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Abstract: An indoor high and open space is characterized by high mobility of people and uneven
temperature distribution, so the conventional design and operation of air conditioning systems
makes it difficult to regulate the air conditioning system precisely and efficiently. Thus, a Wireless
Sensor Network was constructed in an indoor space located in Hong Kong to monitor the indoor
environmental parameters of the space and improve the temperature control effectively. To ensure
the continuity of the measurement data, three algorithms for reconstructing temperature, relative
humidity and carbon dioxide data were implemented and compared. The results demonstrate the
accuracy of support vector regression model and multiple linear regression model is higher than Back
Propagation neural network model for reconstructing temperature data. Multiple linear regression is
the most convenient from the perspective of program complexity, computing speed and difficulty in
obtaining input conditions. Based on the data we collected, the traditional single-input-single-output
control, zonal temperature control and the proposed zonal demand control methods were modeled
on a Transient System Simulation Program (TRNSYS) control platform, the thermal coupling between
the subzones without physical partition was taken into account, and the mass transfer between the
virtual boundaries was calculated by an external CONTAM program. The simulation results showed
the proposed zonal demand control can alleviate the over-cooling or over-heating phenomenon in
conventional temperature control, thermal comfort and energy reduction is enhanced as well.

Keywords: wireless sensor network; indoor large space; data reconstruction; TRNSYS-CONTAM
control; indoor temperature control

1. Introduction

A large-scale indoor space is characterized by a high height and a large indoor area.
From the perspective of indoor temperature control, the most typical features of that space
is the uneven internal temperature distribution. The conventional air conditioning with
uniform supply and cooling mode has been proven incapable of meeting the personal
needs for temperatures, thus causing overheating and overcooling in the entire space.
To monitor the parameters of the space precisely and improve the temperature control
effectively is a big challenge. It is prohibitively expensive and inconvenient to install a large
number of wired sensors for the entire space. Wireless Sensor Network (WSN) provides a
preferable way for achieving energy conservation due to its competitive features, such as
flexible installation, handy expansibility, self-organized, cost reduction, etc. WSN consists
of receivers, transponders and spatially distributed wireless sensor nodes [1]. With the
gradual application and development of WSN in the area of intelligent buildings and
building energy management systems, many engineers and researchers have considered
that WSN have great potentials for reducing building energy consumption, improving
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indoor environment, and enhancing indoor thermal comfort, etc. [1]. Kintner-Meyer et al.
implemented a WSN with 30 sensor nodes in an office building to investigate the reliability
and cost savings of WSN in commercial building applications [2]. Tachwali et al. proposed
and designed a multi-zone Heating, Ventialtion, and Air Conditioning (HVAC) controller
based on WSN to optimize energy consumption and maintain indoor thermal comfort [3]. A
WSN was used to collect data of the building and the air conditioning system to better verify
the characteristics of a near-zero energy building in a university campus [4]. Sklavounos
et al. developed a HVAC control system for monitoring energy consumption outliers and
achieving optimal energy settings in a multi-zone space based on a WSN [5]. Moura et al.
designed an Internet-of-Things platform based on WSN for monitoring various data of the
building in order to retrofit existing old buildings into Near Zero Energy Buildings at a low
cost [6]. The combination of WSN and air conditioning system applied in buildings is more
and more specific and easy to implement.

However, as the wireless communication is used, WSN inevitably suffers from data
loss, data duplication, and data outliers due to various uncertainties, such as commu-
nication disconnection [7], battery power failure, human intervention and other signal
interference in the long monitoring period. As a result, the reliability of data transmis-
sion would be reduced to some extent [1,8], and the corresponding environment control
performance would be deteriorated. How to reconstruct the anomalous data in WSN has
attracted much attention from researchers in recent years. The reconstruction of the abnor-
mal data can be obtained by time series estimation method [9] or statistic methods. Time
series estimation methods have been extensively studied in the past few decades, of which
the Auto Regressive Moving Average model combines the auto-regressive characteristics
with the sliding average characteristics. It has advantages in solving linear time series
analysis problems, but it could produce large errors in nonlinear time series problems.
Researchers have proposed nonlinear forecasting models, such as regression summation
sliding average and Threshold auto-regressive models [10]. In the late 1980s, the rapid
emergence of artificial neural network algorithms has gradually become a research hot spot
in the area of time series forecasting because of its nonlinear universal approximation capa-
bility [11]. In the 1990s, Support Vector Machine (SVM), proposed by Vapnik et al. [12,13],
was gradually applied in nonlinear time series estimation with its advantages of strong
generalization ability, overcoming local optimum and dimensional catastrophe. Up to now,
more and more advanced technologies are being implemented in the HVAC field, such as
data mining [14], temperature prediction based on autoregressive neural networks [15],
forecasting the parameters of gas environment of metro station [16], etc.

