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Abstract: Many nations across the globe face the challenge of housing deficit. Modular integrated
construction (MiC), which has the highest level of prefabrication among off-site construction manu-
facturing (OSM), has been adopted as a fast and reliable construction method to address the housing
deficit. Previous studies have assessed the productivity of the prefabrication stage of MiC, while
investigations into the productivity of the MiC installation process with the consideration of prag-
matic factors, especially for high-rise buildings, are lacking in the literature. Therefore, this study
contributes by (1) developing a discrete-event simulation (DES) model to assess the productivity of
MiC installation while considering pragmatic factors (e.g., weather conditions, topography, work
dimension, etc.) and management conditions (e.g., workers’ motivation, training, equipment mainte-
nance, etc.); (2) developing a mathematical model to understand the relationship between productivity
and various resources utilized in MiC installation. After verifying and validating the DES model, it
was applied to a case study in Hong Kong. A sensitivity analysis using a full factorial experiment
design was conducted to identify the parameters (e.g., number of trucks, tower cranes, different
crews) that significantly affect a number of performance measures, such as the project duration,
productivity, and total costs. Furthermore, the mathematical model shows high prediction accuracy,
as the mean absolute percentage error is 8.93%. This study would help construction practitioners in
their decision-making process, while planning a project by providing them with a model that can
predict the productivity of the MiC installation process before and during the project implementation.

Keywords: productivity; modular construction; resource planning; tower crane; simulation; regression;
design of experiment

1. Introduction

Housing is a basic amenity that provides shelter for human beings. However, there is
an ongoing housing deficit in developed and developing countries [1]. In the UK, the annual
housing deficit was estimated to be 340,000 in 2022 [2], while that of the US was about
3.8 million [1]. On average, the housing deficit increases by 28% in Hong Kong yearly. In the
case of a developing country, Nigeria, the deficit was estimated to be 700,000 per year [3].
One of the ways to solve this problem is to adopt a fast, economical and reliable method [4].
Hence, prefabrication or off-site manufacturing (OSM) and modularization have proven to
exhibit these characteristics [5,6]. OSM has the tendency to reduce construction time and
cost by 50% and 30%, respectively [7,8]. Ajayi et al. [9] reported that many countries have
adopted OSM to increase their housing supply. For instance, 80% of detached houses in
Sweden use the prefabrication method, while 50% of apartments in the Netherlands are
made of prefabricated modules [10].

The off-site construction includes also typical construction activities, such as clearing,
earthwork operations, foundation work, construction of the building core and shear walls,
and finishing works. In order to speed up and improve the construction process, these
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typical construction activities need to be optimized. For instance, [11] demonstrated
that optimization of earthwork operations reduced the construction duration by 55%.
However, the focus of this study is to improve the installation process of modules in
off-site construction.

Off-site construction or off-site manufacturing (OSM) has been identified as the way
forward for enhancing productivity in the construction industry. This is mainly due to its
efficient manufacturing process. OSM has been gaining ground for the past decades in
many countries. For instance, the UK has adopted OSM as the way forward since 1999,
following its recommendation by the Egan Report [12]. The same effort has been noticed
in the US, as the US National Research Council stated that OSM is a key method to be
adopted for its companies to remain relevant and competitive in the industry [13]. In the
same vein, Singapore adopted OSM in the 1980s and increased its efforts to adopt the
method of Design for Manufacturing and Assembly (DfMA) in 2014 [4,13]. Furthermore,
HK has embraced and adopted MiC to mitigate its housing problems. The HK government
has proposed building 20,080 houses yearly [14], which can be achieved effectively by
embracing a modern and fast construction method, such as MiC.

It should be noted that modular integrated construction (MiC) is a subset of OSM.
According to the Modular Building Institute, founded in 1983, MiC is defined as “a process
in which a building is constructed off-site, under controlled plant conditions, using the
same materials and designing to the same codes and standards” [15]. Following this
definition, different building components can be manufactured in a controlled facility
and assembled on-site to reflect identical designs and specifications. MiC is becoming
more popular as a sustainable alternative to conventional construction methods due to its
numerous advantages, including waste reduction, quality building components, reduction
in project time, improved safety, and others [16,17]. Evidence shows that MiC reduces
about 90% of on-site activities, thereby increasing construction productivity [17,18]. The
assurance of high-quality building within a short period is often a deciding factor for
adopting MiC, especially for projects with a limited duration [19]. Figure 1 shows the
phases involved in traditional and modular integrated construction. According to the
figure, the traditional construction consists of four general phases, while that of MiC is
five. The first three phases are common to the two construction methods. Usually, the
construction documents and the schematic design of the building will be prepared by
the architects and engineers, which will be submitted for approval before the contractors
embark on on-site development. Unlike the traditional method, the development of sites
(i.e., foundation work) can be carried out simultaneously with the prefabrication of modules
in MiC projects, thereby resulting in a shorter completion time. The dotted line on the
last element of “modular construction” shows the ability of MiC projects to have a shorter
completion time compared to traditional construction. MiC has proved to be more effective
than traditional construction methods in terms of social, environmental, and economic
performance by 21%, 52%, and 60%, respectively [20]. Another reason why MiC is becoming
more popular among developers is its potential to produce a rapid return on investment.
Thus, paying attention to all phases involved is essential, from prefabrication to on-site
crane assembly [21].

