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Abstract: Understanding how climate change affects material degradation is the first step in heritage
conservation. To study such impact, high-resolution climate information is required. However, so
far, no regional climate simulations have been evaluated considering building damage criteria over
the region of Iran. This paper has a twofold objective: to conduct an overview of climate model
performance over Iran by evaluating the output of two regional climate models, ALARO-0 and
REMO2015, and to find an optimal approach for model evaluation fitted to studies on building
physics. Data of the evaluation run for both models were compared with data of weather stations
located in six different climate zones in Iran to assess their performance over the region and gain
insight about model uncertainties. Given that the research scope covers the evaluation of climate
models to use in studies on building physics, in addition to climate parameters, five degradation
risks are analysed. The performance of the two models varies over the studied locations. In general,
both models fall within the spread of observations except for wind parameters. Accordingly, indices
related to temperature and precipitation are well predicted, in contrast to indices related to wind.
The analysis shows that considering the observed biases, selecting an ensemble of representative
models based on the evaluation results of climate variables important for hygrothermal simulations
would be recommended.

Keywords: climate change; heritage; building damage criteria; regional climate model; ALARO-0;
REMO2015; model evaluation; Iran; hygrothermal simulations; model evaluation

1. Introduction

The Iranian plateau hosts one of the oldest civilisations in the world. The country’s
rich cultural heritage is reflected by its 22 UNESCO world heritage sites [1]. The climate of
Iran is diverse, ranging from arid and subtropical conditions over most of the country to
mild conditions along the Caspian coast in the north and cold conditions in the mountain
ranges, such as the Zagros and Alborz Mountains [2].

Today, the study of historical observations shows a clear and concerning change in
global climate. Heritage sites can be vulnerable to changes in weather patterns [3]. The
Fifth Assessment Report of the Intergovernmental Panel on Climate Change [4] suggests
even more significant changes in regional climate conditions during the next century, such
as drier and hotter summers (JJA) over the Middle East. Since it is unknown what the
impact of this climate change will be on heritage sites, this should be assessed. Thus, so
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far, no relevant research has been performed over the Iranian plateau focusing on the
current and future climate change effects on building material degradation. This study
aims to evaluate two regional climate models over the Iranian plateau, considering building
material degradation criteria.

Temperature is a fundamental parameter for heritage sites, since it has a significant
impact on material durability. For example, higher temperatures cause reduced material
stiffness and strength. Knowing the average ambient temperature is vital in calculating
various building material degradation indices such as freeze–thaw cycles (FTCs), salt
crystallisation and the moisture index (MI).

FTCs are critical degradation criteria for building materials, particularly for historical
buildings due to material ageing. Hence, the minimum temperature is relevant during
both historical analysis and model validation to know to what extent models are able to
reproduce low temperatures. Additionally, high temperatures are among the most critical
factors that can change the thermal properties of building materials and cause thermal
stress in building components. Therefore, the average ambient temperature and minimum
and maximum temperatures of the models were evaluated in this study.

The presence, accumulation and periodic variations of moisture in the mass and
on the surface of building components affect the building’s energy efficiency and cause
various types of deterioration and degradation mechanisms. Specifically, the accumulation
of moisture in building materials (resulting from water vapour condensation, rainwater
penetration, groundwater uptake, etc.) increases the thermal conductivity and decreases the
insulation capacity [5–13]. Additionally, changes in moisture content can cause swelling
and shrinkage of building components, as well as solution and precipitation of salts
inside the building materials, which can cause strains and cracks in the components. Salt
weathering is among the critical degradation criteria in heritage sites, and it is driven by
phase changes due to variations in relative humidity that depend on the local climate.

Further, assessing the MI is essential to study the process of building material deterio-
ration. Mould and decay in building materials are critical with regard to building durability
and are caused when the humidity level exceeds the tolerance of the structure [14]. Hence,
an assessment of model reliability for this factor is necessary. In addition, aging of the
materials is affected by vapour pressure, relative humidity and precipitation. These climatic
parameters play essential roles in the erosion of the building envelope.

Furthermore, there is a significant impact of wind-driven rain, which induces damages
to and erosion of the building envelope. Therefore, simulated wind must be evaluated
before it is used as input in building erosion assessment. In order to study the future climate
and its impacts, data of climate simulations are needed. General circulation models (GCMs)
are used to study climate conditions on a global scale. However, the spatial resolution of
such global simulations, generally not less than 50 km [15], is too coarse to identify climate
variability on a regional scale, e.g., resulting from orography. Through regional climate
models (RCMs), GCM data can be downscaled to higher resolution across a specific region.
Using climate models is the first step in assessing what the future will bring; however,
these models need to be validated.

Data of the REMO and ALARO-0 regional climate models have been generated by the
AFTER project (https://www.projectafter.net) and accessed on 25 May 2020. The project,
funded by the ERA.Net RUS Plus Initiative, ID 166, aims to foster research cooperation
between Russia, the European Union and Turkey. Both regional models are being developed
by the partner institutions of this project. In the AFTER project’s evaluation of ALARO-0
and REMO at 0.22◦ horizontal resolution, the models showed good performance over
western Central Asia, including Iran [16].

In studies on building physics, climate projections are often used without any specific
validation, hence it is unclear how reliable the associated hygrothermal output is. In
addition, typically only a single GCM-RCM combination is adopted. In this study, two
RCMs are used and compared with observations to assess the model-specific bias effects
that may arise. Given that both models have previously been validated for that specific
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region from a climatological point of view, it can be considered as the best-case starting
point for studies on building physics when no specific validation has been performed that
considers the material degradation risks.

Since it is crucial to know the future climate and its uncertainties at the locations of
heritage sites, evaluations were conducted at point locations instead of doing an evaluation
study based on comparisons with gridded observational datasets.