Since the measurement data will be employed as the input of the temperature control
system, the data must be reliable and continuous. Otherwise, it will have a significant
impact on the operation and monitoring of the control system, such as control accuracy
deteriorates, thermal comfort is not guaranteed, etc. In the single-zone mode, the temper-
ature of the large-scale space is commonly assumed to be homogenous. However, this
assumption is not applicable to large spaces, where the temperature distribution is not
uniform. Thus, the single-zone control mode cannot efficiently deal with the tempera-
ture’s uneven distribution in large-scale open spaces, and over-cooling and under-cooling
may occur especially when only a small part of the space is occupied [17]. Utilizing the
single-zone control mode in large-scale open space may lead to energy waste as well,
since the unoccupied space is still conditioned by supplying cooling air. Therefore, the
multi-control mode is superior to the single-zone mode regarding thermal comfort and
energy efficiency. In the multi-control mode, the large-scale open space can be divided into
multiple zones named multiple-zone model or zonal model [18]. With the aid of wireless
sensor networks, the zonal environment monitoring becomes necessary for efficient zonal
temperature control [19].

Regarding large space without physical partitions, thermal coupling effect between
adjacent subzones should be taken into account since there is usually no clear boundary
division or partition wall between subzones. Here, thermal coupling means the air can be
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mixed randomly in different zones through its virtual boundary. It is hard to deal with
a specific sub-zone since the air from other zones will mix and interfere its temperature
control. Previous studies mainly focus on building temperature models or thermal comfort
models for large commercial buildings [20–24]. Wang et al. proposed a ventilation con-
trol strategy based on occupant density detection to prevent infection transmission [25].
Shan et al. proposed a coupled Computational Fluid Dynamics (CFD) and building energy
modelling method to optimize the operation of a large open office space for occupant
comfort [26]; Wang et al. proposed multi-zone outdoor air coordination through Wi-Fi
probe-based occupancy sensing to control indoor air quality [27]. Other researchers have
taken alternative ways to handle load uneven distribution from the perspective of load
calculation under non-uniform indoor environment [28], local thermal comfort or personal
micro-environment [29]. However, few studies investigate the zonal temperature control
for large-scale open space (particularly without physical partitions) considering both heat
and mass transfer between adjacent zones.

This paper mainly focuses on reconstructing the missing data and optimizing the
conventional temperature control to alleviate the over-cooling or over-heating problems
in a large-scale indoor space. Firstly, the correlation between wireless sensor nodes is
analyzed. Secondly, three different time series prediction models are selected to predict
temperature, humidity and carbon dioxide concentration, aiming to improve the accuracy
and reliability of WSN system, as well as to improve the thermal comfort of various areas in
a large space. Thirdly, based on the parameters that are monitored, a zonal demand control
model will be built in a control simulation platform: Transient System Simulation Program
(TRNSYS). The thermal coupling (heat and mass transfer) factors between the subzones in
the room without physical partitions are considered, and the mass transfer between the
zones is calculated using an external CONTAM program. The current traditional single-
input-single-output control and zonal temperature control methods have been studied
for comparison. Finally, the energy consumption is compared and analyzed under the
proposed multi-zone variable set-point temperature and conventional control methods.

This paper is structured as follows: Section 2 gives a brief introduction of the test-
bed and environmental parameters. Section 3 presents the data reconstruction using
three different methods. The TRNSYS-CONTAM joint control strategy and its control
performance will be discussed in Section 4. Section 5 illustrates the conclusion, limitations
and future work.

2. WSN Test-Bed and Data Analysis

A wireless sensor network test-bed was established in an indoor concourse of a
university in Hong Kong to continuously monitor the indoor environment, as shown in
Figure 1. The environmental data, including temperature, humidity, and CO2 concentration
have been measured for nearly ten months. The vendor for the wireless temperature sensors
is GreenOrbs. The communication protocol of the WSN is ZigBee with mesh topology,
each wireless sensor node is powered by 2 alkaline batteries. The maintenance during the
deployment is to replace the batteries when a low power warning signal is received. The
measurement error for the wireless temperature sensor may reach to ±0.15 ◦C. To keep the
accuracy of the CO2 sensor, the CO2 sensor is calibrated every 2 months. The sampling
interval is set to 10 min for collecting the temperature data. The WSN was calibrated with
another thermostat sensor and has an acceptable accuracy of the data measurement with
an absolute error around 0.3 ◦C. The detailed information for wireless sensor node can be
found in reference [17].
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Figure 1. Layout of WSN test-bed.

The dimension of the large space is 54 × 27 × 4.5 m3, which is a typical indoor large
space building. The HVAC system used in this area is the most common Variable Air Vol-
ume (VAV) air conditioning system. The WSN test-bed consists of 20 wireless sensor nodes,
a receiver device, and a desktop computer for storing and processing data. The 20 wireless
sensor nodes were installed on 10 pillars, with two wireless sensor nodes installed on each
pillar. Each wireless sensor node is 2 m above the ground and distinguished by a unique
number. The layout of the WSN network-based monitoring platform is shown in Figure 1
as well. Since the space belongs to the inner area of the building and has a large area, the
indoor space is divided into four subzones based on its functional, the air conditioning
configuration and other factors: East, West, North and Middle. The East, West and North
subzones are aisle areas and the Middle zone is a temporary study area. It is noted that
the boundary between each subzone is defined as virtual boundary without any physical
partitions.