It should be noted that the construction process is associated with various uncertainties
and constraints, which can result in interruptions during the project implementation.
Additionally, the crane is the most expensive equipment and resource used during the
on-site installation of modular units [22]. Due to this, the demand for the tower crane
exceeds its supply. Hence, the proper planning of the crane utilization must be carried out
before the commencement of a construction project, as poor planning can lead to delays and
additional costs during project implementation [23]. An excellent way to solve this problem
is to model the process via computer simulation, which can enumerate the effect of various
uncertainties, such as weather conditions, on the model’s output. This model will assist
construction managers in making an effective plan for the project execution based on the
different possible conditions at any given time. According to Rashid et al. [24], “Simulation
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modeling is the process of creating and analyzing a virtual model of a real-world process
to predict and forecast its performance”.
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Figure 1. Phases involved in traditional and modular construction. 
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Figure 1. Phases involved in traditional and modular construction.

Various researchers have adopted simulation techniques to improve the productivity
of MiC processes from the manufacturing stages of the modules or building components till
they get assembled on-site [15,21,25,26]. Most of the previous research efforts center on the
prefabrication stage and the use of mobile cranes for the installation process. None of these
studies considers the impact of job and management conditions on the productivity of the
installation process and identifies the significant installation resources that lead to higher
productivity. The job conditions include surface and weather conditions, work dimensions,
topography, and specification requirements for work methods. Skills, motivation of the
workers, training, and maintenance of the equipment (i.e., crane and truck) are part of the
management conditions considered in this study. These conditions are pragmatic as they
represent reducing factors for the productivity of a construction process.

Therefore, the motivation for this study is to fill the existing gap in this domain. This
study contributes to the existing knowledge in the MiC installation process by (1) predicting
the number of modules that can be installed per day (i.e., productivity), considering the
effect of job, management, and other related conditions using a discrete-event simula-
tion (DES) model; (2) conducting a sensitivity analysis using design of experiment (DOE)
to reveal the significant installation resources and their interactions on multiple perfor-
mance measures, including productivity; and (3) developing a multiple linear regression
model, showing the relationship between the productivity of MiC installation process
and resources employed in the process. The developed simulation model can tackle the
uncertainty associated with construction activities by defining the duration of each activity
as a stochastic variable. This helps the model to be highly representative of the real-world
situation. Furthermore, the regression model would help construction practitioners to
estimate the productivity of module installation based on the number of assigned resources.
This would help in making better resource planning decisions during the planning and
construction phases.

2. Research Methodology

Figure 2 shows the schematic representation of the research methodology adopted
in this study. Firstly, the topic idea was validated by conducting a preliminary literature
survey. After the topic validation, a proper literature review was conducted. The gaps
in previous studies were identified, and they formed the basis for this research. Subse-
quently, published pieces of the literature that used real-life case studies were assessed
for data collection. The collected data were used for the development of the DES model.
The DES model was developed using the AnyLogic simulation software, as shown in
Figure 2. Subsequently, the model was verified and validated. Next, a sensitivity analysis
using DOE was implemented to identify the significant installation resources and their
interactions on multiple performance measures: project duration, productivity, and total
costs. Furthermore, as depicted in Figure 2, the Minitab software was used to develop a
multiple linear regression model to predict the productivity of module installation based
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on the number of assigned resources. The regression model was verified and validated
using certain statistical measurements.
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3. Literature Review

Some of the previous studies investigated the use of simulation techniques to model the
production activities of modules’ fabrication in the factory. In contrast, others concentrated
on the on-site installation process of MiC. Table 1 summarizes the previous studies relating
to the two aspects. The table shows that some studies explicitly aim to estimate the daily
output of the construction activities, while others do not (as shown in the “output per
day” column of Table 1). In addition, the table shows the simulation type, crane type, and
category of building employed in the studies. DES attempts to represent a real-life system
by breaking it into a sequence of logically related activities [27]. Each activity will assign a
logical time and resource(s).

Darwish et al. [28] assessed the practical improvement to the production line of semi-
automated wall panels manufactured in a modular facility. This was acheived by simulating
the production processes using a DES model of Simphony.NET simulation software. Ac-
cording to the model’s output, the production of one panel takes only 64 min, which was
supported by the available historical data (i.e., 70 min). Three scenarios were developed
to identify the minimum resource combination that yields the maximum output. The
best scenario shows that 42 panels could be produced per day. Similarly, Rashid et al. [24]
developed a DES model to simulate the workflow process in a modular factory and em-
ployed the genetic algorithm (GA) to optimize the number of construction workers needed
at various workstations resulting in a minimum makespan. The results of their model
indicated that the total duration of the whole process could be reduced by 15% using the
same number of construction workers used before applying the optimized solution. Fur-
thermore, Afifi et al. [26] used a discrete and continuous simulation technique to examine
the productivity of a prefabricated module in a controlled facility. They found that the
simulation model was able to identify the stations with fewer value-adding activities and
thus be able to reduce the makespan of the prefabrication process.
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Mohsen et al. [29] developed a simulation model to mimic the installation process
of modules on-site. Regarding the assembling of the modules, various scenarios were
proposed. The scenario that favors the nature of the site in terms of space availability was
adopted. As expected, the authors noted that the crane was identified as the key resource in
the installation process. Furthermore, the on-site installation of modules was simulated via
the Simphony.NET software [25]. One unique attribute of the model was the incorporation
of the weather conditions into the simulation with the aid of the Markov Chain. In another
study, Goh and Goh [13] combined lean principles with computer simulation to model the
on-site installation of modular construction, often regarded as prefabricated prefinished
volumetric construction (PPVC) in Singapore. A base model was developed using DES in
ARENA software and value stream mapping (VSM) was added to identify the non-value-
adding processes. These processes were tackled by integrating lean principles, such as the
internet-based E-Kanban system for minimizing and optimizing cycle time and deliveries,
respectively; the use of robotics to eliminate manual labor; and total quality management
for reducing the occurrence of defects in the final model. The final model showed a decrease
in the duration of the project by 81.27% compared to the initial base model. The utilization
of the resources also increased by 17.91%.

