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Abstract: Cementitious and recycled materials that have the potential to improve various properties
of concrete have attracted the attention of many researchers recently. Different types of cementitious
and recycled materials seem to possess certain unique properties to change cement concrete. This
experimental study aims to investigate the impact of ground granulated blast furnace slag (GGBFS)
and corn cob ash (CCA) as a partial replacement material for Portland cement (PC) and fine aggregate
(FA), respectively, on fresh and hardened concrete properties, as well as the embodied carbon
of concrete. The concrete mix was blended with 5-20% of GGBFS and 10-40% of corn cob ash,
both individually and combined. A total of 300 concrete specimens were made to achieve the
targeted strength of 25 MPa at a 0.50 water/cement ratio and cured at 28 days. It is observed that
the workability of fresh concrete is lowered as the dosages of GGBFS and CCA increase in the
mixture. Moreover, the compressive and split tensile strengths are augmented by 10.94% and 9.15%,
respectively, at 10% of GGBFS by the weight of PC at 28 days. Similarly, the compressive and split
tensile strengths are augmented by 11.62% and 10.56%, respectively, at 30% of CCA by the weight
of FA at 28 days. Moreover, the combined use of 10% of GGBFS as a cementitious ingredient along
with 30% of fine aggregate replaced with CCA in concrete provides the highest compressive and
splitting tensile strength, with 16.98% and 13.38% at 28 days, respectively. Furthermore, the density
and water absorption of concrete were reduced with increasing dosages of GGBFS and FA in concrete
at 28 days. In addition, the embodied carbon and energy were also reduced as the replacement
content of GGBFS along with CCA increased in concrete. It is concluded that 10% of GGBFS and 30%
of CCA are the optimum percentages for structural applications to reduce the use of cement as well
as the cost of the project.

Keywords: concrete; GGBFS; CCA; replacement; fresh and hardened concrete; reduce embod-
ied carbon

1. Introduction

The improvement of hardened properties coupled with the capability to produce them
in various forms have resulted in concrete, which is used mostly as a building material
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around the world [1]. The growth of the world’s population and the process of urbanization
have enhanced the usage of this material. The huge demand for concrete for commercial
purposes has led to consequential impacts on the atmosphere due to the adverse effect of
Portland cement (PC) production [2,3]. Changes in the composition of the atmosphere and
subsequent climate change affect the mechanical properties of grout and concrete [4,5]. It
is estimated that the manufacturing of PC accounts for around 8% of the world’s carbon
emissions in the atmosphere [6-9].

This high carbon footprint can be associated with the huge amount of energy consump-
tion in the manufacturing process for PC and the release of carbon dioxide as a product that
influences the environment. Thus, the utilization of various types of waste materials by
partially replacing PC in concrete is significantly important to reduce such types of adverse
effects on the environment. Different types of waste materials in various forms of ash or
powder have been utilized in the partial replacement of PC in the mixture of concrete [10].
The partial replacement materials are primarily silica fume (SF) [11], coconut shell ash
(CSA) [12], ground granulated blast furnace slag (GGBFS) [13], corn cob ash (CCA) [14],
metakaolin (MK) [15], sugarcane bagasse ash (SCBA) [16], fly ash (FA) [17], groundnut
shell ash (GSA) [18], etc.

Moreover, GGBEFS is acquired in the form of waste materials. Its chemical compo-
sition is similar to that of PC, which comprises about 45% calcium oxide and around
35-45% silicon dioxide, and is available worldwide [19-24]. Therefore, it can be used as
a PC replacement in concrete and decrease carbon dioxide emissions [25-27]. There are
many studies on concrete blended with GGBFS as a cementitious material. According to
Cervantes and Roesler [28], adding GGBEFS ingredients as a PC replacement in concrete
increased the compressive and flexural strengths of concrete at 28 days. Karrri et al. [29]
investigated concrete made of M20 and M40 grade containing 30% to 50% of GGBFS as a
PC replacement. It was observed that the inclusion of GGBFS as a cementitious material in
the mixture improved the split tensile, compressive, and flexural strengths of the hardened
concrete at 28 days. Malagavelli and Rao [30] studied the characteristic strength of concrete
made of M30 grade intermingled with GGBEFS as a cementitious material and crushed dust
as a sand replacement. It was perceived that the addition of 30% crushed dust to replace
sand in the mixture could increase the compressive and tensile strengths by 8% and 1.83%
at 28 days, respectively. Moreover, the hardened concrete was amplified as the range of
GGBFS by the weight of PC increased in the mixture. Rughooputh et al. [31], Cahvani and
Rusdianto [32], and Raman and Krishnan [33] described that the usage of 40-50% GGBFS
as a cementitious material provided the maximum compressive strength of the mixture.