In this paper, ALARO-0 and REMO, which were well evaluated over the region, are
assessed for selected locations. Different climatic parameters and indices are analysed
based on a dataset of 38 years (1980–2017) for six locations across the Iranian plateau.

Three-hourly data are essential for studying daily variability, which plays a critical
role in, e.g., FTCs and thermal stress, whereas monthly and seasonal intervals are used
for slower processes such as interstitial condensation. Annual time series are critical to
identify temporal trends and their significance [17]. Finally, a unique methodology was
used to evaluate the output of the RCMs. A comparison between the observed minimum,
mean and maximum temperature and the modelled data across the studied locations is
presented for the studied period, together with an analysis of FTCs (Section 3.1). Section 3.2
presents the results for the relative humidity and salt crystallisation. Section 3.3 presents
an evaluation of the modelled precipitation parameters and MI. Section 3.4 assesses the
accuracy of the model for wind velocity and direction across the studied locations. The last
section evaluates wind-driven rain, followed by the conclusion.

2. Materials and Methods
2.1. Study Area

Given that Iran has an extended range of climate regimes, the analysis was performed
over 6 meteorological stations in different climatic zones, as shown in Figure 1 and Table 1.
It is clear from the map that the study locations are characterised by different climates and
environments. The capital city, Tehran, experiences a cold wet climate in winter (DJF), a
cold semi-arid climate with a mild climate during spring (MAM) and autumn (SON), and
a hot-dry climate in summer (JJA).
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Table 1. Overview of 6 point locations and their climate (1980–2017).

Location Tehran Mashhad Shiraz Tabriz Rasht Isfahan

Coordinates 35.41◦ N/51.19◦ E 36.2◦ N/52.6◦ E 29.6◦ N/52.6◦ E 38.1◦ N/46.2◦ E 37.3◦ N/49.6◦ E 32.5◦ N/51.7◦ E

Orographic
features

Alborz
Mountains to the
north and central

desert to the
south

Valley of
Kashafrud River,

between two
mountain ranges
of Binalood and
Hezar Masjed

Shiraz plain
surrounded by

mountain ranges
with an average
height of 2000 m

Located between
Eynali and

Sahand
mountains in a

fertile area

City on Caspian
Sea coast

Situated at
foothills of

Zagros mountain
range

Altitude (m) 1191 999.2 1488 1361 −8.6 1550.4

ALARO-0
altitude (m) 1485.45 1343 1749 1682 16.7 1705

REMO altitude
(m) 1109.7 1087 1723 1567 −1 1683

Climate Bsk/Csa/Dsa Bsk BSh/Bsk Dsa Csa BSk

Mean Tmin (◦C) 10.5 7.3 9.2 7.2 11.1 9.4

Mean Tmax (◦C) 20.4 21.2 25.6 18.2 20.5 23.1

Annual
precipitation
(mm/year)

429.2 251.5 305.6 318.8 1255.5 114.3

Tehran is located on the Alborz hillside, and Tochal Mountain, at 3974 m height,
overlooks the north of the city. The measurement station is located in the north of the city.
Mashhad is characterised by a steppe climate with a hot summer (JJA) and a cold wet
climate in winter (DJF). Mashhad is the second largest city in Iran, characterised by a dense
metropolitan area and fast urban sprawl, particularly during the 1980s. Shiraz is located in
the south of Iran and experiences a hot semi-arid climate. Tabriz has a humid continental
climate with regular seasons bordering a cold semi-arid climate. Rasht is situated between
a humid subtropical climate and a Mediterranean climate. Isfahan is located in the plain of
the Zayanderud River in the centre of the Iran plateau and experiences a cold desert climate.

2.2. Model Description and Experimental Design

The RCM data in this analysis originated from ALARO-0 and REMO models running
at a spatial resolution of 25 km across central Asia at an hourly time frequency. The ALARO-
0 model version has been described in the referenced articles [17–19]. The most recent
version, REMO2015, has been described in the referred literature [20]. The evaluation runs
of both RCMs were used in the current study. The RCM experiments were forced by lateral
boundary conditions coming from the ERA-interim reanalysis.

The evaluation analysis in the current study was performed by comparing observa-
tional data of the six locations with the modelled data over thirty-eight years (1980–2017)
for the meteorological variables temperature, precipitation, relative humidity, wind ve-
locity and wind direction, as well as for derived building material degradation indices:
freeze–thaw index, salt crystallisation and MI. The nearest-neighbour method was applied
to obtain the model data of the closest grid point to the six selected locations (Table 2).
For both ALARO-0 and REMO, hourly values of 2 m temperature, 10 m wind speed and
precipitation, as well as 3-h values for relative humidity and wind direction, are available.
Daily, monthly and yearly averages for temperature, relative humidity and wind velocity
were calculated from these hourly values. The average daily values of temperature and
relative humidity were used to calculate daily mean vapour pressure. The hourly values for
temperature were used to compute daily minimum and maximum temperature. A height
correction based on differences in topography between the model and the observation
points and assuming a uniform temperature lapse rate of 0.0064 k·m−1 was applied for the
model temperature. For precipitation, the accumulated values for daily, monthly and yearly
time intervals were considered. For the observations, meteorological data provided by the
National Weather Service recorded for the same parameters taken from the three-hourly



Buildings 2021, 11, 376 5 of 29

instantaneous fields were used to compute the minimum and maximum daily, monthly and
yearly temperature and mean values the other parameters. For precipitation, accumulated
values were considered. Observed and modelled parameters with their temporal resolution
for the six locations are summarised in Table 2.

Table 2. Overview of meteorological parameters and time resolution for observations and model data.

