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Abstract: In situ resource utilization (ISRU) and automation are necessary. The logical first step of
intention is to focus on our neighbor, the Moon, first. This work aims to expand our knowledge of
the lunar aggregate simulant (LAS) based on ilmenite rock, which is available in Central Europe.
Prismatic mortar samples were prepared based on standard sand and LAS. The measurements were
conducted using several different destructive (DT) strength related tests and non-destructive (NDT)
electrical resistivity measurement methods. The results were compared, and mutual correlation was
evaluated. Finally, the ratio between volumetric (bulk) and surface resistivity tested on prismatic
samples is presented. The results showed an average ratio of 7.19 for sand and 7.97 for ilmenite. The
results show the potential feasibility of evaluating the properties of non-standard composite materials
using durability-related NDT. The experimental testing presented that combines the DT and NDT
methods in one sample represents a potential streamlining of the processes of future testing.

Keywords: compressive strength; lunar aggregate simulant; electrical resistivity; NDT

1. Introduction

Research related to the colonization of extra-terrestrial bodies, including the Moon, is
an important part of modern science efforts. Since the 1960s, around the world, procedures
have been prepared (and improved) which should result in the preparation of various
construction technologies that can be executed on the Moon [1,2]. One of the ways to make
construction technologies suitable for the Moon or Mars is by preparing building materials
from local raw materials (i.e., from the soil). The lunar soil is planned to be used as a basic
material for protecting structures against radiation, meteorites, and thermal differences,
filling 3D printed hollow elements, concrete components, etc. [3–5]. The production of
concrete-like material, which will be based on lunar rock, is the goal of long-term research
by multiple teams [6–9]. It is worth considering that current construction experience is
limited to the conditions on Earth. The conditions for material preparation and construction
will be different on the Moon [7,8], due to a lack of atmosphere, extreme temperatures,
and low gravitation. One of the options available in the world of construction research
is the use of lunar soil simulants (LSS) [10–12]. Previously, research has been done on an
alternative in a similar ilmenite lunar aggregate simulant (LAS) [13]. Published results have
shown that the lunar ilmenite aggregate has desired properties and its production is feasible.

Closely related to the development of lunar composite materials is the improvement
of non-destructive testing (NDT), which would be even more important on the Moon than
it is on Earth. One of the promising NDT approaches for future lunar building materials is
electrical-resistant measurements. Such measurements could provide valuable information
on porosity, pore adhesion, permeability, water and gas diffusion, water content in pores,
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hardening, and hydration processes [14–19] of lunar concrete-like materials. Resistance
plays an important role in the analysis of the durability of concrete structures on Earth and
represents the quality of concrete [19–21]. It should be noted that the research does not deal
with the behavior of cement hydration under zero gravity but will take this into account
in the future [22].

Therefore, in this article, an analysis of electrical resistance was performed on pris-
matic samples of cement composites based on ordinary aggregate and lunar aggregate
simulant. The first objective of the research program was to evaluate the relationship
between electrical resistance and properties related to elementary strength. The second
objective was to compare the results between the volumetric resistance and the surface
resistance of a cement composite in the form of prismatic samples. This knowledge may be
of great importance in future research related to space exploration. Since the correlation of
basic properties with electrical properties is suitable for tests conducted in a vacuum, in
the authors’ opinion, lunar building materials should be first tested using common NDT
methods. There is a need to investigate the specifics and differences, even with ordinary
NDT testing procedures. If current procedures are not suitable for lunar building materials
and conditions, alternative test methods must be introduced and tested.

2. Materials

The subject of the investigation is a cement composite based on a lunar aggregate
simulant. As a reference, ordinary sand-based cement composite was used. Ilmenite
(titanium dioxide) sourced from the Baltic coast was chosen as LAS. It is a mineral with
the idealized formula FeTiO3. The ilmenite was obtained using magnetic separation. The
ilmenite collected was kept in a freshwater tank for two weeks before being washed
multiple times. In this way, the ilmenite particles used as LAS in the research program
were free of any sulfate or chloride pollution. The procedure to source ilmenite and prepare
LAS was thoroughly presented in a previous publication [13]. Due to magnetic separation,
LAS consisted only of ilmenite particles [13].

This mineral is commonly present in lunar regolith and earth rocks. Ilmenite is a
very dense and inert material, crushed and washed by seawater into sand-sized particles.
The granulometric properties of the collected ilmenite are summarized in Table 1, together
with the properties of standardized sand and lunar soil brought about by the Apollo
11 mission. The mechanical properties of a cement compound based on LAS were thor-
oughly described in a previous publication [13].

Table 1. Properties of standardized sand, ilmenite, and lunar soil [13].