Moreover, GGBFS can increase the impermeability, corrosion resistance, and sulfate
resistance of concrete [34-36]. By taking these characteristics into account, it is possible
to boost the service life of concrete structures and decrease maintenance costs. The high
quantity of GGBFS in the ecological environment used to replace cement leads to the
fact that concrete can use not only waste but also protect natural resources and energy
consumption [37,38].

Natural sand is another main component of concrete, and it is applied as a fine
aggregate, which also distresses natural resources. The widening consumption of fine river
sand aggregates will lead to a deterioration of riverbeds, a reduction in groundwater levels,
erosion of riverbed lands, and the destruction of bridges, which may hinder a country’s
sustainable development. Therefore, innovating suitable material to use as a substitute for
PC and natural aggregates is important. In addition, the continuous growth of agricultural
and industrial wastes is increasing environmental pollution and distresses. Therefore, the
usage of corn cob ash (CCA) as a fine aggregate replacement in concrete serves to reduce the
above detrimental distresses. Corn cob, which may be processed into corn cob ash (CCA)
and utilized as a fine aggregate replacement in concrete, is a promising waste product.
Currently, the United States and other countries generate around 50 million tons of corn per
annum [39,40]. This large amount of corn generates an approximately equal production of
corn cob. Therefore, the inclusion of these waste resources into concrete mixtures will also
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support handling the waste effectively while producing an alternative to fine aggregate in
concrete mixtures. Ash has low economic value; thus, instead of dumping it in a landfill,
which will lead to environmental pollution, utilizing it as a building material will reap
an enormous benefit. Due to the silica component in pozzolana reacting with free lime
discharged throughout PC hydration [41], extra calcium silicate hydrate (CSH) is produced,
which improves the hardened properties of concrete. Thus, most previous studies were
performed on concrete blended with CCA as a PC replacement in concrete. According
to Desai [42], 10% of PC replaced with CCA could increase compressive, split tensile,
and flexural strengths by 5.90%, 5.67%, and 5.92% after 90 days, respectively. Adesanya
and Raheem [43] reported that the slump declined as the CCA content increased in the
concrete mixture. Adesanya and Raheem [44] also described that the concrete was made of
a 1:1.5:3 mix proportion blended with CCA as a PC replacement for determining the water
absorption, permeability, and weight loss. The results showed that the use of CCA up to
15% as a cementitious material reduced water absorption, permeability, and weight loss of
concrete. Owolabi, Oladipo, and Popoola [45] conducted experimental work on concrete
with CCA as a PC replacement. They indicated that the increase in CCA in the mixture
lowered the workability of the concrete. Moreover, 5% of PC replaced with CCA in the
mixture recorded the best outcome, with a crushing strength of 21.44 MPa at 28 days.

According to the literature, many investigations were explored using GGBFS and
CCA as PC replacements in concrete. However, there are very limited works conducted
on concrete with the inclusion of CCA as a fine aggregate replacement material and no
experimental work was performed on concrete with the inclusion of various dosages of
PC replaced with GGBFS along with fine aggregate replaced with CCA. Therefore, our
main objective is to analyze the fresh and hardened properties and embodied carbon of
concrete using various levels of GGBFS as a PC replacement and CCA as a fine aggregate
replacement, both separate and together in concrete mixtures.

2. Materials and Methods
2.1. Materials

The ground granulated blast furnace slag (GGBFS) was attained from a steel mill with
prior approval. After collecting it, GGBFS was dried under atmospheric conditions for 24 h.
The dried GGBFS was passed through the #300 sieve to eliminate the unwanted atoms, and
then used as a PC replacement ingredient in the mixture. The corn cob was collected near
Hyderabad, Sindh, Pakistan, and then it was burnt under an uncontrolled temperature
arrangement for five hours to convert it into corn cob ash (CCA). After obtaining the ash,
it was sieved through the #4 sieve to remove huge particles, and then the sieved ash was
utilized as a replacement for sand components in the mixture. The Portland cement (PC)
was collected from Hyderabad, Sindh, and it was applied to the concrete mixture as a
binding ingredient. The oxide compositions of PC, GGBFS, and CCA are shown in Table 1
and the images of CCA and GGBFS are shown in Figure 1. Furthermore, crushed stone
was utilized for this research work as a coarse aggregate (CA), with a size of 20 mm, and
hill sand was utilized in this experimental study as a fine aggregate (FA), which passed
through the #4 sieve. These aggregates were acquired from Hyderabad, Sindh as shown
in Figure 2. The physical properties of the aggregates are given in Table 2. In addition,
potable water was utilized to carry out this experimental work.

Table 1. Oxide compositions of PC, GGBFS, and CCA.