Reference Parameters Air Temperature Precipitation Relative Humidity Wind Velocity Wind Direction

Temporal resolution
observations

3-h
2 m 6-h 3-h 3-h

at 10 m
3-h

at 10 m

Temporal resolution
model data

1-h
2 m 1-h 3-h 1-h

at 10 m
6-h

at 10 m

To explain the significant bias over Tehran, the gridded Climatic Research Unit (CRU)
TS dataset (version 4.02), which contains 10 climate-related variables for the period 1901–
2018 at a grid resolution of 0.50◦, was used as a reference.

2.3. Method of Analysis
2.3.1. Statistical Analysis

The evaluation was performed by processing and comparing the models’ outputs
with the observed data. The assessment results were visualised using probability density
function (PDF) plots (kernel distribution) for annual cycles with daily frequency, annual
trends and Taylor diagrams. Taylor diagrams provide a way to graphically summarise how
closely a pattern or a set of patterns matches the observations. In the Taylor diagrams, the
model reliability for the main parameters is quantified in terms of temporal correlation,
centred RMSD and the ratio of temporal variability between the model and the observa-
tional dataset [21]. Standard deviation is used to quantify the variability, and normalisation
is obtained by taking the ratio. In the normalised Taylor diagram, the perfect model lies at
a correlation of 1 and RMSD of 0, which means that models predicted the observational
data. A normalised standard deviation closer to 1 during all seasons means that the model
can better capture variations in seasonality.

Next, by analysing the yearly time series, the models’ trends were studied and com-
pared with the observations. The trend line was plotted for visual analysis. The large
variability in climate leads to significant uncertainties in the trend line and large bounds.
The bounds are not included for clarity.

2.3.2. Scoring Methodology

The calculated RMSD values were picked as comparison criteria for the main climatic
parameters. Given that there is no specific set of criteria for the RCM evaluation considering
material-specific indices and hygrothermal studies, the average values during the analysed
period were selected to assess the models’ performance with derived parameters. The
modelled average values were normalised by dividing by the observed values in order to
rank the models by derived parameters and indicate the model performance: a value close
to 1 indicates good model performance. Moreover, the trend slope for the annual number
of events was computed to evaluate the models’ annual trend consistency compared to
the observations.

2.3.3. Calculation of Indices
Freeze–Thaw Cycles (FTCs)

The first index is the number of FTCs [22]. Based on daily mean temperature, a cycle
is counted each time the temperature drops below 0 ◦C, given that the previous day was
a non-freezing day. The annual number of FTCs for both models was computed and
compared with the observations, and the annual trend of FTCs during the studied period
was examined.
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Salt Crystallisation

Second, salt weathering was studied, which is one of the critical degradation criteria in
historical heritage sites, driven by phase changes in relative humidity. This damage arises
during salt crystallisation–dissolution cycles. Therefore, the monthly and yearly numbers
of halite and thenardite–mirabilite transitions were analysed using criteria proposed in the
referenced articles [23–27]. The number of phase transitions was used to estimate potential
salt damage [25]. In the case of sodium chloride salt (halite), this is assessed by counting the
number of times the average daily relative humidity crossed the critical deliquescence point
of 75.3% for consecutive days. Only transitions that occur when the humidity decreases
and crystallisation occurs are counted, and this is equivalent to the number of cycles [27].

In the case of hydrated salts, thenardite–mirabilite transitions for sodium sulphate
(Na2SO4→Na2SO4·10H2O) are only accumulated on consecutive days when thenardite can
convert to mirabilite (through thenardite dissolution followed by mirabilite crystallisation)
and exert crystallisation pressure higher than 10 MPa [25]. The phase transition in salts
within the building materials occurs during moisture fluctuations. The value of 10 MPa
was chosen because it usually exceeds the tensile strength of porous stone. This threshold
is taken from an analysis of data from the Building Research Establishment for porosity,
bending strength and weight loss during salt crystallisation of British limestones. This
analysis shows that damage by sodium sulphate mainly occurs in stones with 10% porosity
and bending strength of 10 MPa [26]. If the temperature is lower than 22.5 ◦C, the Correns
equation suggests a crystallisation pressure of mirabilite higher than 10 MPa [26]. The
humidity of these transitions is determined from water activities, as reflected in [25], and
yields a mirabilite–thenardite phase boundary of:

RHeq = aH2O = 10
√

Kmir/Kthe (1)

where aH2O is the water activity and Kmir and Kthe are the solubility products of mirabilite
and thenardite [26]. This yields a 10 MPa phase boundary at:

RHeq = 59.11 + 0.87549 T when T < 22.5 ◦C (2)

Since the stone’s buffering effect in the humidity transfer was taken into account using
daily mean relative humidity, the damage was slightly greater in one-day cycles [27]; thus
daily values were considered.

Moisture Index (MI)

The MI, as mentioned, is essential to study the level of wetting or drying of the con-
struction and can be used to analyse the effects of climate change on the moisture content
of building materials. Besides the MI calculated for each year for the models and obser-
vations [28], the moisture reference years (MRYs) were compared for different locations
(see Supplementary Materials). The MRY selection methodology used in our research was
proposed in the referenced literature [27] and uses a climate-based approach independent
of the wall construction. The selected MRYs are represented in Supplementary Materials.

By using the MI, it is possible to classify individual years as wet or dry. The hypothesis
is that the higher the MI, the greater the potential for moisture loading. Wet and dry years
are defined as those years that deviate more than one standard deviation from the mean
MI value of the sample set for a city [27].