Data Analysis

The indoor temperature, humidity, and CO2 concentration data in July was selected as
a typical summer month for analysis. Twenty sensors collected a total of 74,880 temperature
data with an average of 3744 data collected by each node (both outlier and duplicated data
were removed). The number of missing data was 639 with an average loss rate of 0.85%,
see Table 1, of which No. 116 has the largest number of data loss (i.e., around 384 data
missing, nearly 3 days of data loss), accounting for 10.26%, followed by node No. 129 with
131 lost data and node No. 123 with 63 lost data. Node No. 111 and 120 has data loss of 18
and 12 respectively, and the rest of the nodes have less than 5 data loss.

Table 1. Data loss rate for some nodes with one month.

Sensor No. 116 129 123 111 120

Data loss 384 131 63 18 12
Percentage (%) 10.26 3.5 1.68 0.48 0.32

Figure 2 shows the indoor temperature, humidity, and CO2 concentration profiles
of node No. 113 from 2nd to 28th on July. It can be seen from Figure 2 that the daily
corresponding temperature, humidity, and CO2 concentration curves have clear peaks
and valleys with time. The monitored maximum and minimum value of the temperature
is 25.53 ◦C and 24.31 ◦C; the relative humidity ranges from 60% to 81%; the maximum
concentration of CO2 appeared at 17:00 on 17 July: 1055 ppm, and the minimum value
occurred at 05:30 on 8 July: 414 ppm. The average temperature, humidity and CO2
concentration is 24.78 ◦C, 68%, and 576 ppm in the time period of 08:00–20:00 (working
time) in one month, respectively. The measured temperature by sensor node 113 generally
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meets the room set-point temperature 24.5 ◦C as well as CO2 concentration is basically less
than 1000 ppm.
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Figure 2. Temperature, Humidity and CO2 concentration profile in July (No. 113): (a) Temperature
profile; (b) Humidity profile; (c) CO2 concentration profile.

Figure 3 shows the temperature change of 16 sensor nodes in the four subzones of
the space during one specific day, it reveals that the large space has uneven temperature
distribution and local overcooling (lower than the set-point temperature 24.5 ◦C). The
temperature gradually decreases to the temperature set point after the air-conditioning had
been switched on at around 8:00 in the morning. It is interesting that the temperature has a
significant fluctuation from 6:00 p.m. to 8:00 p.m., mainly because this space is a concourse
and temporary area for study, there are a lot of moving students during this period of time,
in addition, local students prefer to stay longer.

The measured historical temperature of each wireless sensor represents the historical
change of temperature of the large space at that measurement point, the difference of
monitoring data between different wireless sensors at the same moment can reflect the
temperature difference in the horizontal direction. The maximum temperature difference in
the horizontal direction of the space within this day occurs at 15:42 p.m., with a measured
temperature of 25.8 for node 103 in the North zone, and a measured temperature of 23.35 ◦C
in node 126 in the Middle zone. The horizontal temperature difference reaches 2.5 ◦C,
which indicates the existence of local overcooling/overheating phenomenon in the large
space. Furthermore, the temperature for node 126 in the Middle zone is always lower
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than the temperature of other nodes, while the temperature for node 103 in the North
zone is always higher than the temperature of other nodes, which suggests the continued
existence of local overcooling and overheating phenomenon in this large space for a long
time. Similarly, humidity and CO2 concentration also show the phenomenon of uneven
distribution in space and time.
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3. Data Reconstruction
3.1. Correlation Analysis of Sensor Nodes

One of the main starting points for reconstructing data is to ensure the continuity of
the measurement data, since in the future control the site-measured wireless data can be
directly integrated into a local controller. In a WSN-based monitoring system in buildings,
one primary concern is the data transmission reliability, this is because the wireless signal
transmission is not as reliable as the wired one, and the data received through WSN may
suffer from various types of abnormality, typical abnormal data include data duplication,
data loss and measurement outlier. Before reconstructing the data, duplicate data was
removed according to the time when the data arrives, a modified z-score method was
adopted to check the data continuity and remove the outliers. In this study, the authors
mainly focused on how to reconstruct the missing data. Because the percentage of data loss
of a single node is relatively large, only one of the sensor nodes will be selected for data
reconstruction.

Correlation analysis is one of the methods to investigate the closeness of correlation
between two variable factors, which is expressed by the following Pearson correlation
coefficient equation [30]:

r =
∑
(
X1 − X1

)(
X2 − X2

)√
∑
(
X1 − X1

)2(X2 − X2
)2

(1)

where r is Pearson correlation coefficient, X1 and X2 are two variables, X1 and X2 are the
average values of X1 and X2, respectively.