Oxides (%) Physical Property
Binder
SiO, Al,O3 Fe, O3 CaO Na, O SO3 Specific Gravity
CCA 67.23 6.34 5.33 10.75 0.37 1.04 2.54
GGBFS 37.22 10.37 1.23 35.66 0.23 0.34 2.25

PC 20.78 5.11 3.17 60.22 0.18 2.86 3.13
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Figure 2. (a) Coarse aggregate; (b) fine aggregate.

Table 2. Properties of fine and coarse aggregates.

Property Fine Aggregate Coarse Aggregate
Specific Gravity 2.66 2.71
Bulk Density (kg/m?) 1920 1680
Fineness Modulus 2.25 —
Water Absorption (%) 1.32 0.69

2.2. Experimental Program

This experimental work explored the fresh (slump), physical (water absorption and
density), and hardened properties (splitting tensile and compressive strength) of concrete
mixtures blended with 0-20% GGBES as a replacement for PC and 10-40% CCA as a sand
replacement. We also tested the combined usage of GGBFS as a replacement for PC and
CCA as a replacement of sand in the concrete mixture. A total of 300 concrete specimens
were made to achieve the targeted strength of 25 MPa and cured at 28 days. Moreover,
25 mixtures were prepared. One concrete mixture was prepared with PC only, four mixtures
were prepared with the inclusion of 5-20% GGBFS as the cementitious ingredient, and four
mixtures were prepared with 10-40% CCA to replace the fine aggregate. Other concrete
mixtures were made combining GGBFS as a PC replacement and CCA as a fine aggregate
replacement. Table 3 shows the mix designs adopted for concrete production.
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Table 3. Designs of the mixtures.

Binding Material FA Content Quantity of Ingredients Required to Produce 1 m3 Concrete (kg)

Mix ID (%) (%)
PC  GGBFS CCA FA PC  GGBFS  FA CCA CA Water

cM 100 0 0 100 346 0 564 0 940 173
GGBFS5 95 5 0 100 3287 17.30 0 0 940 173
GGBFS10 90 10 0 100 3114 34.60 0 0 940 173
GGBFS15 85 15 0 100 2941 51.90 0 0 940 173
GGBFS20 80 20 0 100 2768 69.20 0 0 940 173
CCA10 100 0 10 9 346 0 507.60  56.40 940 173
CCA20 100 0 20 80 346 0 45120 1128 940 173
CCA30 100 0 30 70 346 0 39480  169.2 940 173
CCA40 100 0 0 60 346 0 33840 2256 940 173
GGBFS5CCA10 95 5 10 90 3287 1730 50760  56.40 940 173
GGBFS5CCA20 95 5 20 80 3287 1730 45120 11238 940 173
GGBFS5CCA30 95 5 30 70 3287 1730 39480 1692 940 173
GGBFS5CCA40 95 5 0 60 3287 1730 33840 2256 940 173
GGBFSIOCCAL0 90 10 10 90 3114 3460  507.60  56.40 940 173
GGBFS10CCA20 90 10 20 80 3114 3460 45120 1128 940 173
GGBFSI0CCA30 90 10 30 70 3114 3460 39480 1692 940 173
GGBFSI0CCA40 90 10 0 60 3114 3460 33840 2256 940 173
GGBFSISCCA10 85 15 10 90 2941 5190  507.60  56.40 940 173
GGBFSISCCA20 85 15 20 80 2941 5190 45120 1128 940 173
GGBFSISCCA30 85 15 30 70 2941 5190 39480  169.2 940 173
GGBFSI5CCA40 85 15 0 60 2941 5190 33840 2256 940 173
GGBFS20CCA10 80 20 10 90 2768 6920  507.60  56.40 940 173
GGBFS20CCA20 80 20 20 80 2768 69.20 45120 1128 940 173
GGBFS20CCA30 80 20 30 70 2768 69.20 39480 1692 940 173
GGBFS20CCA40 80 20 0 60 2768 6920 33840 2256 940 173

2.3. Testing Methods

In the concrete mixer, the dry constituents for every design mix were dry mixed
together to form a homogeneous mix, and then the required amount of water was slowly
added. Workability was evaluated once a sufficiently homogeneous wet mix was generated,
and then the mixture was poured into the molds. A vibrating table was used to assure
proper compaction, and the upper surface of the molds was then enclosed with a plastic
bag to prevent surface cracking and shrinkage. The molds were stored for 24 h before being
demolded and then placed in a curing tank for 28 days before being tested. Various tests
were carried out to investigate the combined effect of GGBFS by the weight of PC and CCA
by the weight of FA on the characteristics of concrete.

2.3.1. Slump Test

We performed slump tests on 25 mixtures of fresh concrete, incorporating several
replacement levels of PC with GGBFS and various replacement levels of fine aggregate
with CCA, both individually and combined, while conforming to code BS EN 12350-2 [46].
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strength test.