The moisture index is defined as the ratio of the wetting index (WI) to the drying
index (DI):

MI = WI/DI (3)

The total annual average precipitation, average yearly rainfall multiplied by average
wind velocity (aWDR) and accumulated yearly wind-driven rain can be considered to
calculate the wetting index (WI). Here, the annual average precipitation is considered due to
the models’ significant bias for wind parameters (correlation lower than 0.50; see Section 3).
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The DI is calculated for climate data using Equation (4):

DI = (1/n)
n

∑
i=1

k

∑
h=1

∆W (4)

where DI is the drying index in kilograms of water per kilogram of air, n is the number of
considered years, and k is the number of hours in a particular year. Here, the drying index
for each year is computed, so n is equal to 1. ∆W is the difference between the humidity
ratio at saturation and in ambient conditions.

∆W at time t can be computed using Equation (5):

∆W(t) = Wsat (t)−Wout (t) (5)

where ∆W(t) is the difference between the humidity ratio at saturation, Wsat, and the
humidity ratio at ambient conditions, Wout, at time t.

The humidity ratio (W) can be calculated using Equation (6):

W = 0.622× (vp/p− vp) (6)

where W is the humidity ratio in kilograms of water per kilogram of air, vp is the vapour
pressure in kilopascals (kPa), and p is the total mixture pressure in kilopascals (kPa).

Wind-Driven Rain (WDR)

Wind-driven rain is one of the critical moisture sources for the building envelope,
and its quantity is an essential parameter for heat–air–moisture (HAM) analysis. Before
using this climate variable in hygrothermal simulations, it is necessary to know the model’s
reliability for this parameter. Similar to the MI, there are different methods to calculate this
parameter. Here the ISO semi-empirical method [28] is used, which is calculated based on
wind velocity, wind direction and horizontal rainfall. WDR can be calculated for a specific
orientation using the following Equation:

WDR = 2/9· V(10) · cos(θ) · (rh)
0.88 (7)

where WDR is the free field wind-driven rain, V(10) is the wind speed (m/s) at 10 m height,
Өis the angle between a line normal to the wall of interest and the wind direction and rh is
the rainfall on a horizontal surface (mm/h).

3. Results
3.1. Temperature
3.1.1. Mean, Minimum, and Maximum Temperature

Figure 2 shows the annual trends for minimum, mean and maximum temperature
over the studied stations. The observations and models have a warming trend, but the
trend is smoother for REMO and ALARO-0. The most substantial difference between
the annual trends can be observed in Mashhad. Given the intense urbanisation of this
city, the urban heat island (UHI) phenomenon can induce an additional warming trend
at this location [29]. The fact that the most significant slope difference between model
and observation can be seen for the minimum temperature supports this hypothesis, as
the UHI is mainly a nocturnal effect. As the land use is kept constant during the climate
runs, the increasing urbanisation is not reflected in the modelled climate, which explains
the less steep trend of the model in mentioned cities [30]. Figure 3 shows the PDFs of
the observed daily temperature for each model output compared to the observations for
the six locations. A good overall representation of the observed temperature by both
models can be seen over the studied stations, except for Tehran, where the cold bias
caused a shift in the distribution of ALARO-0. ALARO-0 underestimates extreme cold and
mid-range temperatures and overestimates higher temperatures, except for Shiraz, where
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there is an underestimation of warm temperatures (Figure 3). REMO simulates warmer
low temperatures and overestimates the presence of mid-range temperatures for Tabriz,
Mashad and Rasht. A bias for warm temperature is simulated by REMO across all studied
locations, except for Tehran, with a very cold bias (Figures 2 and 3; see Supplementary
Materials). The reason can be seen in Figure 4: ALARO-0 data extracted for Tehran do
not represent the observed climate well, since, for this location, the nearest point of the
ALARO-0 grid is situated in the mountainous area to the northwest of the city, with a cold
semi-arid climate (Figure 4), and shows a very cold local bias compared with REMO output
and the CRU dataset (Figure 4). The obtained bias at this location results from the highly
heterogeneous terrain in the gridcell with a resolution of 25 km and clearly shows the
limitation of using this resolution. Using higher-resolution climate data could overcome
this issue.
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Figure 2. Maximum, mean and minimum temperature comparing models with observations for Isfahan (a), Mashhad (b),
Shiraz (c), Rasht (d), Tabriz (e) and Tehran (f) during 1980–2017.
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Figure 3. Probability density function plot showing distribution density for daily mean temperature comparing models
with observations over the studied stations: (a) Tabriz and Mashhad, (b) Rasht and Shiraz, (c) Tehran and Isfahan during
1980–2017.
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above the cross of Tehran is highlighted with dark blue. (b) Aerial map of Tehran comparing meas-
urement station (light blue) coordinations with ALARO-0 gridcell (purple). 

The annual and seasonal temporal correlations are presented by the Taylor diagrams 
in Figure 5. REMO simulates maximum temperatures very well at annual resolution for 

Figure 4. (a) Spatial representation of temperature over Iran based comparing CRU observational
gridded dataset and bias for REMO and ALARO-0 compared to CRU at 0.22◦. A very cold bias
just above the cross of Tehran is highlighted with dark blue. (b) Aerial map of Tehran comparing
measurement station (light blue) coordinations with ALARO-0 gridcell (purple).

The annual and seasonal temporal correlations are presented by the Taylor diagrams
in Figure 5. REMO simulates maximum temperatures very well at annual resolution for
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Isfahan, Shiraz, Tabriz and Tehran since these locations have a high correlation with the
observations (>95%), a low RMSD (<1) and a normalised standard deviation close to 1.