Similarly, Moghadam et al. [21] developed a post-simulation visualization model
(PSV) to enhance the planning and scheduling of modular integrated construction. In
developing the PSV model, Simphony.NET was employed to simulate the installation
process of modular units. At the same time, 3D studio max was used for the visualization
part. A scaffolding crew was added as part of the resources for the model, which is not
included in other similar models. The model was applied to a construction site where
950 modules were to be installed in a 34-story building. The model’s output showed that
16 modules could be installed per day for the first 20 floors, while 15 and 14 modules
could be installed per day for the 21st–29th floor and the 30th–34th floor, respectively. A
similar study was conducted by Al-Hussein et al. [22], who developed an integrated system
that included simulation modeling and the 3D visualization of tower crane operations.
Three-dimensional visualization helps construction practitioners to visualize simulated
operations easily and is used to optimize construction schedules. Furthermore, a simulation
model was developed by Mohamed [30] to examine the productivity of tower cranes in the
MiC installation process. Seven scenarios were tested and the best one was determined
based on the project duration and cost.

Furthermore, previous studies have employed multiple regression analyses in the
construction industry. Regression analysis shows the relationship between a dependent
variable and independent variables. Renault et al. [31] employed regression analysis to
disprove the hypothesis or perception that demographics are related to how construction
managers handle risk management projects (RMPs). Teixeira et al. [32] developed a regres-
sion model to understand the relationship between waste generated on a construction site
and the attributes of the construction site, such as the number of floors, floor size, and site
layout. The value of the coefficient of determination and ANOVA were used to validate
their model. Yang and Qiu [33] established a regression equation between factors affecting
construction cost and the actual construction cost. Their regression model shows a higher
Pearson correlation coefficient than that obtained by the traditional prediction algorithm in
the literature. In a similar study, regression analysis was employed to determine a relation-
ship between 14 independent variables affecting the retrofit net construction cost (RNCC).
Based on the analysis, seven variables were found to be significant for predicting the RNCC.
In comparison, the other seven variables were discarded [34]. Moreover, a multi-linear
regression model was developed to predict the compressive strength of cement-grouted
sand. The independent variables employed to develop the model include the percentage of
polymer content in the grout, different fine aggregate sizes, and the curing age [35]. These
previous studies typify that regression analysis could be employed to predict the values of
a dependent variable based on a certain number of independent variables.
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Following the review of the previous studies, it can be seen that only [25] considered
the detailed movement of the crane while developing the simulation model, while none of
the studies incorporated the impact of job and management conditions on the productivity
of the MiC installation process. Additionally, the literature lacks a systematic approach to
reveal the significant installation resources and their effects on installation productivity.
Furthermore, the relationship between the output and inputs of their models is unknown.
A DES model is required to estimate this output, the development of which might represent
a barrier for construction practitioners to get its full benefit. Therefore, this study aims
to fill these gaps. This study approximates the complexity of construction simulation
models of module installation and provides practitioners with a simple and easy-to-use
regression model to help them make better resource planning decisions while considering
the complexities and uncertainty of module installation. It provides better insights into the
relationship between resources invested in construction activities and their productivity.

Table 1. Summary of previous studies relating to MiC prefabrication and on-site installation.

Authors Methodology Simulation Type Crane Type Building Category Output Per Day

[28] Simulation + Lean approach DES NA NA 42 panels

[29] Simulation DES Mobile Low-rise building 12 modules

[25] Simulation DES Mobile Low-rise building 6 modules

[24] Simulation + Genetic
Algorithm DES NA Low-rise building -

[13] Simulation + Lean principles DES Mobile and Gantry Low-rise and
Medium-rise building -

[26] Simulation DES + Continuous NA NA -

[21] Simulation + Visualization DES Tower High-rise 14–16 modules

[22] Simulation + Visualization DES Tower Medium-rise -

[30] Simulation DES Tower High-rise 11 modules

4. DES Model Development

This section discusses the DES model development, its detailed description, data
collection, and implementation. Furthermore, this section discusses the verification and
validation of the DES model, including its associated sensitivity analysis. Various DES
platforms are available in academia and industry. One of the first popularly-used DES
software specialized for construction applications was the one developed by Halpin in
1973, CYCLONE (Cyclic operation networks) [36]. Other simulation software includes
but is not limited to “AnyLogic”, “Simphony.NET”, “ARENA”, and “EZStrobe” [21,29].
Previous studies have widely used these software programs to model various construction
applications [26,36,37]. AnyLogic simulation software is the most recent among them. It
was chosen for this research because of its higher flexibility and integration of multiple
simulation methods (e.g., agent-based modeling and system dynamics) into one environ-
ment. It allows the user to model real-life construction processes by allocating resources
and durations to each task. Additionally, the software allows its users to perform sensitivity
analysis efficiently to identify the resources sensitive to changes by monitoring the output
of such a model.