2.3.2. Mechanical Properties of Concrete

We tested the water absorption and dry density of the hardened concrete specimens
made with the addition of various ratios of GGBFS as a PC replacement and CCA as an
FA replacement, both individually and combined, while following BS 1881 [47] and BS EN
123907 [48] procedures, respectively. We tested the compressive strength of concrete cubes
(100 mm x 100 mm X 100 mm) prepared with different levels of PC replaced with GGBFS
and FA partially replaced with CCA, both separately and together, while conforming to
the BS EN 12390-3 [49] code practice. In the same way;, split tensile strength was attained
for cylindrical samples (200 mm x 100 mm) mixed with several levels of PC replaced with
GGBFS and FA replaced with CCA, both individually and combined, under the BS EN
12390-6 [50] code practice. The fresh concrete and hardened concrete specimens were then
tested, as shown in Figure 3a—d.

(b)

(d)

Figure 3. Experimental tests set-up: (a) slump test; (b) water curing tank; (c) split tensile strength test; (d) compressive
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3. Results and Discussions
3.1. Slump Test

The properties of concrete that govern the ease and homogeneity with which it can be
mixed, placed, consolidated, and finished are known as workability. Figure 4 illustrates
the workability of the fresh mixture incorporating various percentages of GGBFS as a PC
replacement and CCA as an FA replacement. The slump levels are 12.50%, 26.78%, 35.71%,
and 51.78% with GGBFS levels of 5%, 10%, 15%, and 20%, respectively. The slump levels
are 17.86%, 32.14%, 44.64%, and 51.46% with CCA levels of 10%, 20%, 30%, and 40%. Both
sets of slump levels are lower as compared to concrete made of PC only. Slump declines
with the growth in the quantity of GGBFS by the weight of PC and FA replaced with
CCA. A related study conducted by Bheel et al. [51] found that the workability of concrete
declined with the replacement of PC with GGBFS and metakaolin was increased in the
mixture. Bheel et al. [52] also documented that the use of fine aggregate partially replaced
with WSA reduced the workability of concrete.

60

a1
[}

(e}

Slump (mm)
N oW
o

0
10
0

Q Q \} N

N P %) ™

ad s s had
C/C’ C/C C/C’ C/C’
GGBFS and CCA Content

Figure 4. Slag slump tests of fresh concrete containing GGBFS and CCA.

Similarly, the utilization of coal bottom ash by the weight of FA decreased the flow of
fresh concrete, according to Bheel et al. [53]. However, Figure 5 shows that the workability
of fresh concrete is measured with the inclusion of GGBFS as a cementitious material and
CCA as a replacement for sand. The best workability is recorded as being 56 mm with
the accumulation of PC only. The lowest workability is noted as being 21.18 mm with
GGBFS20CCA40 as a PC and FA replacement in concrete. It can be perceived that the
slump dropped with the accumulation of GGBFS by the weight of PC and CCA as a sand re-
placement together in the mixture. The decline in workability is associated with the porous
GGBFS and CCA particles, which absorb more water when their percentages increase in
the concrete mixture. This research work is related to that of Bheel et al. [54], where the
slump declined as MHA replaced PC and WSA replaced sand. Related investigations by
Bheel et al. [53] found that the increased replacement of PC with RHA and sand with coal
bottom ash resulted in lower workability of fresh concrete. Comparable investigations
were explored by Keerio et al [55].
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Figure 5. Slump tests of fresh concrete blended with GGBFS along with CCA.

3.2. Water Absorption

We performed water absorption tests on the specimens made of concrete with separate
additions of GGBFS as a PC replacement and CCA as an FA replacement at 28 days, as
displayed in Figure 6. The water absorption levels are 3.56%, 2.98%, 2.67%, and 2.38%
when PC is replaced with GGBEFS at levels of 5%, 10%, 15%, and 20%, respectively, and
3.45%, 2.92%, 2.53%, and 2.15% when FA is replaced by CCA at levels of 10%, 20%, 30%,
and 40% at 28 days, respectively, which are lower compared to a concrete mix prepared
with PC only. The outcomes reveal that when the replacement of PC with GGBFS and sand
with CCA increases in concrete, there is a reduction in the concrete’s water absorption.
Comparable research was explored by Bheel et al. [54], where the increasing usage of
MHA as a replacement of PC caused a decline in the water absorption of concrete. Related
work was conducted by Keerio et al. [55], who found that water absorption plummeted
as the percentage of glass powder as a replacement of FA increased in concrete. However,
specimens prepared with the collective usage of GGBFS as a PC replacement and CCA as a
fine aggregate replacement were utilized for water absorption at 28 days, as presented in
Figure 7. The results of optimum water absorption are noted as being 3.88%, and the lowest
value is calculated as being 1.48% using GGBFS20CCA 40 as a replacement for PC, and
fine aggregate replacement components in concrete are consistently lower as compared to
concrete made with PC only at 28 days. The outcome shows that the water absorption of
hardened concrete declines with the addition of GGBFS as a cementitious material along
with CCA as a fine aggregate replacement. This drop in water absorption is due to the
finest particles of GGBFS and CCA, which cover the remaining micro-porous materials
left by other components of concrete. This work is related to that of Bheel et al. [53], who
found that the water absorption declined with the increasing replacement of PC with RHA
and of sand with coal bottom ash. A similar study by Keerio et al. [55] concluded that the
increasing replacement of PC with silica fume and FA with glass powder reduces the water
absorption of concrete.
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Figure 6. Water absorption of concrete containing GGBFS and CCA.
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Figure 7. Water absorption of concrete blended with GGBFS along with CCA.