Figure 5. Normalised Taylor diagrams for annual and seasonal maximum (a), mean (b) and minimum (c) temperature
comparing ALARO-0 and REMO scores for the studied stations during 1980–2017.
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ALARO-0 has even better performance than REMO for Isfahan, Shiraz and Tabriz.
At the seasonal level, the worst performance is obtained during summer (JJA) for all
locations and both models. For mean temperature, the standard deviation is closer to 1, and
temporal correlation is higher for REMO than ALARO-0 at annual resolution, except for
Tabriz and Mashad. These two locations had the lowest mean temperature over the studied
period out of the six locations studied (see Supplementary Materials). Both models also
perform worse during the summer (JJA) for mean temperature, except for Tabriz, and for
Isfahan in the case of REMO (Figure 3). RMSD is larger for minimum temperature than for
mean and maximum temperature over most locations and seasons. Accordingly, the lower
performance in minimum temperature negatively influences the performance of mean
temperature (Figures 2, 3 and 5). However, at the annual resolution, good performance is
still obtained by ALARO-0 for minimum temperature in Isfahan, Shiraz, Tabriz and Mashad.
For REMO, minimum temperature values in Shiraz and Isfahan match the observations
well at the annual level; the correlation is higher than 95% and RMSD is close to zero.

Figure 6 presents the annual cycles of maximum, mean and minimum temperature for
the studied locations. During winter (DJF), ALARO-0 shows a clear cold bias for minimum,
mean and maximum temperature and a warm bias for summer (JJA), except for Tehran
and Tabriz. For REMO, the temperature deviations in the annual cycle are different for
each location.
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3.1.2. Freeze–Thaw Cycles

The annual numbers of FTCs during 1980–2017, according to the models and observed
data, are presented in Figure 7. Both models are consistent with the observations in follow-
ing a decreasing trend over time, except for Mashhad and Tabriz. This decreasing trend
is due to the general warming trend of annual minimum temperature (Figure 2). Except
for Rasht, REMO underestimates the number of FTCs, while ALARO-0 overestimates the
number (Figure 7 and Table 3). Moreover, REMO has lower variability in FTCs than the
observations, while ALARO-0 has higher variability. The observed FTC values are mainly
within the model spread, so when both models are taken into account, the real value is
expected to be within this spread.
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Table 3. Model performance for FTC index over six studied stations (1980–2017).

Observations ALARO-0 REMO

Mean of
FTCs

Trend
Slope

Normalised
FTC

Mean of
FTCs

Trend
Slope

Normalised
FTC

Mean of
FTCs

Trend
Slope

Normalised
FTC

Isfahan 2.6 Decremental 1 6.2 Decremental 2.4 1.3 Decremental 0.50
Mashhad 5.86 Decremental 1 6.21 Incremental 1.06 4.4 Incremental 0.75

Rasht 0.45 Decremental 1 0.58 Incremental 1.3 0.5 Incremental 1.1
Shiraz 0.26 Decremental 1 3 Incremental 11.5 0.1 Decremental 0.40
Tabriz 7 Decremental 1 8.3 Decremental 1.2 5.8 Incremental 0.80
Tehran 2.5 Decremental 1 7.3 Decremental 2.9 0.8 Decremental 0.32
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3.2. Humidity
3.2.1. Relative Humidity

Figure 8 shows the PDFs for daily average relative humidity over the different loca-
tions. The REMO model substantially overestimates low relative humidity values and
underestimates high relative humidity values for all sites. A significant underestimation
in high relative humidity values can be observed for Rasht, which has the wettest climate
among the studied locations (Table 1). ALARO-0 also underestimates the extremely high
relative humidity values at this location, but to a lesser extent than REMO. The PDFs
of ALARO-0 are more proportional to the observations than those of REMO, except for
Tehran, where a substantial overestimation of relative humidity is simulated by ALARO-0.
As with temperature, ALARO-0 makes an imperfect estimation of relative humidity for
Tehran because the nearest model grid point is located in the mountainous area, outside
the urban area, which has a completely different climate. Moreover, there is a notable
underestimation of relative humidity in Mashhad for ALARO-0. An overestimation in high
relative humidity values can be observed for ALARO-0 at all locations. The normalised
Taylor diagrams for relative humidity confirm that both models perform worse for annual
average relative humidity in Rasht, since the lowest correlation and highest RMSD are
observed for this location (Figure 9). REMO better captures the standard deviation in
relative humidity for all places at the annual level, while ALARO-0 has higher correlations
and lower RMSD values than REMO, except for Tehran. Comparing the seasons, REMO
scores are better during spring (MAM) and winter (DJF). These seasons have typically
higher relative humidity for the studied locations. Both models show low performance in
predicting relative humidity well during summer (JJA).

The variation in annual relative humidity and the linear trend line are depicted for
each location in Figure 10. There is a significant negative bias of the REMO model over the
studied stations, whereas ALARO-0 has a limited negative bias for Mashhad, Isfahan and
Rasht and a positive bias for Shiraz, Tabriz and Tehran. Except for Rasht, all locations have
a decreasing trend in relative humidity observations, and both models correctly predict a
decreasing trend. However, for Mashhad and Isfahan, the observed decrease in relative
humidity is steeper than the trend of the model outputs. As noted in the previous section
regarding temperature, the UHI effect plays a role in these locations. A sharp decrease in
relative humidity over time due to the impact of urbanisation has already been extensively
reported in the literature [31,32].
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Figure 9. Taylor diagrams showing temporal correlation, RMSD and normalised standard deviation 
comparing ALARO-0 (a) and REMO (b) for annual and seasonal relative humidity over six studied
stations during 1980–2017. 

Figure 10. Annual average relative humidity for studied stations, comparing models with observations over the studied 
stations: Mashhad (a), Shiraz (b), Tehran (c), Tabriz (d), Isfahan (e) and Rasht (f) during 1980–2017. 
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3.2.2. Salt Crystallisation Index

Table 4 presents the average observed and modelled annual number of salt transitions
and the yearly trend slope for the studied locations. For the number of halite transitions,
REMO often predicts within the range of observations, except for Rasht and Mashhad,
whereas in these cities ALARO-0 predicts within the spread of the observations. For Rasht,
REMO shows a substantial positive bias in the number of transitions for both types of salts.
For thenardite–mirabilite transitions, ALARO-0 results always fall within the spread of the
observations, and REMO predicts well over Isfahan, Tabriz and Tehran (Table 4).