4.1. Model Description

As indicated earlier, a DES model was developed. This model considers the relation-
ship between specific processes, their allocated resources, and the uncertainty associated
with the processes’ durations. It should be noted that the model is only concerned with the
activities involved in the on-site installation of MiC and does not involve other activities
relating to the prefabrication stage of the modules. As modeled in the simulation software;
the sequence of events involved in the installation process and their allocated resources are
presented in Figure 3 and explained in detail in the following paragraphs.
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The installation process starts with the arrival of trucks on the site (see Figure 3). After
the trucks maneuver to a designated place on the site, the inspection crew unwraps the
modules and assesses them. If the modules are in a good state, they are moved to the
next stage—the lifting zone; otherwise, they will be repaired. The chances of repairing
the modules depend on damages associated with the manufacturing process, improper
storage, and transportation to the site. This effect was modeled as a percentage of repair in
the simulation software. It was set as a changeable parameter, allowing users to determine
the value based on their specific situations. The hooking crew then fix the spreader beam
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to the lifting block of the tower crane. Spreader beams are used when large-size modules
are to be carried [13].

Subsequently, the hooking crew attaches the modules to the tower crane, and careful
inspection is performed before the lifting process. The crane is not allowed to swing until
the hooking process is properly carried out. It should be noted that the hoisting time of the
crane is a function of the travel distance and the speed of the tower crane. Unlike many
previous studies, the tower crane movement is detailed in this study to comprise vertical,
trolly, and rotational movements (i.e., the cran swings in Z, X, and Y directions). These
were modeled as changeable parameters to allow for flexibility based on the user’s specific
conditions. After the crane delivers the module to the desired location, the alignment crew
ensures that the module is aligned correctly.

Subsequently, the module is unhooked, and the crane is allowed to swing back to the
lifting zone. While the swinging occurs, the welding crew simultaneously performs bolting
and welding on the module. The module gets fireproofed after proper inspection of the
welding process. It should be noted that the developed model is quite different from other
models available in the literature, as it considers the probability of having a rework task
(which is practicable) for each of the activities. This rework will prolong the cycle time of
the entire process. Furthermore, another essential aspect of the model is incorporating job
and management conditions.

The job and management conditions presented in the study of Nunnally [38] were
adapted to suit the case of this study’s simulation model. The job conditions include surface
and weather conditions, work dimensions, topography, and specification requirements for
work methods. Skills, the motivations of the workers, training, and equipment maintenance
(i.e., crane and truck) are part of the management conditions. These conditions represent
reducing factors for the productivity of a construction process. These conditions are
interpreted as excellent, good, fair, or poor. They are numerically represented by some
values based on practical experiments [38]. For instance, if the job condition is good and
the management condition is fair, the productivity of such a construction process will be
multiplied by 0.71. This indicates that productivity will be reduced by 29% based on the
job and management conditions [38].

The model allows the contractor responsible for the installation process to choose the
descriptive conditions (i.e., excellent, good, fair, or poor) relating to the job and management
condition before running the model. The model will automatically assign the appropriate
value to the simulation time.

4.2. Data Collection

The data used for the development of the simulation model was collected from the
published literature that assessed the real-life construction activities and confirmed by
experts working on MiC projects [16,21,25,30]. These data are categorized into four parts:
duration of each activity, number of workers in a crew, numerical values to quantify the
job and management conditions, and the cost of various resources. Through observations
on site, previous studies have quantified the duration for each activity involved in the
MiC installation process. These durations handle the uncertainty associated with each
activity by representing them in the form of a triangular distribution [16]. A triangular
distribution is defined by the minimum value, the maximum value, and the most likely
value (i.e., mode) of a sample data. For instance, from our database, the minimum and
maximum duration for truck maneuvering on-site are 6 and 10 min, respectively. However,
the most likely duration is 8 min, as it is the mode of the sample data. The crews involved
in the installation process include the inspection crew, the hooking crew, the alignment
crew, and the welding crew. The number of workers required for a module installation for
each crew is referred to as crew size. The durations for the installation activities and crew
sizes are highlighted in Table 2. As indicated earlier, the job and management conditions
specified in the study of [38] are presented in Table 3. The table shows the numerical
values associated with a particular job and management condition. For instance, if the job
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condition is good and the management condition is excellent, the productivity of such a
construction process will be 78% of an ideal condition. In addition, data related to the cost
of each resource were collected and listed in Table 4 [39]. Unlike other models, the indirect
cost associated with the MiC installation process is added to the calculation of the total
project costs.