3.3. Density of Concrete

We tested the density of concrete on samples made of concrete blended with several
dosages of GGBFS to replace PC and CCA to replace fine aggregate, as shown in Figure 8.
The concrete density is 2325 kg/m?3, 2250 kg/m?, 2200 kg/m3, and 2140 kg/m3 with
GGBEFS levels of 5%, 10%, 15%, and 20%, respectively, and 2296 kg/ m?3, 2215 kg/ m3,
2110 kg/m?, and 2085 kg/m3 with CCA levels of 5%, 10%, 15%, and 20% at 28 days,
respectively, lower than that of concrete made of PC only. This shows that the addition
of GGBFS as a PC replacement and CCA as a fine aggregate replacement lowers the
density of concrete. This experimental work is associated with that of Bheel et al. [51],
where the increasing usage of GGBFS and MK as a PC replacement reduced the density
of concrete. Similarly, Bheel et al. [53] stated that the density of concrete lowered as the
dosages increased of CBA as a replacement for sand. Moreover, we determined the
density of concrete specimens blended with GGBFS as a cementitious material along
with CCA in place of FA, as demonstrated in Figure 9. The best density is calculated as
2378 kg/m?3 in the concrete mixture made of PC only, and the lowest density is 1935 kg/m?
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with GGBFS20CCA40 as a PC and fine aggregate replacement at 28 days. The outcome
shows that enhancing the combined use of GGBFS by the weight of PC and replacing
FA with CCA in the mixture plummets the density of concrete. The plummeting in the
density is associated with the density of the replacement materials GGBFS and CCA. These
replacements materials possess lower specific gravity than that of PC and fine aggregate,
which results in the reduction in density as well as the reduction in the dead load of
concrete. This comparable outcome was explored by Keerio et al. [55], who found that
concrete density is reduced as the replacement of PC with SF and FA with glass powder
rises. Likewise, Bheel et al. [52] concluded that the use of MHA as a PC replacement along
with WSA as a sand replacement results in a decline in the density of concrete.
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Figure 8. Density of concrete containing GGBFS and CCA.
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Figure 9. Density of concrete blended with GGBFS along with CCA.

3.4. Compressive Strength

Figure 10 displays the concrete mixture blended with GGBEFS as a PC replacement
and CCA as an FA replacement, analyzing the compressive strength at 28 days. The peak
compressive strength is 29.40 MPa with 10% GGBFS as a PC replacement and 29.58 MP
with 30% CCA as an FA replacement at 28 days. Similarly, the lowest compressive strength
is 23.50 MPa with 20% GGBFS as a PC replacement and 27.18 MPa with 40% of fine
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aggregate replaced with CCA at 28 days. The compressive strength is heightened with
10% GGBFS and 30% CCA. With the further addition of GGBFS and CCA, the compressive
strength plummets. The pozzolanic response, in which freely available calcium hydroxide
is consumed and secondary calcium silicate hydrate (C-S-H) gel is produced, is responsible
for the increased strength when GGBFS content is added. The lower strength gain can be
related to the limited supply or availability of Ca(OH), used during the pozzolanic reaction;
the greater the pozzolan concentration, the more Ca(OH); is required. Bheel et al. [51] found
that the usage of GGBFS and MK as supplementary cementitious components up to 10%
in concrete could increase the compressive strength at 28 days. Likewise, Bheel et al. [56]
informed that the crushing strength was increased by using WSA up to 30% in concrete at
28 days. Bheel et al. [52] also concluded that the crushing strength was enhanced as the
replacement content of sand with wheat straw ash rose to 30% in the mixture after 28 days.
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Figure 10. Compressive strength of concrete containing GGBFS and CCA.