Material Density (kg/dm3) Loose Bulk Density (kg/dm3) Fineness Modulus (-)

Sand 2.65 1.558 79.945
Ilmenite 4.70 2.413 59.114

Lunar soil 2.90 1.220 93.551

For the analysis of the proposed lunar aggregate, cement composites were cast using
standardized sand and LAS. The sand used in the research program was CEN and is a
quartz sand containing at least 98% silica particles. There is no natural sand available,
which fulfills the particle size distributions according to EN 196-1. Therefore, CEN sand is
an artificial product. It consists of several different sand-type fractions which are blended
in defined portions. The particles are generally isometric and rounded in shape. A stan-
dardized mortar (used to test the properties of the cement) was used: water (225 g), cement
(450 g), and standardized sand (1350 g). Because there is a difference in the density of the
two aggregates, the amount of LAS needed for one dose was calculated by volume. LAS
mortar: water (225 g), cement (450 g), and LAS (2394 g). Sand was completely replaced
by LAS. Each batch was created using a standard mortar mixer. The mortars were pre-
pared using the standard dosing, mixing, and the compaction procedure was used for the
cement mortar tests. The mixing procedure consists of five stages. The first stage is to mix
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water and binder for 30 s and with 140 revolutions per minute. The second stage consists of
simultaneous dosing aggregate (e.g., sand) and mixing with 140 rev./min. The third stage is
to mix all mortar ingredients with a high speed of 285 rev./min. The fourth stage covers the
90 s break in mixing, which is dedicated to cleaning the walls of the mixing container and
moving all the mortar remains to the bottom-center part of the mixing container. The last stage
of mixing covers mixing with a speed of 285 rev./min. Three 40 mm × 40 mm × 160 mm
prism samples were formed from each batch. Compaction was carried out using a jolting
apparatus (two layers—60 jolts per layer). After 24 h, they were removed from the mold
and tightly wrapped in a polyethene film. Samples were stored at +21 ◦C ± 1 ◦C. Prismatic
samples were used for multiple tests. Strength-related tests were carried out on mature
samples of the same age as resistivity tests. The samples were tested 2 years after casting to
avoid the influence of any ongoing chemical activity associated with hardening of the mortars.

3. Experimental Methods

The experimental program was set up to combine destructive testing (DT) and non-
destructive testing (NDT) so that relationships and correlations could be easily evaluated.
The process of using samples for surface resistivity, volumetric resistivity, flexural test, and
compressive strength is shown in Figure 1.
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and compressive strength.

3.1. Surface Resistivity

A Wenner probe was selected to measure electrical resistance (see Figure 2). This
measurement is based on the AASHTO T385 [23]. A detailed description of this NDT
method was provided in a previous paper [24,25]. This NDT method is an easily repeatable
test. The results can be determined at various locations on the surface of a sample. The
samples were fully saturated because they were stored in water. The preparation of samples
for testing is not difficult. The samples are just pulled out of the water, the surface is dried,
and the resistance is measured.
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Figure 2. Example of measuring the surface resistivity of a prismatic sample.

However, the results achieved using this method of testing can be characterized by
relatively large variations caused by the heterogeneity of the test material and the use
of rather uncontrollable contact conditions. In the case in question, four readings were
obtained from each sample, resulting in a total of 12 measurements.

A cylinder sample is used as standard, but in this case, a prismatic sample was
analyzed. Due to this, it is possible to obtain a ratio factor between volumetric and surface
resistivity, which is established only for cylindrical samples.

3.2. Volumetric Resistivity

The RCON instrument [26] was used to determine volumetric resistance according to
ASTM C1760-12 [27]. In Figure 3, a harnessed laboratory setup is presented. Measurement
is simple and fast. The volumetric electrical resistivity can be calculated using the registered
resistivity and the size of the sample. In this case, four measurements were made on each
of the samples.
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3.3. Flexural and Compressive Strength

Flexural strength was determined according to the standard procedure using a pris-
matic sample (Figure 1) [28]. Flexural strength is a measure of an unreinforced concrete
beam or slab to resist bending failure. Therefore, this parameter is very important for the
design and structural analysis of structures.

The compressive strength was subsequently tested using the remaining half of the
samples according to the standard [29]. Measurements were made on a standard laboratory
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compression machine. The results were obtained from all available samples. Statistical
parameters such as mean and standard deviation were evaluated.

4. Results and Discussion
4.1. Flexural and Compressive Strength

The difference in the result of the flexural strength between sand mortar and ilmenite
mortar is approximately 20% (see Figure 4a). However, the compressive strength difference
is only 9% (see Figure 4b). The standard deviation of the sand mortars was greater for both
tests compared to the ilmenite mortars.
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Figure 4. Strength: (a) flexural and (b) compressive.

4.2. Surface and Volumetric Resistivity

For surface and volumetric resistivity, LAS samples were found to be characterized by
having approximately half the resistance of a sand mortar (see Figure 5).
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It should be noted that the surface resistivity results here are not converted to bulk
resistivity from the relation for the sample shape. This is unexpected, mainly from the
point of view of density. Ilmenite is characterized by a density significantly higher than
that of standardized sand. In the literature, composite materials have higher electrical
resistance at higher strengths and lower resistance at lower strength [30]. This phenomenon
is also observed here. Another very important parameter is the ratio between the electrical
resistivity of the bulk and the surface. This parameter is related to the geometry of the
samples. In this case, it must be considered for 40 mm × 40 mm × 160 mm prismatic
samples. Table 2 shows the results of these ratios for mortar with sand and ilmenite. One
can see that sand mortar is characterized by a ratio approximately 10% lower compared to
ilmenite mortar.