Each temperature measurement time-series from each sensor node in the WSN can be
considered as an independent variable, and the correlation coefficients between each other
can be calculated using Pearson’s formula. We select node 120 as the study target because
it had less data missing, which can help make data reconstruction easier compared with
the site measurement data. The correlation coefficient between the remaining 19 wireless
sensors and this sensor is calculated to form a correlation coefficient linkage graph for this
node, as shown in Figure 4. The data above the horizontal line in Figure 4 indicates the
correlation coefficient between a sensor node and sensor node 120, and the ones below
the horizontal line indicates the linear distance from sensor node 120. For example, the
correlation coefficient between node 123 and node 120 is 0.629, and the line-of-sight distance
is 19.09 m. Figure 4 illustrates that: (1) a total of 11 sensor nodes are highly correlated
(|r| ≥ 0.8) with node 120, 7 sensor nodes are moderately correlated (0.5 ≤ |r| < 0.8) with
node 120, and 1 sensor node is lowly correlated with node 120 (0.3 ≤ |r| < 0.5), which
indicates that the correlation between node 120 and other sensors is relatively close. (2)
The sensor nodes with strong correlation with node 120 have a certain pattern in terms of
distance. The closer the node is to node 120 in terms of linear distance, the more likely it is
to be highly correlated, and the farther the node is to node 120 in terms of linear distance,
the more likely it is to be moderately or lowly correlated. (3) The sensor node 114 with
strong correlation with node 120 is not closer in distance. For example, the correlation
coefficient between node 114 and node 120 is larger than that between node 131 and node
120, but the line-of-sight distance between node 114 and node 120 is 18.26 m, and the
line-of-sight distance between node 131 and node 120 is 12.30 m. It should be noted that
the correlation coefficient of each node in the figure varies with the calculated data, and the
correlation coefficient of each node will be different.

Based on the above analysis, it can be seen that the sensor nodes have different degrees
of correlation with each other. Therefore, the correlation between sensor data can be used
to select some sensor node data that are the most relevant to the sensor node with missing
data rather than all sensor data as inputs (e.g., the most similar correlation coefficients to
node 120 are node 125, 114, and 129), and then the data reconstruction can be performed,
which can significantly reduce the computational complexity and estimation efficiency.
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3.2. Multiple Linear Regression Model (MLR) Based on Correlation Analysis

Multiple Linear Regression (MLR), as a classical modeling method in multivariate
statistical analysis, is widely used in research. MLR is obtained by linearly fitting the inde-
pendent and dependent variables using the principle of least squares, and the contribution
of each variable to the dependent variable can be obtained by observing the regression
equation [31,32]. The contributions of the respective variables to the dependent variable can
be obtained by observing the regression equation, and the fit magnitude of the MLR model
can be evaluated by statistical regression methods such as coefficient of determination (R2)
and Mean Square Error (MSE) [33].

A multiple linear regression model between the independent variable and the de-
pendent variable y via n sets of observations k (xk1, xk2, . . . , xkm) can be obtained by the
following equations [31,32].

y1 = b0 + b1x11 + b2x21 + · · ·+ bmxm1
y2 = b0 + b2x12 + b2x22 + · · ·+ bmxm2

· · · · · ·
yn = b0 + bnx1n + b2x2n + · · ·+ bmxmn

(2)

b0, b1, . . . , bm are m + 1 regression coefficients to be solved, and the regression equation is
obtained by solving the regression coefficient estimates by the least squares method.

yi = b0 + b1x1i + b2x2i + · · ·+ bmxmi (3)

After obtaining the regression equation, the regression significance test is conducted to
determine whether there is a linear relationship between the dependent variable y and the
independent variable x1, x2, . . . , xm. It mainly includes the significance of the regression
equation and the significance test of the regression coefficients: the former is a test to
determine whether there is linearity in the obtained regression equation, while the latter is
a test to analyze the degree of influence of each independent variable on the dependent
variable. The significance test allows analyzing the meaning of the regression equation and
the contribution of the respective variables to the dependent variable. The steps of multiple
linear regression using Statistical Product and Service Solutions (SPSS) software are given
in Figure 5 [34,35].
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In this study, multiple linear regression analysis was performed using SPSS software
to reconstruct the abnormal data of a specific wireless sensor node. The correlation analysis
between node 120 and other remaining sensors in the WSN network was performed based
on the method introduced in aforementioned section. The sensor node with the higher
correlation with node 120 was selected for MLR modeling, which can reduce the complexity
of MLR calculation. The final regression equations for reconstructing the temperature,
humidity, and CO2 concentration data were determined as follows:

Y120,T = 0.395 × X125,T + 0.46 × X114,T + 0.131 × X129,T + 0.1 (4)

Y120,H = 0.358 × X125,H + 0.375 × X114,H + 0.299 × X129,H − 1.16 (5)

Y120,CO2 = 0.433 × X125,CO2 + 0.645 × X114,CO2 + 0.090 × X129,CO2 + 0.082 (6)

Y120,T represents temperature data of node 120, X125,T, X114,T, and X129,T represent
temperature of nodes 125, 114, and 129, respectively; Y120,H represents humidity data of
node 120, X125,H, X114,H and X129,H represent humidity of nodes 125, 114, and 129; Y120,CO2
represents CO2 of node 120, X125,CO2, X114,CO2, and X129,CO2 represent CO2 of nodes 125,
114, and 129, respectively.

3.3. Support Vector Regression Model

Vapnik et al. [12] proposed the Support Vector Machine (SVM) algorithm in the 1990s,
which has gradually become the mainstream technique of machine learning. SVM is based
on the principle of structural risk minimization and uses kernel functions to map linearly
indistinguishable samples from low-dimensional mappings to high-dimensional feature
spaces, and then constructs the optimal classification plane so that the total distance from
each sample to the plane is minimized [36,37]. SVM is widely used in many fields such
as prediction studies of time series, regression analysis, pattern recognition, and control
because it can overcome the problems of ‘dimensional catastrophe’, local extreme, and
small samples, and obtain a unique global optimal solution, which is called Support Vector
Regression when solving regression problems [38].