Figure 11 depicts the concrete with the accumulation of 5-20% GGBEFS by weight of
PC along with 10-40% of CCA as a sand replacement to analyze the effect of PC and FA
replacement on the compressive strength of concrete. The greatest value of compressive
strength is 31 MPa with 10% GGBEFS as a PC replacement along with 30% CCA as an FA
replacement, and the lowest value is 21.18 MPa with 20% GGBFS and 40% CCA together
in the mixture of concrete at 28 days. The compressive strength is heightened at levels of
GGBFS up to 10% CCA up to 30% in the concrete mixture at 28 days. The enhancement
in strength is associated with the high content of silica in GGBFS and CCA, as well as the
finer particles of GGBFS and CCA compared to PC, which develops the transition zone of
concrete. As more GGBFS and CCA are added to concrete, the dilution effect of GGBFS and
CCA might reduce the existing calcium hydroxide for product formation. A comparable
trend of investigation was accomplished by Bheel et al. [53], in that the crushing strength
was enhanced with the accumulation of 10% RHA as a PC replacement and 30% CBA as
a sand replacement together in concrete at 28 days. Bheel et al. [52] documented that the
crushing strength of the mixture was developed as the quantity of PC was replaced up to
10% by MHA and FA was replaced up to 30% by WSA at 28 days.
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Figure 11. Compressive strength of concrete blended with GGBFS along with CCA.

3.5. Splitting Tensile Strength

Figure 12 illustrates the concrete mixtures with 5 to 20% GGBFS by the weight of
PC, exploring the splitting tensile strength of concrete. The optimum strength is achieved
at 3.10 MPa with 10% of GGBFS, and the minimum strength is 2.58 MPa with 20% of
GGBFS at 28 days. The maximum split tensile strength is obtained when using GGBEFS as
a PC replacement up to 10%; after further accumulation of GGBFS, the strength declines.
This aspect is also explored by Bheel et al. [51], who found that the usage of GGBFS and
MK up to 10% by the weight of PC in concrete achieves optimum split tensile strength
at 28 days. Similarly, the usage of CCA as a replacement for sand content in concrete is
determined by the split tensile strength at 28 days, as indicated in Figure 12. At 30% of
sand replaced with CCA, the supreme split tensile strength is measured as 3.14 MPa and
the smallest strength was measured as 2.86 MPa at 40% CCA at 28 days. As FA is replaced
with CCA up to 30%, the indirect tensile strength increases. The CCA is a well-known
pozzolanic material, but it is utilized as a sand replacement in this study. Thus, it has a
considerable supply of calcium hydroxide. As a result, the calcium hydroxide is consumed
during the pozzolanic reaction caused by CCA, and a secondary C-S-H gel is formed that
is responsible for enhancing the tensile strength of concrete. This judgment was provided
by Bheel et al. [56], showing that the split tensile strength can be increased when sand
is replaced with wheat straw ash up to 30% and that it begins to decrease after 28 days.
Keerio et al. [55] stated that the application of glass powder up to 30% by the weight of
sand in the mixture achieves high split tensile strength after 28 days. Moreover, Figure 13
demonstrates the splitting tensile strength of concrete investigated with the addition of
5-20% GGBFS by the mass of PC and 10 to 40% of CCA by the weight of FA together in
concrete. The best indirect tensile strength was observed as 3.22 MPa at 10% GGBFS along
with 30% CCA, and the lowest value was documented as 2.40 MPa at 20% GGBFS along
with 40% CCA together in concrete at 28 days. The outcome is that the splitting tensile
strength is boosted by the accumulation of GGBFS up to 10% as a replacement for PC and
CCA up to 30% as a replacement for fine aggregate, and after further accumulation of
CCA, the strength plummets at 28 days. The increase in split tensile strength is associated
with the CCA and GGBFS, which possess more specific surface areas than PC that develop
the concrete interfacial transition zone. With further addition of CCA and GGBFS in the
mixture, the strength begins to decline, owing to the less pozzolanic response of GGBFS
and CCA in the mixture than the PC hydration reaction. Bheel et al. [52] followed a similar
research trend in which the split tensile strength was increased by replacing 10% of PC with
MHA 30% of sand with WSA together in the mixture at 28 days. Keerio et al. [55] found
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that the splitting tensile strength of concrete is enriched with the content of silica fume
up to 10% as a PC replacement and glass powder up to 30% as an FA replacement after
28 days. In addition, a relationship has been established between the split tensile strength
and compressive strength of the concrete containing CCA and GGBFS alone and together
at 28 days, shown in Figures 14 and 15, respectively. After 28 days, it split tensile and
compressive strength had a strong correlation. When one of these strengths is recognized,
the equation shown in Figures 14 and 15 is useful for determining the split tensile strength
or compressive strength.
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Figure 12. Splitting tensile strength of concrete containing GGBFS and CCA.
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Figure 13. Splitting tensile strength of concrete blended with GGBFS and CCA.
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containing CCA and GGBFS together.