Table 2. The ratio between surface and volumetric resistivity.

Aggregate Type Sample 1 Mean Sample 2 Mean Sample 3 Mean Mean for All

Sand 7.12 6.62 7.82 7.19
Ilmenite 8.14 7.62 8.17 7.97

4.3. Correlation of Results

Correlation graphs for the measured values were presented as additional results. The
results of the bulk and surface electrical resistivity were first analyzed (see Figure 6). The
means and standard deviations of both quantities were calculated. In Figure 6, the regions
bounded by three times the standard deviation related to both parameters are marked.
Sand has a relatively wide dispersion of bulk electrical resistivity. On the contrary, the
surface electrical resistivity shows very little variance. When the results of the ilmenite
measurements are viewed, the region of three times the standard deviation is quite regular.
For both materials, it is important that the measured data are in the region of no exceptions.
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Other results are the correlations of bulk resistivity and compressive strength in
Figure 7. The measured data are in the deviation edge area.
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As a final result, Figure 8 shows the correlation and standard deviation region for bulk
resistivity and density. Ilmenite has a lower resistivity despite the higher density. All the
graphs show that the mortar made of sand and ilmenite behaves differently.

Buildings 2022, 11, x FOR PEER REVIEW 8 of 10 
 

 

Figure 8. Correlation between the values of volumetric resistivity and density. 

5. Conclusions 

This work presented the application of a well-established electrical resistivity meas-

urement to a new material prepared from lunar aggregate simulants. An experimental 

investigation procedure combining destructive and non-destructive methods was pre-

sented. The electrical resistivity of two different tests was compared with elementary 

methods for determining the strength.  

One limitation of the results is the fact that we do not have enough information about 

the behavior of rocks on the Moon due to the reduced gravity and vacuum. These results 

represent a step forward in the upcoming colonisation of space, which will need support 

in the form of structural reliability assessment of proposed concepts of lunar habitats. Fur-

ther research is needed, especially on larger prisms and standard elements, on the dura-

bility and fatigue of concrete composites based on ilmenite aggregate. 

The use of electrical resistivity readings is fast, and its correlation with the strength 

parameters can give an idea about the quality of the material. Such a method is very prac-

tical in conditions with a harsh environment due to its simplicity and duration. Therefore, 

it is practical under vacuum or near-vacuum conditions. However, the lack of moisture 

would make the resistivity of the material very high. Therefore, higher magnitudes will 

be expected in the case of moon structures exposed to vacuum, and a test of the resistivity 

in the vacuum chamber is necessary as the next step to verify that the number of ions in 

the pore structure is sufficient to conduct the electricity.  

Author Contributions: Conceptualization, P.L., P.K. and J.K.; methodology, P.L., P.K. and J.K.; for-

mal analysis, P.L.; investigation, J.K.; resources, P.K. and J.K.; data curation, P.L.; writing—original 

draft preparation, P.L.; writing—review and editing, P.K. and J.K.; visualization, P.L.; supervision, 

P.K. and J.K.; project administration, P.K.; funding acquisition, P.L. All authors have read and 

agreed to the published version of the manuscript. 

Funding: Financial support from VŠB-Technical University of Ostrava by means of the Czech Min-

istry of Education, Youth and Sports through the Institutional support for conceptual development 

of science, research, and innovations for the year 2022 as well as through the project: Science without 

borders 2.0 (Nr. CZ.02.2.69/0.0/0.0/18_053/0016985) is gratefully acknowledged. This research was 

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

3500

0 1 2 3 4 5 6 7 8

D
en

si
ty

 [
k

g
/m

3 ]

Volumetric resistivity [kΩcm]

Area of STD for ilmenite

Area of STD for sand

Ilmenite

Sand

Figure 8. Correlation between the values of volumetric resistivity and density.

5. Conclusions

This work presented the application of a well-established electrical resistivity mea-
surement to a new material prepared from lunar aggregate simulants. An experimental
investigation procedure combining destructive and non-destructive methods was pre-
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sented. The electrical resistivity of two different tests was compared with elementary
methods for determining the strength.

One limitation of the results is the fact that we do not have enough information about
the behavior of rocks on the Moon due to the reduced gravity and vacuum. These results
represent a step forward in the upcoming colonisation of space, which will need support in
the form of structural reliability assessment of proposed concepts of lunar habitats. Further
research is needed, especially on larger prisms and standard elements, on the durability
and fatigue of concrete composites based on ilmenite aggregate.

The use of electrical resistivity readings is fast, and its correlation with the strength
parameters can give an idea about the quality of the material. Such a method is very practi-
cal in conditions with a harsh environment due to its simplicity and duration. Therefore,
it is practical under vacuum or near-vacuum conditions. However, the lack of moisture
would make the resistivity of the material very high. Therefore, higher magnitudes will be
expected in the case of moon structures exposed to vacuum, and a test of the resistivity in
the vacuum chamber is necessary as the next step to verify that the number of ions in the
pore structure is sufficient to conduct the electricity.
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