For the given a sample data D = (xi(j), y(j), i = 1, 2, . . . , M, j = 1, 2, . . . , N), xi(j) is
the jth sample of the ith variable, y(j) is the corresponding output value, N is the sample
capacity. The basic idea of SVR is to map the sample X to a high-dimensional feature
space (as shown in Figure 6a) by a nonlinear mapping function ϕ(x), and to perform linear
regression analysis in this feature space, and then construct the optimal decision function
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y(x) in Equation (7). The output of SVR is a linear combination of intermediate nodes, each
of which corresponds to a support vector, and its structure is shown in Figure 6b.
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structure of kernel function.

y(x) = wT ϕ(x) + b (7)

minϕ(x) =
w
2

2
+ C ∑N

i=1

∣∣∣y(j)−
[
wT ϕ(x(j))− b

]∣∣∣ (8)

ϕ(x) is the mapping function, w is the weight vector, and b is the bias, w and b can
be calculated by Equation (8). C is the penalty factor to control the model loss w2/2 and
the training model complexity. The kernel function is used to achieve a high-dimensional
mapping feature space for the data, and the Lagrange equation is further introduced to
solve Equation (8) to obtain the SVR output model results,

y(x) = ∑ α(j)k
(

xj, x
)
+ b (9)

where k(xj, x) is the kernel function and α is the Lagrange multiplier.
In this paper, the above-mentioned principles are adopted to study the nonlinear

relationship between the measurement time-series by one sensor node and others. A
support vector machine regression model will be established to reconstruct the abnormal
data. The kernel function of the support vector machine regression model in this paper
employs the most commonly used Gaussian radial basis function kernel, and the parameter
Gamma determines the high-dimensional feature space distribution of the data mapping,
and the best combination of parameter Gamma and penalty factor C can be found by the
grid method using cross-validation with the termination condition Epsilon set to 0.001.

3.4. Back Propagation (BP) Neural Network Model

In the mid-1980s, the Error Back Propagations Training algorithm was proposed, which
solved the problem of learning the connection rights of the implicit layer of multilayer
neural networks and performed a complete mathematical derivation [39]. The BP neural
network has the ability of arbitrarily complex pattern classification and excellent multi-
dimensional function mapping ability, which solves the heterogeneous or some other
problems that cannot be solved by simple sensors [40]. The minimum value of the objective
function is calculated using the gradient descent method [41,42].

The basic structure of BP neural network based sensor data reconstruction is shown in
Figure 7. Given a training set D = (xi(j), y(j), i = 1, 2, . . . , M, j = 1, 2, . . . , N), where the input
layer contains m nodes, the implicit layer contains n nodes, and the output layer has one
node. Wih (i = 1, 2, . . . , m; h = 1, 2, . . . , p) is the weight between the ith neuron in the input
layer to the hth neuron in the hidden layer, and Who (h = 1, 2, . . . , p; o = 1) is the weight
from the hth neuron in the hidden layer to the oth neuron in the output layer, and θh (h = 1,
2, . . . , p) is the threshold of the hth neuron in the hidden layer, σ1 is the threshold of the
output layer, Xi (i = 1, 2, . . . , m) is the I neuron of the input layer of the BP neural network,
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Y1 is the neuron of the output layer of the BP neural network, Yk is the expected output
of the BP neural network, and e is the error between the expected output and the actual
output of the BP neural network [42,43].
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The input received by the hth neuron in the hidden layer is αh, the input received by
the neuron in the output layer is β, see Equations (10) and (11), and bh is the output of the
hth neuron in the hidden layer. It is assumed that the Sigmoid function is used in both the
hidden layer and the output layer.

αh = ∑m
i=1 wihxi (10)

β = ∑P
h=1 whjbh (11)

For the training sample (xk, yk), the output of the output layer is noted by ŷ, then the
mean square error Ek of the BP neural network on (xk, yk);

Ek =
1
2

(
ŷk − yk

)2
(12)

The BP algorithm is a type of iterative learning algorithm that uses generalized per-
ceptron learning rules to update the parameters in each round of iteration. Moreover, the
parameters are tuned in the direction of the negative gradient of the objective function
based on a gradient descent strategy, with the goal of minimizing the cumulative error E
on the training set.

E =
1
N ∑N

k=1 Ek =
1

2N ∑N
k=1

(
ŷk − yk

)2
(13)

Hornik et al. proved that if a hidden layer contains a sufficient number of neurons,
the neural network can infinitely approximate any continuous function with arbitrary
accuracy [44]. Because of this powerful representation, self-learning and self-adaptive
capability of BP neural networks, overfitting phenomenon often occurs, i.e., the training
error continues to decrease while the test error keeps rising. However, the overfitting
phenomenon can be effectively alleviated by adopting the two strategies of “early stop”
and “regularization” [43].

In the model building of this paper, there are 19 neurons in the input layer, 1 hidden
layer, and 10 neurons in the hidden layer, Mean Square Error is used as the objective
function and gradient descent method is utilized to calculate the minimum objective
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function, the learning rate of the neural network is 0.1, and the termination condition
Epsilon is set to 0.001, the detailed analysis results will be discussed in the next section.