Table 4. Model performance for the annual number of transitions of halite and thenardite–mirabilite (T-M). (N, number
of phase transitions; T, trend slope (Year−1)). Modelled values marked in green fall within the range of observations
(1980–2017).

Observation ALARO-0 REMO

Halite T-M Halite T-M Halite T-M

N T N T N T N T N T N T

Isfahan 6.4 −0.05 11.5 −0.16 10 −0.02 14.5 −0.03 6.4 −0.01 10.4 −0.1
Mashhad 22.6 −0.14 22.1 0.0003 21 −0.03 19.7 0.004 9.3 −0.03 13.7 0.03

Rasht 30.32 −0.04 15.6 −0.24 23 −0.04 14.5 −0.08 51 −0.07 36 −0.04
Shiraz 10.4 −0.12 16 −0.19 16 −0.1 11.2 −0.014 14.4 −0.06 8 −0.05
Tabriz 18 −0.12 18 0.04 25 −0.06 15.7 −0.02 13.1 −0.18 23.2 −0.04
Tehran 9.6 −0.16 14.2 −0.2 18 0.16 12.8 0.08 6.2 −0.07 11.2 −0.08

The equilibrium lines represent the phase boundary of monthly mean relative humid-
ity for halite (75.3% relative humidity) and thenardite–mirabilite transitions in Rasht, at
sites with buildings sensitive to salt weathering, are reported in Figure 11a,b. The number
of phase changes for this type of salt moves towards zero during warm months. As can
be seen, the number of transitions increases when the mean relative humidity gets closer
to the equilibrium line point for the phase change. The varying number of transitions
over the year indicates different seasonality for the two types of salts (Figure 11b). For
the observations, relative humidity decreases during the warm months but stays close
to the equilibrium point. As a result, a notable growth trend in halite transitions can be
observed from spring (MAM), which stabilises during the summer (JJA) and decreases in
early autumn (SON). Relative humidity values produced by ALARO-0 following the same
seasonality pattern decrease during warm months, but with a sharper slope that causes a
huge difference from the equilibrium line and, as a result, in contrast to the observations,
the number of phase changes for halite drops during warm months.

The yearly trend for both kinds of salt transitions during the studied period are pre-
sented in Figure 11c–h, showing a decremental trend for the number of halite transitions for
both models and observations, except for Tehran, where ALARO-0, unlike the observations,
shows an incremental trend for both types of salt. For thenardite–mirabilite transitions,
the observed data show an incremental trend over Mashhad and Tabriz, followed by both
models over Mashhad, whereas over Tabriz, ALARO-0 shows a decremental trend. A
notable negative bias for halite transitions can be observed for REMO over the studied
locations, except for Rasht, with a significant warm bias, where both models’ annual trend
is different from the observations.
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Figure 11. (a) Mean monthly relative humidity comparing with equilibrium lines of transitions of halite and thenardite–
mirabilite for Rasht. (b) The number of transitions for annual cycles comparing ALARO-0 and REMO with observations
considering relative humidity in Rasht. The yearly number of phase transitions for halite and thenardite–mirabilite
comparing ALARO-0 and REMO with observations over the studied stations: Mashhad (c), Shiraz (d), Tehran (e), Tabriz (f),
Isfahan (g) and Rasht (h) during 1980–2017.
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3.3. Wetting and Drying
3.3.1. Precipitation

Figure 12a–c shows the PDF plot for total annual precipitation over the studied
area. As can be observed, for Rasht (with the highest yearly precipitation), Shiraz and
Mashhad, the REMO distribution is concentrated in the low-range values, thus notably
underestimated. A similar consistency with the observations over Isfahan can be observed
for the REMO predictions. The ALARO-0 distribution over Mashhad, Shiraz and Rasht is
more proportional to the observations than the REMO output while underestimating for
Isfahan (with the lowest annual precipitation).
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a wet bias. This mainly refers to the model’s bias for precipitation. The significant overes-
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timation of temperature, resulting in a notable underestimation of the drying index. Due 
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Figure 12. PDFs for total annual precipitation comparing ALARO-0 and REMO with observations over the studied stations:
(a) Tabriz and Mashhad, (b) Isfahan and Tehran, (c) Shiraz and Rasht during 1980–2017. Taylor diagrams comparing
ALARO-0 (d) and REMO (e) for the annual and seasonal relative humidity over six studied stations during 1980–2017. (d,e)
Taylor diagrams showing ALARO-0 and REMO scores over six stations for annual and seasonal precipitation.

The PDF analysis results are reflected in the standard deviation of the models from
the mean of observations (Figure 12d,e), where the consistency, overestimation or underes-
timation of the model’s distribution can be clearly observed. For the annual resolution, the
REMO model shows better performance over Rasht, Mashhad and Tehran. Over Tabriz,
Isfahan and Shiraz, ALARO-0 produces data more consistent with the observations. An
analysis of the seasonal resolution shows that during the autumn (SON), REMO shows bet-
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ter results over Tabriz, Tehran, Rasht and Shiraz, whereas ALARO-0 obtains better scores
for Mashhad and Isfahan. For the spring (MAM), ALARO-0 shows better performance over
Shiraz, Isfahan and Tabriz. For Mashhad, Rasht and Tehran, REMO output shows better
performance during spring (MAM). The winter (DJF) evaluation scores, with the highest
precipitation, show that REMO has better performance over Shiraz, Tehran and Mashhad.
The ALARO-0 output predicts more precisely over Tabriz, Isfahan, and Rasht (rainiest
city). Scores during summer (JJA), with the lowest rainfall, are substantially low. The
highest scores are achieved by ALARO-0 during winter (DJF). For REMO, the computed
correlations for different regions are concentrated between 0.3 and 0.6. The lowest scores
are obtained during summer (JJA).