Table 2. Collected data for MiC installation activities.

Events/Activities Duration

Maneuvering of truck Triangular (6,10,8)
Unwrapping the modules Triangular (6,10,8)
Inspection of the modules carried by the trucks Triangular (7,14,10)
Repairing of damaged modules (if required) Triangular (7,14,10)
Fixing the spreader beam Triangular (10,15,12)
Hooking the modules to the crane Triangular (8,12,10)
Inspection before lifting the crane Triangular (4,7,5)
Re-hooking (if required) Triangular (4,8,6)
Tower crane vertical velocity 136 m/min
Tower crane trolly velocity 60 m/min
Tower crane rotational velocity 0.5 rad/min
Securing and alignment Triangular (16,22,19)
Unhooking Triangular (1,2,1)
Bolting and welding Triangular (17,23,20)
Inspection after installation Triangular (5,7,6)
Re-welding (if required) Triangular (10,15,12)
Fireproofing of the modules Triangular (11,15,13)

Crew Size

Inspection crew 2
Hooking crew 3
Alignment crew 2
Welding crew 4

Table 3. Factors for job and management conditions [38].

Job Conditions
Management Conditions

Excellent Good Fair Poor

Excellent 0.84 0.81 0.76 0.70
Good 0.78 0.75 0.71 0.65
Fair 0.72 0.69 0.65 0.60
Poor 0.63 0.61 0.57 0.52

Table 4. Cost per hour in Hong Kong Dollars (HKD) for various resources.

Resources Cost Per Hour (HKD)

Truck 118.5
Tower Crane 896.3
Inspection crew 300.1
Hooking crew 461.8
Alignment crew 375.2
Welding crew 809.2
Indirect cost 62.5
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4.3. Model Implementation

The developed model was applied to a case study in Hong Kong. The case study
is a high-rise building comprising 35 stories. The dimension of each module is 3.6 m by
9 m, weighing 12.5 tons. The total number of modules to be installed for the project is 525,
with each floor accommodating 15 modules. A typical example of the module is shown in
Figure 4. The DES model developed with the AnyLogic software is shown in Figure 5. As
shown in the figure, the durations of the tasks, resources, and costs were set as changeable
parameters to allow the model user to change them to whatever values that suit their
specific construction process. It should be noted that Figure 5 is the AnyLogic Simulation
implementation of Figure 3, which was explained in Section 4.1.
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The main outputs of the model are productivity (i.e., the number of modules installed
per day), the total cost of the project, and the project duration in working days. Additionally,
the software automatically displays the percentage utilization of every resource whenever
the model is being run, contributing to the model’s output. The equations for calculating
the project durations in working days, the productivity, and the total cost are given in
Equations (1)–(5). When all the resources were set to one, and the job and management con-
ditions were evaluated as “excellent,” the productivity, the project duration, and the project
costs were seven modules per day, 80 days, and HKD 1,301,910, respectively. The effect of
the incorporated factors on job and management conditions was also assessed to examine
their impacts on the model’s outputs. For instance, when the job condition was “good”
and the management condition was “fair,” the productivity, the project duration, and the
project costs were 5.5 modules per day, 95 days, and HKD 1,542,600, respectively. However,
when the job condition was “poor”, and the management condition was “fair”, the produc-
tivity, the project duration, and the project costs were 4.5 modules per day, 117 days, and
HKD 1,914,574, respectively. These results show that the job and management conditions
incorporated values are reasonable. One would expect a poor site condition to yield lesser
productivity and take more duration for project completion than a site with relatively good
conditions. Hence, it is important to assess MiC installation productivity based on the true
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conditions of the site to avoid overestimating or underestimating the productivity, which
may mislead construction practitioners in their resource planning process.

PD =
Total simulation time

Working hour per day× 60
(1)

where PD is the total duration of the project in working days. The working hour per day
was assumed to be 8 h.

Productivity =
NMA

PD
(2)

where Productivity represents the number of installed modules per day, NMA is the total
number of modules to be assembled for the whole project, and PD is the total duration of
the project in days

TPC= TDC + TIC (3)

where TPC is the total project costs and TDC represents the total direct cost, while TIC
refers to the total indirect cost.

TDC = ∑I
i=1 ni × Rratei ×Wtimei ∀i ∈ I (4)

where n is the number of allocated resources of type i, Rrate is the given hourly rate of
each resource i as highlighted in Table 4, and Wtime is the time of the utilization of each
resource i

TIC = IC×Working hour per day× PD (5)

where IC is the hourly indirect cost, as given in Table 5.
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Table 5. A total of 64 experiments of full factorial design for identified input parameters.