3.5. Reconstructed Data Analysis

The experimental data used 1008 sets of actual measured data (each set of actual
measured data contains 20 data) from 20 wireless sensor nodes during one week, it is
divided into training set, validation set and test set for SVM and BP neural network model,
and their distribution is shown in Figure 8. 1~720th sets of data (5 days) in training is for
modeling, 721~864th sets of data (1 days) in validation are for verifying the effectiveness of
the model, 865~1008th sets of data (1 days) in test are considered as test results to check the
rationality of data distribution. It is noted that we did not follow the regular scaling law for
the training-set, validation-set and test-set size ratio (usually 6:2:2), the actual ratio in this
paper is 7:1.4:1.4. The reconstruction results are shown below. From the previous data loss
analysis (Section 2), the data loss is less than 5 for most of time, thus linear interpolation
can be employed in advance to replenish the lost data to guarantee data continuity, thus
the selected training data are complete and continuous without outliers and missing data.
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Figure 9 shows the fitted curves of the reconstructed data and the measured data
by three algorithms. Although there are some deviations in the fit curves of the recon-
structed data, the overall change trend is consistent, and the fit curves of the reconstructed
humidity data have the highest coincidence with the measured data, followed by the
temperature fit curve, the CO2 concentration fitting curve was the worst. It indicates that
the three algorithms have good accuracy in reconstructing temperature, humidity, and
CO2 concentration data.

R2 = 1 −
∑M

i=1

(
y(i) − ŷ(i)

)2

∑M
i=1

(
y(i) − y(i)

)2 (14)

MSE =
1
M

M

∑
i=1

(
y(i) − ŷ(i)

)2
(15)

To further investigate the reconstruction accuracy of the three algorithms, R2 and
Mean Square Error are selected and their formulas are given in Equations (14) and (15),
where M is the total number of samples, and y(i), ŷ(i), y are the ith measured data, the ith
reconstructed data, and the average value of the samples, respectively. The closer the R2

is to 1 and the Mean Square Error is to 0, the better the model reconstruction is. It should
be emphasized that since temperature, humidity, and CO2 concentration have different
units and magnitudes. Therefore, in the procedure of data preprocessing, the three data
are normalized so that they are all distributed between 0 and 1. As an example to analyze
the accuracy of the three algorithms in reconstructing temperature data, Figure 10 gives
the specific performance of the three algorithms in reconstructing temperature data in the
training and test sets. It can be seen that the performance of each model on the training
and test sets is very close to each other, with no overfitting phenomenon. The R2 based on
the SVR model reconstruction is 0.9915, the MSE based on the MLR model reconstruction
is 0.0044, and the R2 and MSE based on the BP neural network model reconstruction are
0.9808 and 0.0126, and their performance is the worst in comparison with other methods.
The results demonstrate that the accuracy of reconstructing temperature data based on
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SVR model and MLR model is higher than that based on BP neural network model. It has
different performance in reconstructing temperature, humidity and CO2 with exactly same
algorithm, Figure 10c shows the accuracy of reconstructing the data based on BP algorithm
is humidity, temperature, and CO2 concentration in order. The accuracy of reconstructing
the same data based on different algorithms also varies. Figure 10d reveals the highest
accuracy of reconstructing temperature data is MLR algorithm, followed by SVR and BP
algorithm. Accuracy is not the only index to measure the superiority of the algorithm.
From the perspectives of program complexity, computing speed and difficulty in obtaining
input conditions, MLR is the most suitable one of the three methods.
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Figure 10. Performance analysis of three models: (a) Comparison of R2 of the three algorithms in the
training set; (b) Comparison of MSE of the three algorithms in the training set; (c) Comparison of R2

of the three algorithms in the test set; (d) Comparison of MSE of the three algorithms in the test set.
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4. TRNSYS Modeling and Control Simulation

Because rooms are often over-conditioned needlessly, without properly dealing with
the temperature uneven distribution, the performance of the temperature control may
deteriorate and energy may be wasted. Therefore, the current control system needs to be
retrofitted and a new zonal demand control strategy was proposed. The air conditioning
system of the four subzones is modeled using TRNSYS, TRNSYS is a very popular com-
mercial software that can be used in HVAC control field. The detailed building model of
this large space is created by Type 56, as shown in Figure 11. Four subzones are connected
with 4 regular PID (Propotional, Integral, Derivative) controllers to control their corre-
sponding subzone with suitable airflow rate based on the subzone temperature set-point.
CONTAM [45], developed by the U.S. national institute of standards and technology, is
a multi-zone indoor air quality and ventilation analysis program designed to assist in
identifying airflow, pollutant concentrations, and occupant exposures within a building.
The application of CONTAM to predict airflow and pollutant transport was validated by
many researchers [46–48]. CONTAM calculates infiltration and exfiltration airflow between
interior areas of a building and the outdoors, airflow from room to room, and airflow
from ventilation systems. These airflows are caused by pressure differences resulting from
driving forces, including fans in mechanical ventilation systems, wind pressure acting
on the exterior of the building, and buoyancy effects induced by temperature differences
between zones, including outdoors. The building model separated into four subzones
with a virtual boundary, for control applications, the airflow may interact between the
virtual boundaries. Thus, it is important to calculate the airflow during every control
time intervals. Fortunately, CONTAM can be competent to this task. The four subzones
of the building temperature are connected to the CONTAM module, which uses these
external input data to calculate the airflow exchange between the rooms and the outdoor
environment as well as the airflow exchange between the rooms. The airflow exchange
(airflow coupling) between the zones generated by CONTAM is connected to the rooms as
input, and the mechanical ventilation of the system with the air conditioner synergistically
affects the room temperature. The schematic diagram of airflow exchange in each subzone
is shown in Figure 12, the interaction between the zones is marked with blue arrows in the
figure. For example, M to E represents the airflow from Middle zone to East zone through
virtual boundary.
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4.1. Description of Three Control Modes

