 14.9%
in Dandong to 31.2% of Sanya, and the PI doubled.
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The fourth analysis chart is the PI of each input parameter with regard to district
cooling demand. It should be noted that the energy consumption of district cooling demand
in northern cities is small but increases as the location changes from north to south. The
district cooling demand in Sanya is about four times that of Dandong, so the important
parameters should be ranked in order starting with southernmost Sanya. In Figure 10,
the largest influence factor of district cooling demand is the cooling setpoint in Sanya,
with an PI of 21.3%. However, the influence of the cooling setpoint does not change with
geographical location and was maintained at the PI of 21–24% in these 24 coastal cities.
The second parameter was infiltration rate, which had an impact of 12.9% on Sanya. The
infiltration rate maintained a 10% PI between Sanya and Xiamen but gradually declined as
the location moved north, dropping to 0.9% in Jinzhou and Dalian.

4.4. Analysis of Simulation Results in Different Sampling Methods

The first step was to explore the impact of different sampling methods on building
energy consumption because the logic of each sampling method is different. By comparing
the simulation results of seven different sampling methods on an EnergyPlus model in
a statistical box chart, the accuracy of the influence assessment of various SA methods
on input parameters could be further realized. As shown in Figure 11, we analyzed the
simulated values of annual total energy consumption of seven sampling methods and their
comprehensive values in Qingdao, which is the real building location and the example
used in this section. The average and median values of various sampling methods were
similar, but we observed slight differences in the upper and lower quartiles and significant
differences in the maximum and minimum values. FASTC and FASTE have a wider range
of data because they periodically sample input data with sinusoidal function. Sobol’s upper
and lower quartiles and the gap between maximum and minimum were smaller than the
FASTC and FASTE values. In the comparison of simulation results of LHS, QRS, and RS,
the quartile value of LHS was the smallest, while the QRS had the smallest maximum and
minimum values, and the change range of RS was the largest. On the other hand, the Morris
sampling method differed from other numerical methods because it is a one-step-at-a-time
method. Each parameter was sampled once, and only 260 samplings were performed in
the simulation.
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4.5. Percentage Influence of Each SA Index

In the second step, by averaging the percentage of all the factors in each city, we were
able to obtain a comparison chart of the sensitivity method, as shown in Figure 12. Since
the PIs of each factor analyzed by various sampling methods and SA methods differed, the
average values of each parameter in the SA indices were calculated for comparison. The
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infiltration rate was still the most influential factor in the evaluation, and the average PI of
all methods was 19.9%. However, in the FASTC method, the extreme value of infiltration
rate was 36.9%, but it had a very low value in the KS sensitivity evaluation method,
reaching 13.1% in KS of the RS method. The second most influential factor among these
cities was the cooling setpoint, with an average influence value of 14.6%. In the cooling
setpoint factor, the Sobol method had the highest PI, which was 22.7% and 23.2%. KS was
still the lowest, reaching 10.2% in the LHS method, while the value in the FASTE method
reached the maximum value of 21% and 16.8% in the evaluation of the heating setpoint,
which even exceeded the infiltration rate to become the first influencing factor.
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5. Discussion
5.1. Building Energy Consumption

The building energy consumption were mainly influenced by infiltration rate, heating
setpoint, window U value and cooling setpoint, which were the key parameters for poli-
cymakers to formulate the energy codes in the Chinese coastline. The PI of roof U value
differed from other factors, showing a parabola trend with climate change. It gradually
decreased from north to south, from Dandong to Wenzhou and then continuously increased
to Sanya. The PI of equipment and light density also increased from north to south, proba-
bly because the total energy consumption decreased from north to south, while the energy
consumption of equipment and light density remained unchanged, but their proportion
increased. Finally, the influence index of WWR changed little among the different locations,
and the influence of window transmittance, roof solar absorptance, overhang ratio, and
occupant density all showed an increasing trend from north to south, indicating that the
influence of these parameters will increase as the climate temperature increases.

5.2. Indoor Uncomfortable Hours

For IUH, the heating setpoint was the biggest influence factor, while the cooling
setpoint was the second influential parameter in most coastal cities. The subsequent
important factors were roof U value, occupant density, equipment usage, occupant sensible
heat fraction, and light density. Thus, the setpoint of air conditioning, insulation of building,
and internal gain should be considered important for the thermal comfort of occupants. As
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the topic of indoor comfort becomes more and more prevalent in the COVID-19 period,
policymakers also need to consider the impact of these factors on future building comfort
specifications. In most cities, their comprehensive impact on uncomfortable times can
reach 30%. It is worth noting that the influence of infiltration rate increased with the
location from north to south. In Dandong, it only affects 2.8%, ranking 12th. However, it
became more important in southern cities. For example, in Shantou, the influence index of
infiltration rate was 9.9%, making it the third largest value in input parameters. Because
the average dry bulb temperature of Sanya is higher than that of other cities, the order
of influencing factors also differs from other cities. For example, the most influential
factors were cooling setpoint and roof solar absorptance in Sanya, with 12.8% and 12.5%,
respectively. This result indicated that when designing buildings in an area with high
temperatures, rethinking the important parameters of IUH is a necessity.