ID

Input
Parameters

NTruck NInspecCrew NHookingCrew NCrane NSandACrew NWeldingCrew

1 1 1 1 1 1 1
2 3 1 1 1 1 1
3 1 3 1 1 1 1
4 3 3 1 1 1 1
5 1 1 3 1 1 1
6 3 1 3 1 1 1
7 1 3 3 1 1 1
8 3 3 3 1 1 1
9 1 1 1 3 1 1

10 3 1 1 3 1 1
11 1 3 1 3 1 1
12 3 3 1 3 1 1
13 1 1 3 3 1 1
14 3 1 3 3 1 1
15 1 3 3 3 1 1
16 3 3 3 3 1 1
17 1 1 1 1 3 1
18 3 1 1 1 3 1
19 1 3 1 1 3 1
20 3 3 1 1 3 1
21 1 1 3 1 3 1
22 3 1 3 1 3 1
23 1 3 3 1 3 1
24 3 3 3 1 3 1
25 1 1 1 3 3 1
26 3 1 1 3 3 1
27 1 3 1 3 3 1
28 3 3 1 3 3 1
29 1 1 3 3 3 1
30 3 1 3 3 3 1
31 1 3 3 3 3 1
32 3 3 3 3 3 1
33 1 1 1 1 1 3
34 3 1 1 1 1 3
35 1 3 1 1 1 3
36 3 3 1 1 1 3
37 1 1 3 1 1 3
38 3 1 3 1 1 3
39 1 3 3 1 1 3
40 3 3 3 1 1 3
41 1 1 1 3 1 3
42 3 1 1 3 1 3
43 1 3 1 3 1 3
44 3 3 1 3 1 3
45 1 1 3 3 1 3
46 3 1 3 3 1 3
47 1 3 3 3 1 3
48 3 3 3 3 1 3
49 1 1 1 1 3 3
50 3 1 1 1 3 3
51 1 3 1 1 3 3
52 3 3 1 1 3 3
53 1 1 3 1 3 3
54 3 1 3 1 3 3
55 1 3 3 1 3 3
56 3 3 3 1 3 3
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Table 5. Cont.

ID

Input
Parameters

NTruck NInspecCrew NHookingCrew NCrane NSandACrew NWeldingCrew

57 1 1 1 3 3 3
58 3 1 1 3 3 3
59 1 3 1 3 3 3
60 3 3 1 3 3 3
61 1 1 3 3 3 3
62 3 1 3 3 3 3
63 1 3 3 3 3 3
64 3 3 3 3 3 3

ID: Experiment ID; NTruck: Number of trucks; NInspecCrew: Number of inspection crews; NCrane: Number
of cranes; NHookingCrew: Number of hooking crews; NCrane: number of cranes; NSandACrew: Number of
alignment crews; NWeldingCrew: Number of welding crews.

4.4. Verification and Validation

After developing the DES model, it was verified and validated. Verification refers to the
process of ensuring that the built model reflects the overall idea behind its development [13].
Various approaches for verifying a simulation model were presented by [41]. One of them
is to examine its outputs for practicality by varying its input parameters. In other words,
this is referred to as sensitivity analysis, which was performed and explained in detail in
Section 4.5. The sensitivity analysis yielded good results and ensured the correctness of
the developed model. Another approach that was employed for the verification was to
examine the construction activities developed in the simulation model to determine if they
were initiated and proceeded chronologically in the desired sequence [42]. This verification
approach was accomplished using the animation feature in the AnyLogic software.

On the other hand, validation refers to the process of ensuring that the developed
model is a representation of the real-world system. Validating the model assumption(s) and
comparing the model’s outputs with a similar related study have been used as validation
approaches [13]. The assumptions relating to a simulation model can be categorized
into two: data and structural assumptions. This study assumes that the data used for
developing the simulation model are correct and valid. They were taken from different
sources yet with similar values. In terms of the structural assumption, it was assumed that
the modular units are continuously supplied to the site. This assumption was validated,
as the utilization of the trucks was between 99–100% for all the tested scenarios. This
shows that the modular units are continuously delivered to the site and always awaiting
the truck to perform the maneuvering task to the desired location. Furthermore, the
model was validated by comparing its output with that of a previous study. The study of
Moghadam et al. [21] investigated the use of tower cranes in the MiC installation process
and found the installation rate to be 14–16 modules per day based on the most feasible
(i.e., best scenario) technical conditions. The present study achieved 13 modules per day.
The 1–3 difference in the number of modules installed per day (comparing this study with
that of Moghadam et al. [21]) resulted from incorporating job and management conditions
in this study. These results proved the validation of the model, as the outputs of the two
studies are comparable with reasonable justification, as illustrated above.

4.5. Sensitivity Analysis

Sensitivity analysis refers to the process of examining the changes to the output(s) of a
model by varying its input parameter(s). The design of experiments (DOE) is a systematic
approach to conducting a sensitivity analysis by deliberately changing the controllable input
parameters and analyzing their impact on the model outputs to: (1) identify the controllable
parameters that have a statistically significant effect on the outputs, and (2) determine
whether there are interactions between parameters that have statistically significant effects
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on outputs. DOE starts by identifying dependent variables. The dependent variables
are the model outputs (i.e., project duration, productivity, and project costs, derived in
Section 4.3). Then, independent variables and their range values are identified using
information collected in Section 4.2. These variables are the number of different installation
crews, tower cranes, and trucks. Each variable has a range between “1” and “3”. These
values are case-dependent (i.e., based on the project size and the site layout). After that,
a full factorial experiment design is selected to ensure that: (1) none of the main effects
is aliased with other main effects, (2) none of the main effects is aliased with any of the
two-factor interactions, and (3) no two-factor interactions are aliased with other two-
factor interactions. Hence, the selected design was able to provide a unique and accurate
interpretation of results. Table 5 shows 64 (26) experiments of the selected design for the six
identified input parameters. Next, the DES model is used to evaluate the model outputs
of each experiment. Finally, a series of univariate analysis of variance (ANOVA) tests
are conducted to identify the significant parameters and their interactions on each of the
model outputs.