More wireless sensors can be deployed in a large space for precise measurements,
which can be used as input to the temperature controller for more accurate zonal tempera-
ture control. Although the implementation of a BACnet-ZigBee gateway is impractical, the
feasibility of wireless sensor-based temperature control will be discussed in advance. Here
three control modes are used for comparison purpose:

1. The traditional single-input-single-output (SISO) control: the use of only one temper-
ature sensor to synchronously control the entire large space, the temperature sensor
is usually located at the return air outlet, the airflow rate is delivered to the space
evenly by the air terminals (e.g., square ceiling diffuser). This is the current tempera-
ture control mode for this large space. The baseline model or the benchmark model
introduced here is for energy consumption comparison purpose.

2. Zonal temperature control: The whole space is separated into four individual sub-
zones, with each subzone can be independently controlled to its corresponding zonal
set-point temperature (zonal set-point temperature may varies with different subzones
for energy conservation).

3. Zonal demand control: Based on the zonal temperature control, the following two
aspects were considered: (i) The relationship between room set-point temperature
and room load is shown in Figure 13. The temperature set-point changes with the
load, when the load is on a small scale, the temperature set-point increases appro-
priately, when the load exceeds a certain value, for example 2 kW, the temperature
set-point decreases accordingly; (ii) the airflow coupling between virtual boundaries
are considered and calculated by CONTAM program.
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The cooling load mainly depends on the number of mobile people inside, however
it is very difficult to measure indoor loads directly. Alternatively, the real cooling load
for consecutive weeks of the large space can be calculated by parameters such as air
supply temperature, average zonal temperature from the wireless sensor nodes, and air
supply flow rate, as shown in Figure 14. Interested readers may find more information
in reference [17]. According to the actual use of the air conditioner in this area, the real
load calculated is from July 1 to July 7, which is equivalent to the setting time of TRNSYS
software: 5040 h~5208 h. From Figure 14 it can be seen that except for the north area, the
peak load is about 5.59 kW and the average load is 4.63 kW. The load in West is smaller
compared with the load in East and Middle, with a maximum value of about 4.85 kW and
an average load of 2.37 kW. The load in the North zone is basically the same as the load in
the West zone in the morning and evening, but in daytime the load in the North zone is
significantly lower than the load in the West zone since this subzone is a corridor area with
people rarely stay. The load change curve basically reflects the obvious characteristic of
uneven distribution of the load in large spaces. Using the measured load in Figure 14 as
input, the air conditioning system of the above three control strategies was modeled and
controlled with TRNSYS and CONTAM program respectively.
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4.2. Simulation Results

Figure 15 shows the temperature response curves for the four subzones. It can be
seen that the temperature in all three rooms except the East subzone is subcooled (below
the set-point temperature: 24.5 ◦C). The reason is the input temperature sensor of the
conventional control is located in this subzone. Actually, in TRNSYS, the subzone can be
only seemed as one temperature node, so the control receives feedback only based on the
temperature of this node, not the temperature of the whole large space. Since the load in
the East area is greater than the other three subzones, and the air supply is delivered evenly
into the entire large space, the supply airflow rate only meets the load in the subzone with
the largest load, it is unavoidable to cause overcooling in other subzones. Similarly, if the
East area load is the smallest, it will inevitably result in the overheating phenomenon for
the other subzones, if the East area load is between the maximum and minimum of the four
regional load, it may lead to some subzones to be overheated and some other subzones to
be overcooled.

The zonal temperature control is shown in Figure 16 with four subzones has the same
temperature set-point 24.5 ◦C. The temperature of all four subzones fluctuates between
24.25 ◦C and 24.9 ◦C. The temperature in four subzones is controlled well, and the over-
heating and overcooling phenomena was eliminated. From the simulation results, it can
be seen that the independent control of zoning can solve the problem of overcooling and
overheating in the virtual zones. Although the indoor thermal comfort is improved, the
independent zonal control is not necessarily energy-saving, especially when the load in the
area is smaller than other areas, the fan energy consumption can be reduced by appropri-
ately increasing the set-point temperature. Furthermore, in TRNSYS, the division of this
space is separated and seemed to be the solid walls, while the actual division of the space
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is without physical partitions, the air exchange between subzones should be taken into
account since it can interfere the temperature control, thus the simulation conducted here
is inconsistent with the reality.
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The TRNSYS model was modified based on the above zonal demand control, CON-
TAM program was added to this model to calculate the air coupling effect between sub-
zones, thus zonal demand control can be achieved with temperature setting value changes
with load accordingly. As shown in Figure 17, the temperature of the 4 subzones fluctuates
continuously with different setting values, with a maximum of 26.75 ◦C and a minimum of
24.5 ◦C. The temperature between subzones in the TRNSYS model interacts with each other
since the heat mass exchange between zones is being considered in the TRNSYS model.
Therefore, the results of joint control by TRNSYS and CONTAM are more reliable and more
realistic. Since the variable temperature setting is different from the fixed set-point, the
set-point temperature of each subzone is basically different at every moment in the case of
variable temperature setting mode, it will cause a greater temperature difference between
different subzones, which leads to a more intense airflow and accelerates the heat mass
exchange between subzones, and the disturbance is more intense.