5.3. District Heating Demand

District heating demand had contributed most of the building energy demand in north
cities. Thus, for designers, the infiltration rate, heating setpoint, and roof U value were
the top three parameters to affect the percentage in each city, which can comprehensively
impact about 50% of the district heating demand in the north part of the Chinese coastline.
Therefore, the heating setpoint has a greater impact on district heating demand in the
hotter locations, while the infiltration rate has a greater impact on district heating demand
in the colder cities. As a result, the important influencing factors were found to be window
U value, window SHGC, roof solar absorptance, roof thermal absorptance, wall U value,
and WWR. These parameters mainly belong to the thermal insulation and absorptivity of
windows, roofs, and walls, accounting for about 30% of the total in northern cities. With
climate change, the district heating demand in winter increases significantly. Policymakers
can pay attention to the key parameters mentioned in this section, which may affect 80% of
the district heating demand along the northern coastline of China. Therefore, the annual
heating demand is not only influenced by the climate condition but also affected by the
building’s thermal insulation performance.

5.4. District Cooling Demand

Due to the climate change and urban heat island, the district cooling demand has
increased, especially in south cities. The key influential factor for district cooling demand in
south cities were cooling setpoints, infiltration rate, and equipment density. The following
influencing factors, such as the roof solar absorptance and the window SHGC, were not
greatly affected by the location and remained around 10%. Therefore, the cooling setpoint,
roof solar absorptance, and window SHGC were not greatly affected by location, which
can affect about 40% of the district cooling demand. In addition to the infiltration rate,
orientation is also affected by location, but the impact ratio is low in the chart. Other
factors are less affected by changing climate. Thus, for policymakers, the key parameters
for the energy codes of district cooling demand in coastal cities were cooling setpoint,
infiltration rate, roof solar absorptance, window SHGC, occupant density, WWR, roof U
value, equipment usage, and roof thermal absorptance, which can comprehensively affect
80% of the district cooling demand.

5.5. Identifying SA Methods

To choose the most neutral and extensive influence assessment method, each sampling
and sensitivity evaluation method had to be compared. We used the PI of annual building
energy consumption to make comparisons in this section. In Figure 12, we found that
the percentages of PEAR, SPEA, PCC, PRCC, SRC, and SRRC differed significantly from
other evaluation methods in terms of the orientation on total building energy consumption.
At the same time, the values of KS in three different sampling methods differed from
other methods, which had relative mean values on various influencing factors, such as
infiltration rate, heating, and cooling setpoint. On the one hand, it had a low evaluation
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value on the influential factors. On the other hand, the unimportant parameters obtained
a high evaluation value in KS, such as the visibility absorptance of the wall and roof. In
the comparison, FASTC and Sobol could distinguish the PI of each factor. The influential
factor had a greater value, while the unimportant factor tended to be 0. For example, they
evaluated more than 30% influence of the infiltration rate, while the least influential factors,
such as window visible transmittance, were close to 0.0%. Therefore, the average PI of
the 27 sensitivity evaluation methods used in this study can greatly reduce the impact of
various extreme values from different sampling and SA methods and thus obtain a more
accurate PI.

5.5.1. F-Test

In the evaluation of the F-test, the data set evaluated by each method was compared
with the data set of the average value. Although the mean data set does not necessarily
represent the most accurate sensitivity value, it can represent the most neutral, extensive,
and reliable value. As shown in Figure 13, FASTC has the smallest value, followed by
FASTE-first order, Sobol, and KS in each sampling method. Therefore, they are the most
different evaluation methods from the average data set. Then, we observed FASTE-total
order and the PCC and PRCC in three sampling methods, and their F-test values were in
the middle of the chart, which were still close to the average data set. The rest of the PEAR,
SPEA, SRC, SRRC, and Morris methods had an F-test value above 0.7, among which SRC,
SRRC, and Morris have been widely used SA methods in many studies. Among them, the
two largest values of the F-test were PEAR in the QRS and LHS methods, which reached
0.82 and 0.8, which were the closest to the average data set. Meanwhile, the SRC of the
RS and LHS methods were 0.79 and 0.78, respectively. Therefore, the recommended SA
indices in the F-test part were Quasi-PEAR, Random-SRC, and Latin-PEAR.
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5.5.2. Exceed Percentage