3.6. Sustainability Assessment of Concrete

We calculated environmental impact assessments for all mixtures blended with various
replacements of PC with GGBFS and fine aggregate with CCA both individually and com-
bined to explore the embodied CO,, embodied energy, and eco-strength efficiency of the
concrete mixtures. The values of embodied energy and carbon for all concrete constituents
were obtained from the literature, as displayed in Table 4. The embodied carbon and
embodied energy values for all concrete mixtures are assessed with Equations (1) and (2),
respectively. The symbols of COy,, E,, i, and W; in Equation (1) [57] and Equation (2) [57]
represent the total embodied carbon, embodied energy, and the weight per unit volume
(i.e., kg/m?) for every mixture of concrete, respectively. Moreover, the symbols COy;
and E; correspond to the embodied carbon and embodied energy of concrete ingredients,
respectively, described in Table 4.

n
COze = ) (Wi x COy), ey
i=1
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E, =) (Wi xE), @
i=1
Table 4. Embodied carbon and energy of concrete components.
Embodied Carbon Embodied Energy
Component (kgCO,/m?3) (MJ/kg) References
Portland Cement 0.82 5.50 [58]
Fine Aggregate 0.0139 0.0048 [59]
Coarse Aggregate 0.0408 0.0048 [59]
GGBFS 0.07 1.33 [60]
CCA 0.002 0.022 [40]
Water 0 0 [61]

Figure 16 shows the embodied carbon of concrete mixtures blended with various
replacements of PC with GGBFS and FA with CCA individually. Figure 16 shows that PC
emits the greatest amount of carbon, followed by fine and coarse aggregate. Nonetheless,
the impact of GGBFS as a replacement for PC and CCA as a replacement for FA in the
mixture of concrete is not visible in the figure; thus, the contribution of these materials to
embodied carbon is very small. However, embodied carbon is recorded as 3.95%, 7.90%,
11.84%, and 15.76% while utilizing GGBES levels of 5%, 10%, 15%, and 20%, respectively,
0.3%, 0.4%, 0.6%, and 0.8% with CCA levels of 10%, 20%, 30%, and 40%, respectively,
less than that of concrete prepared with PC only. It has been detected that the embodied
carbon is lowered as the replacement of PC with GGBFS and FA with CCA increases in
concrete. Moreover, the optimum embodied carbon is 329.3 kgCO, /m? with the control
mix concrete and the minimum value of embodied carbon is 274.70 kgCO,/ m3 with
GGBFS20CCA40 replacing PC and FA. Figure 17 shows that when the usage of GGBFS as a
PC replacement along with CCA as an FA replacement increases in concrete, the embodied
carbon decreases.
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Figure 16. Embodied carbon of concrete containing GGBFS and CCA.
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Figure 17. Embodied carbon of concrete blended with GGBFS along with CCA.

Figures 18 and 19 show the embodied energy of concrete as determined by various
percentages of GGBFS as a cementitious material and CCA as a replacement for FA, both
individually and combined. The amount of embodied carbon is 3.78%, 7.56%, 11.34%, and
15.12% with GGBEFS levels of 5%, 10%, 15%, and 20%, respectively, lower compared to
concrete made of PC only, and 0.05%, 0.1%, 0.15%, and 0.2% with CCA levels of 10%, 20%,
30%, and 40%, respectively, slightly higher compared to concrete made of PC only. It is
seen in Figure 18 that the highest quantity of embodied energy is produced by PC only
as compared to other components of concrete. The other components of concrete are not
visible in Figures 18 and 19. Nevertheless, it can be recognized that the embodied energy
has plummeted as the replacement of PC with GGBFS and FA with CCA grows in concrete.
This improvement in the sustainability of concrete is achieved blended with GGBFS by the
weight of PC and CCA as a fine aggregate replacement both individually and combined in
concrete. The performance and sustainability of concrete can be developed by applying
such waste resources.

Furthermore, the eco-strength efficiency of concrete is calculated based on the com-
pressive strength by using Equation (3) [62]:

Average 28 — Days Compressive Strength of Concrete

Fco — . _
co — strength ef ficiency Total Embodied Carbon of Concrete

®)