An analysis of the yearly trends for all 38 years of the study is shown in Figure 10.
Except for the trend of REMO over Isfahan and annual ALARO-0 over Rasht, which contrast
with the observations, both models follow the observations. For Isfahan, Mashhad, Tabriz
and Shiraz, ALARO-0 shows a slight dry bias, whereas over Tehran it has a significant wet
bias. The REMO annual trend shows a dry bias over Mashhad, Rasht (significantly drier)
and Shiraz, and a wet bias over Tehran and Tabriz (significant wet bias).

3.3.2. Moisture Index

The average MI values during the 38 years and the trend’s slope for both RCMs are
shown in Table 5 based on the annual time series (Figure 13). ALARO-0 output, except
for Rasht and Tehran, falls within the range of the observations and follows a decrement
similar to observations. REMO output falls within the spread of the observations over
Isfahan and Tehran and shows a dry bias for the rest of the locations except Tabriz, where
it shows a wet bias. This mainly refers to the model’s bias for precipitation. The significant
overestimation over Tehran by ALARO-0 refers to overestimation of precipitation and
underestimation of temperature, resulting in a notable underestimation of the drying index.
Due to minimising the precipitation parameter, both model outputs show a dry bias and
inconsistent trend over Rasht as the wettest studied location.

Table 5. Model performance for moisture index (MI) (1980–2017). MI mean: average moisture index
during 38 years of study (kg air. mm/kg water). Trend slope: slope of trend during 38 years.

Observations ALARO-0 REMO

MI MI MI

MI Mean Slope MI Mean Slope MI Mean Slope

Isfahan 0.34 −0.001 0.22 −0.001 0.34 −0.006
Mashhad 0.85 −0.02 1.05 −0.01 0.43 −0.001

Rasht 13.75 −0.15 7.3 0.0001 3.3 −0.02
Shiraz 0.8 −0.01 0.94 −0.02 0.42 −0.005
Tabriz 1.03 −0.008 1.04 −0.01 1.7 −0.02
Tehran 0.6 −0.008 7.35 0.001 0.86 −0.007
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select wet and dry moisture reference years (MRYs) for each of the 38 years, comparing 
RCM output with the observations (Figure 14). The plot shows the deviation from the 
mean values of WI and DI for individual years in terms of standard deviations. Based on 

Figure 13. Total annual precipitation combined with annual moisture index comparing ALARO-0 and REMO with
observations over six studied stations: Mashhad (a), Shiraz (b), Tehran (c), Tabriz (d), Isfahan (e) and Rasht (f) during
1980–2017.

The computed values of the wetting index (WI) and drying index (DI) were used to
select wet and dry moisture reference years (MRYs) for each of the 38 years, comparing
RCM output with the observations (Figure 14). The plot shows the deviation from the mean
values of WI and DI for individual years in terms of standard deviations. Based on this
method [27], the years with the largest difference between WI and DI were selected as wet
and dry years for models and observations; the year with the largest wet bias represents the
wet years and the year with the largest dry bias represents the dry years. The descending
trend of annual mean temperature and precipitation for the models and observations
clearly shows the drying index’s dependency on temperature and relative humidity. The
wet year is slightly colder and more humid than the average. Figure 14 shows how wetting
and drying affect the reference year selection [27]. The particulars of the MRYs selected
and compared with the average climatic values are shown in Supplementary Materials.
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Figure 14. Deviation of individual years from means of wet and dry index comparing models with observation over six
studied stations: Mashhad (a), Shiraz (b), Tehran (c), Tabriz (d), Isfahan (e) and Rasht (f) during 1980–2017.

3.4. Wind Parameters
3.4.1. Wind Velocity and Wind Direction

The PDF plot (Figure 15a–c) shows the distribution density of wind velocity parameter
over the studied locations. As can be seen, there is underestimation by ALARO-0 and
overestimation by REMO over all captured stations.

Figure 15e,f shows the distribution density plot for wind direction at the stations
during the studied period. As can be observed, similar to wind velocity, both models
have significant bias. Given that wind direction mainly plays a role in wind-driven rain
calculations, this uncertainty affects the accuracy of the building simulations, so in order
to increase the accuracy of the simulation, model calibration is recommended. As can be
observed for ALARO-0, the distribution of wind direction is spread widely, unlike REMO
predictions, which are more concentrated in specific directions. The Taylor diagrams
(Figure 16) show the models’ performance for average daily and seasonal wind speed.
Generally, the correlation and deviation of the model outputs for wind velocity are lower
than other climate parameters observed in other model evaluations. ALARO-0′s negative
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bias is considerably more than REMO’s, whereas the correlation of ALARO-0 predictions
is slightly higher than REMO’s. Accordingly, for Tabriz and Mashhad, the calculated
RMSD of ALARO-0 is lower than that of REMO. The annual trend plots show significant
overestimation by REMO and underestimation by ALARO-0, and due to considerable
differences between simulated PDFs and observations, bias correction of both models for
this parameter is recommended.
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The annual cycle plot (Figure 17) shows significant bias by both models following the
PDFs. REMO output for the studied locations always shows a considerable positive bias,
whereas ALARO-0 shows a notable negative bias over Tabriz, Shiraz, Isfahan and Tehran.
For Mashhad and Rasht, ALARO-0 predictions are overestimated.
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Figure 17. Annual average wind velocity comparing ALARO-0 and REMO with observations over six studied stations:
Mashhad (a), Shiraz (b), Tehran (c), Tabriz (d), Isfahan (e) and Rasht (f) during 1980–2017.
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3.4.2. Wind-Driven Rain