Figure 6 shows the input parameters that significantly impact the project dura-
tion and their interactions. These parameters are as follows: number of trucks (with
p− value < 0.001), number of hooking crews (with p− value = 0.058), number of cranes
(with p− value < 0.001), and number of welding crews (with p− value < 0.001). Figure 6a
indicates that increasing the number of these resources would reduce the project duration.
This finding matches the results of previous models [16,43]. Figure 6b shows a number
of significant interactions between these parameters. These interactions are between the
number of trucks and hooking crews (with p− value = 0.058), the number of trucks and
tower cranes (with p− value < 0.001), the number of hooking crews and tower cranes
(with p− value = 0.058), the number of trucks and welding crews (with p− value < 0.001),
and the number of tower cranes and welding crews (with p− value = 0.058). Potential
reasons for the significance of the number of trucks, hooking crews, and tower cranes
and their interactions on the project duration are: (1) The number of trucks represents
the inflow of modules to the site. If this inflow is reduced, the daily number of installed
modules decreases, leading to an increase in the project duration [16,44]. (2) The hooking
crews are responsible for a number of hooking activities that require a non-negligible time
and high consideration due to safety precautions. (3) Tower cranes are the centerpiece of
construction equipment on site that have a significant impact on the project duration [21,45].
(4) The significant interactions between these parameters can be attributed to the fact that
these resources are responsible for a number of sequential activities at the beginning of the
installation process. Hence, any disruption at this stage could prolong the project duration.
The significance of the number of welding crews is attributed to the relatively long time
of welding-related activities. These activities are at the end of the installation process.
Hence, the significant interactions between the welding crews and the other resources
at the beginning of the installation process could be due to the need to strike a balance
between the time required to finish the activities at the start and end of the installation
process to avoid any bottlenecks in the system that could prolong the project duration.
Figure 7 shows the significant parameters (Figure 7a) and their interactions (Figure 7b) on
productivity. Expectedly, the results are similar to that of the project duration since both
have an inverse relationship (refer to Equation (2)).

Figure 8 shows the main effects (Figure 8a) and interaction effect (Figure 8b) plots
for a number of parameters on project costs. As shown in Figure 8a, these parameters are
as follows: number of trucks (with p− value < 0.001), number of hooking crews (with
p− value < 0.001), number of cranes (with p− value = 0.083), and number of welding
crews (with p− value < 0.001). In Figure 8b, the significant interactions are between the
following: the number of trucks and hooking crews (with p− value < 0.001), the number
of trucks and tower cranes (with p− value = 0.077), the number of trucks and welding
crews (with p − value < 0.001), the number of tower cranes and welding crews (with
p− value < 0.001), and the number of hooking and welding crews (with p− value = 0.059).
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This figure shows that reducing the number of trucks, hooking crews, and cranes could
reduce project costs. This result matches with findings from the literature [45,46]. On the
other hand, the analysis recommends increasing the number of welding crews to reduce
project costs. This finding could be attributed to the fact that welding crews are responsible
for a number of sequential activities at the end of the installation process. Hence, increasing
the number of these expensive crews would reduce their average utilization and their daily
working hours, leading to a reduction in their direct costs and the project’s indirect cost,
according to Equations (3)–(5).
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5. Results of Productivity Regression Model for MiC Installation

In this study, a regression model was developed to establish the relationship between
the productivity (i.e., the number of modular units installed per day) of the MiC installation
process and the resources associated with the process. It should be noted that there are
various types of regression models, including linear, multiple linear, logarithm, index, and
exponentiation models [33]. The multiple linear regression model is chosen for this study
as it best fits the purpose of developing the model.

5.1. Model Development

The developed DES model was run multiple times with varying input values to
generate the data used in the development of the regression model. The input values
(i.e., number of trucks, cranes, inspection crew, hooking crew, alignment crew, and welding
crews) and the corresponding output value (i.e., the number of modular units installed
per day) for the runs were imported to the Minitab software. The developed multi-linear
regression model is expressed by Equation (6).

Productivity = 6.076 + 0.206 TK− 0.245 IC + 0.036 HC + 0.206 CR + 0.499 AC + 1.473 WC (6)

where Productivity refers to the number of installed modules per day, TK represents the
number of trucks, IC represents the number of inspection crew, HC refers to the number of
hooking crew, CR represents the number of cranes, AC refers to the number of alignment
crew, and WC refers to the number of welding crew involved in the installation process.

5.2. Verification and Validation of the Productivity Regression Model

The linear regression model is verified by conventional statistical measurements,
such as the coefficient of determination and ANOVA testing, as previously used in many
studies [31–33]. Table 6 shows the summary of the model’s adequacy checks, while Table 7
shows the ANOVA results.

Table 6. Summary of the model’s adequacy check.

S R2 R2 (Adj) R2 (Pred)

1.84091 77.2% 75.19% 74.66%

Table 7. Analysis of variance (ANOVA) testing for the model.