We then added up the difference between the influence value and the average value
of the factors in each method to obtain the cumulative percentage difference between each
method and the average data set. The values in Figure 14 consider the mean percentage
value of four outputs in this paper, so the smaller the difference between the data set and
the average set, the more accurate the data is to the average. The results in Figure 14 are
similar to those in the F-test. The exceed percentages of FASTC, FASTE, Sobol, and KS are
all over 40%, the largest cumulative difference from the average data set. The second level
includes PCC, PRCC, and Morris, which all had a cumulative average gap between 20%
and 30%. Finally, the PEAR, SPEA, SRC, and SRRC were all less than 20%. The smallest of
them were SRRC and SRC in the LHS method, with values of 12.2% and 12.9%, respectively.
PEAR in the QRS method was 13.0%, while the SRC in the RS method was 13.1%.
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Therefore, we found that the best SA method and sampling was PEAR in the QRS
method, followed by SRC in the QS and LHS methods, which can obtain the closest data
to the average. However, since these methods require a long simulation time, the Morris
method was also able to get close results if researchers needed to save time. Furthermore,
we have shown that different sampling and SA methods can differ considerably. If these
methods are considered comprehensively, the objective influence value can be obtained.

6. Conclusions

In this paper, we proposed a new approach for evaluating the comprehensive PI of
input parameters on building energy and comfort performance and a way for exploring
the most reliable sampling and sensitivity assessment method. Using a variety of sampling
methods and sensitivity evaluation methods, we comprehensively evaluated the impact
of 25 input parameters on annual total building energy consumption, IUH, and district
heating and cooling energy demand in 24 coastal cities of China. The 27 sensitivity indices
were integrated by using the influence index formula to obtain the accurate PI of each
input parameter under the corresponding conditions. The paper can be concluded into
six points:

(1) Comprehensive key parameters: For all four output factors of the results, the key
parameters were heating setpoint, infiltration rate, cooling setpoint, roof U value,
roof solar absorptance, window SHGC, equipment, and occupant density, which
comprehensively impacted 70% of the four outputs of energy demand and comfort
performance along China’s coastline. Therefore, these eight important parameters
need to be considered in the design stage of building along the Chinese coastline. We
also found that the PI of many input parameters is affected by location.

(2) Annual total building energy consumption: The infiltration rate was the biggest
influence factor in the northern cities, impacting 28.4% of total building energy in
Dandong and gradually decreasing with the change of the location from north to
south, reaching only 11.2% in Sanya. The subsequent important factors were heating
setpoint, window U value, cooling setpoint, roof U value, and equipment, which were
able to affect more than 40% of annual building energy consumption.

(3) Indoor comfort: Heating and cooling setpoints were the two biggest influence factors
on IUH, accounting for 40% in most cities. The subsequent important factors were
roof U value, occupant density, equipment usage, occupant sensible heating ratio,
and light density, whose comprehensive impact on IUH could reach 30%. Sanya, the
hottest city, had different influence results with other cities regarding IUH.

(4) District heating demand: This contributed nearly 70% of the energy consumption
in the northernmost city, which dropped to nearly 12.5% in Xiamen. The infiltration
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rate also affected more than 25% of district heating energy demand in northern cities.
The heating setpoint, roof U value, window U value, window SHGC value, roof solar
and thermal absorptance, are six other top parameters affecting the influence index
and can comprehensively impact approximately 45% of the district heating energy
demand in the northernmost city.

(5) District cooling demand: This consumed less energy than the heating demand and
produced 9.6% and 76.3% of total building energy consumption in Dandong and
Sanya, respectively. The cooling setpoint was the largest influence factor and did
not change with geographical location, which had maintained the PI of 21–24% in
all 24 cities. The following factors, such as infiltration rate, roof solar absorptance,
window SHGC, and occupant density altogether could affect more than 40% of the
district cooling demand in southern cities.

(6) Reliable SA method: The PI of parameters showed a huge difference between each
sampling and SA method. After comparing the F-test and the exceed percentage test,
the PEAR method in the QRS method was proposed as the most reliable method in the
study. It is followed by SRC in the RS and LHS methods, which obtained the closest
data to the average value. Meanwhile, the Morris is also a recommended method
because it can reduce considerable simulation time but still obtain a close result.

Importantly, the results of this research could provide suggestions for policymakers to
formulate the relevant building codes, and the proposed method can also be applied by
other researchers. However, this study has some limitations. At first, although the case
building was a real office building, the study used a single building model to analyze the
PI, which may reduce the likelihood of our results in other types of office models. Second,
the simulation process was tedious and required several months. Each city needed to be
sampled and simulated more than 20,000 times. Third, like many types of SA research,
since current knowledge about the building factors and their boundaries are still limited,
the number of input parameters and their ranges need to be extended. Future research
may add different building models and locations and use an artificial neural network to
predict the PI of each parameter, in order to save the modeling and simulation time and
facilitate designers and engineers who are not familiar with building software in querying
and obtaining the influence value of each input parameter.
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