The total annual wind-driven rain (WDR) computed for the studied sites is reported
in Figure 18 and Table 6. As discussed, this parameter is a function of wind speed, wind
direction and horizontal rain. The significant bias in both models for wind parameters,
particularly wind direction, is reflected in the models’ substantial bias for wind-driven
rain. For each location, the dominant wind direction was taken into account. As a result
of the sharp increase in observed wind velocity, an incremental trend for the computed
WDR can be observed for the studied locations except for Shiraz, with a decremental trend.
The results of the model outputs differ and are often incompatible with the observations.
Over Shiraz, both models show a rather constant WDR load, in contrast to the observed
decremental trend. In addition, for Mashhad, Tabriz, Isfahan, Rasht and Tehran, due to the
significant bias for wind velocity despite the high accuracy of both models for precipitation,
the evaluated models show low performance.
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Table 6. Total annual wind-driven rain comparing models with observations over different loca-
tions.WDR: annual WDR (mm/year); slope: trend slope (mm/year).

Observation ALARO-0 REMO

Wind-Driven Rain Wind-Driven Rain Wind-Driven Rain

WDR Slope WDR Slope WDR Slope

Isfahan 18.6 −0.16 7.65 0.05 28.15 −0.48
Mashhad 35.5 0.91 81.5 −0.8 35.5 0.2

Rasht 285.4 0.53 88.12 0.32 37.4 0.3
Shiraz 26.8 −1.05 13 −0.1 50 −0.8
Tabriz 51.3 −1.05 35 −0.1 65.5 1.3
Tehran 16.7 0.17 75.8 −0.28 43.4 −0.7

4. Conclusions

In this research, two high-resolution regional climate models, ALARO-0 and REMO,
were evaluated over different sites in Iran. Considering the vastness of the Iranian plateau
and the diversity of climatic zones, six locations in different climate regions with varying
altitude were picked to evaluate RCMs over the whole region. For the first time, in addition
to main climatic parameters, some derived parameters and indices critical to buildings, such
as FTC, were used for model validation. The evaluation results of the analysed parameters
over each studied station are shown in heat maps (Figure 19). Both models reproduce
temperature and precipitation features well. As can be observed, the computed RMSD
for temperature is generally higher than the other evaluation metrics for both models,
showing the models’ good performance on temperature. It should be noted that RMSD
is clearly higher for minimum temperature than maximum temperature over different
locations. Based on the computed RMSD for temperature, the REMO model shows better
performance than ALARO-0.

For precipitation, REMO again has better performance over Tehran, Mashhad and
Rasht (wettest studied location). The ALARO-0 output outperforms REMO over Shi-
raz, Isfahan and Tabriz. For relative humidity, except for Tehran, ALARO-0 obtained a
higher score.

The analysis of wind velocity shows that ALARO-0 had better performance over
Mashhad, Tabriz and Tehran. In the other locations, REMO outperforms ALARO-0.

This study clearly shows that the typical meteorological evaluation based on climatic
parameters (comprising air temperature, precipitation and, rarely, wind velocity) should
not be considered when selecting a climate model for building simulations. As can be
observed, the studied RCMs can predict temperature and precipitation parameters well
while showing significant bias for wind velocity and direction.

The resolution of the models, which cannot be adapted to the station’s coordinates,
affects their reliability. It should be noted that interpolation from 25 km to one single point
leads to strong bias, in particular for precipitation. Furthermore, the orography of the
station can be important in model evaluation. Applying height correction can reduce the
model’s bias, but only for the temperature parameter. This difference in model accuracy
can seriously affect the model performance on the derived parameters that are essential in
building pathology, i.e., FTC and MI. For the annual number of FTCs, ALARO-0 shows
better performance over Mashhad, Shiraz and Tehran, whereas REMO produces more
consistent numbers over the other locations. For the MI, except for Isfahan (driest location)
and Tehran, where ALARO-0 shows a significant negative bias for temperature, ALARO-0
delivers better performance than REMO. Comparing the models for the annual number of
salt transitions (halite and thenardite–mirabilite) shows that for Mashhad, Rasht, Tabriz
and Shiraz, ALARO-0 predicts better than REMO.
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Figure 19. (a–c) Computed RMSD of models used for evaluating typical climatic parameters and (d–f) the normalised
average values used for derived parameters over the studied stations: (a,d) Mashhad and Shiraz, (b,e) Isfahan and Tabriz
and (c,f) Rasht and Tehran.

Finally, except for Rasht, REMO outperforms ALARO-0 over different locations for
total annual wind-driven rain.

Highlighting the importance of time series analysis when evaluating models in re-
search on building physics is another result of this research.

This study indicates that model calibration (bias correction) is required for wind
velocity and wind direction parameters over the whole region to get more precise results
from building simulations. Finally, it is highly recommended that the proper model be
picked based on the evaluation results over the study location. Using coupled ocean-
atmosphere models (not only atmosphere, such as REMO), e.g., a combination of ALARO-0
and REMO, might improve the results. Furthermore, the effect of spatial resolution should
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be studied to know if a model with a high resolution up to 3–5 km is needed, or lower-
resolution models are sufficient for the research scope.
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Nomenclature

CRU Climatic research unit
FTC Freeze–thaw cycle
MI Moisture index
GCM General circulation model
RCM Regional climate model
RCP Representative concentration pathway
DJF December, January, February
MAM March, April, May
SON September, October, November
JJA June, July, August
RMSD Root mean square deviation
PDF Probability density function
MRY Moisture reference years
HAM Heat–air–moisture
UHI Urban heat island
WDR Wind-driven rain
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