Figure 20 illustrates the eco-strength efficiency of concrete calculated with the addi-
tion of GGBFS as a cementitious material and FA replaced with CCA individually and
combined in a mixture. The best eco-strength efficiency is 0.097 MPa/kgCO,-m? with
10% GGBFS as a PC replacement, 0.090 MPa/kgCO,-m? with 30% CCA as an FA replace-
ment, and 0.10 MPa/kgCO,-m? with GGBFS10CCA30 replacing both PC and FA. In the
same way, the minimum value is determined as 0.085 MPa/kgCO,-m? with 20% GGBFS,
0.083MPa/kgCO,-m? with 40% CCA, and 0.077 MPa/kgCO,-m? with GGBFS20CCA40.
The outcome is that the eco-strength efficiency is enhanced while replacing up to 10% of PC
with GGBFS and replacing up to 30% of FA with CCA. This improvement in eco-strength ef-
ficiency is due to the lowest embodied carbon and maximum compressive strength among
the mixtures, and with further addition of these materials in concrete, these are reduced.
This decrease in eco-strength efficiency is due to the higher accumulation of GGBFS, which
resulted in more CO, emissions and were not offset by the reduction in CO, emissions
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achieved by the accumulation of CCA. Furthermore, replacing FA with CCA resulted
in a reduction in compressive strength. Moreover, the combined usage of GGBFS along
with CCA as a fine aggregate up to GGBFS10CCA30 in concrete obtained the maximum
eco-strength of concrete, as shown in Figure 21. This is due to the lowest embodied carbon
and maximum compressive strength among the various mixtures. Higher eco-strength
efficiency was seen when GGBFS and CCA were used together, ascribed to their strength
gaining. Previous research [63,64] demonstrated that eco-strength efficiency varied due
to the utilization of these materials, but that overall, eco-strength efficiency improved
as the PC substitution level rose. The eco-strength efficiency estimates reported in this
investigation for combined use are consistent with prior findings [62] using two SCMs.
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Figure 18. Embodied energy of concrete containing GGBFS and CCA.
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Figure 19. Embodied energy of concrete blended with GGBFS along with CCA.
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Figure 20. Eco-strength efficiency of concrete containing GGBFS and CCA.
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Figure 21. Eco-strength efficiency of the mixture containing GGBFS along with CCA.

4. Conclusions

This study investigated the utilization of CCA as a fine aggregate and GGBFS as a
cementitious material in concrete production. The primary goal of this investigation was
to assess the influence of these replacement materials on the workability and physical,
mechanical, and embodied carbon characteristics of the concrete mixtures. The following
findings can be taken from this investigation:

e  The slump is obtained at 49 mm, 41 mm, 36 mm, and 27 mm at 5%, 10%, 15%, and
20% of GGBFS as a cementitious material, respectively, and at 46 mm, 38 mm, 31 mm,
and 22 mm at 10%, 20%, 30%, and 40% of CCA as an FA, respectively, lower than that
of concrete made of PC only. Similarly, the optimum workability is recorded at 56 mm
in the control mixture concrete, and the smallest amount of workability is noted as
21.18 mm in GGBFS20CCAA40. It can be concluded that the workability dropped with
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the addition of GGBFS as a replacement for PC and CCA as a fine aggregate, both
separate and together in the mixture.

e The optimum water absorption was 3.88% in the control mix while the minimum
water absorption was 2.38% with 20% GGBFS as a PC replacement and 2.15% with
40% FA as a CCA replacement, followed by 1.48% with GGBFS20CCA40 at 28 days.
The water absorption dropped as the amounts of GGBFS and CCA, both separate and
together, rise.

e The control mixture of concrete provides the best density, 2378 kg/m?, while lower
density of 2140 kg/m? was found with 20% of PC replaced with GGBFS, followed
by 2085 kg/m? with 40% of fine aggregate replaced with CCA and 1935 kg/m?
with GGBFS20CCA40 at 28 days. The result is that the density plummeted with
increasing replacement content of PC with GGBFS and FA with CCA, both separately
and together.

e  The concrete mixtures with 10% of PC replaced with GGBES, 30% of fine aggregate
replaced with CCA, and GGBFS10CCA30 provide the highest compressive strength
values, estimated as 29 MPa, 29.58 MPa, and 31 MPa, respectively, while the lowest
compressive strength values are 23.50 MPa with 20% GGBEFS, 27.18 MPa with 40%
CCA, and 21.18 MPa with GGBFS20CCA40 at 28 days. The result is that the crushing
strength is boosted with GGBFS up to 10% and CCA up to 30% in concrete.

e  The top indirect tensile strengths were 3.10 MPa using 10% GGBFS, 3.14 MPa using
30% CCA, and 3.22 MPa using GGBFS10CCA30, while the minimum tensile strengths
were 2.58 MPa with 20%, GGBFS 2.86 MPa with 40% CCA, and 2.40 MPa with GG-
BFS20CCA40 at 28 days. The result is that the split tensile strength of concrete is
enhanced while increasing GGBFS up to 10% CCA up to 30%.

o  The embodied carbon and energy levels in concrete are reduced as the proportions
of GGBFS by the weight of PC rise. Similarly, the embodied carbon of concrete is
reduced while replacing the FA with CCA in concrete, but the embodied energy of
concrete is improved with CCA as fine aggregate. Moreover, the embodied carbon
and energy are decreased, whereas the content of GGBFS by the weight of PC along
with FA replaced with CCA increases in the concrete mixture.

e Based on the experimental findings, using GGBFS up to 10% as a replacement for
PC and CCA up to 30% as a sand replacement separately and together in concrete
delivers the best results for structural applications.
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