Figure 18 shows the airflow exchange calculated by CONTAM program between East
and Middle, it means the airflow via virtual boundaries can be mixed with each other.
For example, in East subzone, the airflow is not only from the air terminals but also from
its adjacent subzone: the Middle. It is noted there are 10 interactions of air exchange in
this case which is not shown in this figure. The exchange between zones is equivalent to
an external disturbance which has an impact on the conventional PID controller, hence
room temperature control experiences a large fluctuation. That’s why the north subzone
experienced a sharp temperature decrease in control respond since it interacts with the
three subzones, see Figure 17. The traditional PID control system used in this model has
poor anti-interference capability, which can be solved by feedforward compensation control
or other control algorithms.
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Fan energy consumption was listed in Table 2. For benchmark control, the weekly
energy consumption by the fan is 420.4 kWh with room set-point 24.5 ◦C, fan power
consumption for Zonal temperature control strategy is reduced to 370 kWh, which achieved
12% of energy savings compared to the benchmark model. For zonal demand control, the
fan energy consumption is further reduced by 18% due to the variable temperature settings
with respect to the benchmark model.

Table 2. Fan energy consumption with three control strategies.

Control Strategies SISO Control
(Benchmark)

Zonal
Temperature Control

Zonal
Demand Control

Room set-point 24.5 ◦C 24.5 ◦C 24.5–26.5 ◦C
Fan energy

consumption 420.4 kWh 370 kWh 343.5 kWh

5. Discussion and Conclusions

In this study, a wireless sensor network has been constructed to monitor the tempera-
ture, humidity and CO2 in a selected large indoor space with the purposes of improving
the temperature control for energy saving as well as improving thermal comfort.

Due to various uncertainty factors, data loss, data duplication, data abnormalities and
other problems may occur during data transmission, data loss is a common phenomenon
in the operation of the wireless network. Firstly, the data loss rate was analyzed in a
typical summer month. Twenty sensors collected a total of 74,880 temperature data with an
average of 3744 data collected by each node. The number of missing data was 639 with an
average loss rate of 0.85%. It is found different wireless sensor nodes have different data
loss rates, No. 116 has the largest number of data loss, accounting for 10.26%, followed by
node No. 129, 123, 111 and 120, and the rest of the nodes have less than 5 data loss.

Secondly, the daily and monthly data of temperature, humidity and CO2 concentration
was analyzed and summarized. Uneven distribution of temperature, humidity and CO2
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was observed, it is found the temperature in horizontal breathing level can be reached to
2.5 ◦C, which indicates the existence of local overcooling/overheating phenomenon in the
large space for the current temperature control system, consequently, thermal comfort is
not guaranteed.

Thirdly, from the point of view of temperature control, the wireless data will be
employed as the input of the wired control system, thus the wireless measurement data
must be reliable and continuous, since the input data has a significant impact on the
operation and monitoring of the control system, so it is much crucial to reconstruct the
lost data to ensure the system operated stably. Three algorithms for reconstructing data,
namely multiple linear regression, Support Vector Regression and Back Propagation neural
network, have been implemented and compared. The results demonstrate that the accuracy
of reconstructing temperature data based on Support Vector Regression model and multiple
linear regression model is higher than that based on BP neural network model. From the
perspective of program complexity, computing speed and difficulty in obtaining input
conditions, multiple linear regression is the most convenient of the three methods.

Finally, the feasibility of wireless sensor-based temperature control has been discussed
in this paper as well. More wireless sensors can be deployed in a large space for precise
measurements, which can be used as input to the temperature controller for more accurate
zonal temperature control. Based on the monitored parameters, a multi-zone demand
control model has been established on a TRNSYS-CONTAM joint-control platform to
alleviate the phenomenon of overcooling/overheating for this large indoor space. The
airflow exchanges across the virtual boundaries have been considered (it was calculated
by an external program CONTAM) as well. Three control modes have been conducted:
the benchmark model (the current conventional temperature Single-Input-Single-Output
control model), the zonal model and the proposed zonal demand model. The simulation
results showed the zonal demand model could alleviate the over-cooling or over-heating
phenomenon in conventional temperature control. Thermal comfort performance was also
improved by considering the zonal temperature demand. Moreover, it contributed to 18%
reduction in fan power consumption compared to the benchmark model.

Limitations and outlook: The authors did not consider a larger sample space for the
training set, only one week of data was selected as the training set in this paper. The meta
parameters of Support Vector Regression and Back Propagation neural network methods
are set by default, the effect of meta-parameters on data reconstruction results is not taken
into account. The control simulation in this paper is conducted by simulation and not
experimentally verified. Future work will focus on optimizing the data more efficiently, as
well as enabling the integration of wireless data and control.
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