Source p-Value F-Value

Regression model 0.000 31.65
Truck 0.533 0.39

Inspection Crew 0.299 1.10
Hooking Crew 0.888 0.02

Crane 0.050 3.95
Alignment Crew 0.042 4.32

Welding Crew 0.000 39.18

Table 6 presents three types of coefficients of determination: actual, adjusted, and
predicted, and the standard error of the regression model. The model’s actual coefficient of
determination (R2) is 77.2%, showing that 77.2% of the productivity of an MiC installation
process, the dependent variable, is explained by the resources involved in the process
(i.e., the independent variable). Additionally, the adjusted R2 and the predicted R2 were
75.19% and 74.6%, respectively. It can be seen that the adjusted R2 is lesser than the actual
R2 of the model, showing that some of the independent variables are not significant. On
the other hand, the predicted R2 shows how well the model will predict the productivity of
the MiC process using a new set of data. Overall, these values of R2 show that the model is
well fitted to the data, as many studies consider R2 greater than 70% to be a good fit [31,32].
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Furthermore, the standard error of the regression model was S = 1.8409, which is
low enough to show that the level of deviation between the dependent and independent
variables is acceptable. An S value of 2.5 or less has been associated with 95% prediction
accuracy [47]. As shown in Table 7, the p-value for the regression model was found to be 0,
showing that the model is statistically significant. However, assuming a 5% significance
level, only three variables of the models were significant. On the other hand, the other
three seem to be insignificant for the regression model. Hence, the three variables can be
removed from the regression equation to give Equation (7).

Productivity = 6.076 + 0.206 CR + 0.499 AC + 1.473 WC (7)

The regression model was validated by calculating the mean absolute percentage error
(MAPE) for 10 predictions (see Table 8). Equation (8) presents the formula used for the
calculation of MAPE.

MAPE =
1
n

n

∑
t=1

|At− Ft|
At

(8)

where MAPE is the mean absolute percentage error, n represents the number of times
the summation iteration is performed, At refers to the actual productivity value, while Ft
represents the predicted productivity value. The calculated MAPE is 8.9%, and a model
with a MAPE less than 10% has been classified as an accurate predictive model [48]. Hence,
the regression model developed in this study can accurately predict the productivity of
MiC installation process.

Table 8. Mean absolute percentage error (MAPE) of the regression model.

S/N Actual Value (At) Predict Value (Ft) Percentage Error (%)

1 9.30 8.84 4.98
2 6.58 8.22 24.90
3 12.88 10.81 16.05
4 7.5 7.69 2.53
5 12.87 12.08 6.14
6 9.24 8.88 3.80
7 19.94 21.07 5.68
8 12.97 11.83 8.75
9 9.28 9.21 0.70
10 19.95 16.79 15.84

MAPE 8.93%

6. Conclusions

Modularization, a subset of off-site construction, is a modern approach in the con-
struction industry that has gained momentum over the last few decades. Previous studies
assessed the productivity of the MiC installation process. However, most previous studies
did not capture the pertinent details of the installation process, such as the crane movement,
the possibility of rework, and subjective factors influencing productivity. In addition to
the lack of a mathematical model representing the association between allocated resources
and MiC installation process in the literature, little attention has been paid to high-rise
buildings. Therefore, this study was conducted to fill these gaps and contribute to the
existing scholarly literature. A discrete event simulation model was developed to mimic
the installation process of a typical MiC project. The model incorporated factors relating
to the job (i.e., work dimensions, weather, etc.) and management (i.e., skills and worker’s
motivation) conditions, as these are lacking in previous studies. These conditions are
pragmatic as they represent reducing factors for the productivity of a construction process.
The developed model was applied to a case study in Hong Kong, where a 35-story MiC
building is to be constructed. The total number of modules to be installed is 525, with
each floor accommodating 15 modules. The model was verified by changing the input
variables to ensure logical output was obtained several times. Comparing the result of the
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model with a related study and confirming the model’s assumptions form the basis of the
model’s validation. Then, a sensitivity analysis was conducted using a full factorial DOE
to identify the significant installation resources and their effects on the project duration,
productivity, and total costs. The DOE analysis indicates that the numbers of trucks, tower
cranes, hooking crews, and welding crews have a significant effect on project duration,
productivity, and total costs. Increasing the number of these resources would reduce the
project duration and increase the installation productivity. In addition, increasing their
numbers would increase project costs, except for welding crews, since reducing their num-
bers would increase the project’s indirect costs. Furthermore, a linear regression model was
developed to establish the relationship between the productivity of the MiC process and
the associated construction resources for such a process. The regression model is verified
by conventional statistical measurements, which indicate the model’s ability in predicting
the productivity of the MiC installation process.

As with every other study, this study has some limitations. Although the DES model
incorporated some pragmatic factors that influence the productivity of the MiC installation
process, other factors, such as the learning curve effect, overtime, and the crew’s experience,
can be added to the model using system dynamics approach. In addition, the model’s
output can be easily visualized by integrating the simulation software with visualization
software, such as 3D Studio Max. Futhermore, future studies can leverage on machine
learning approaches to develop the regression model.
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