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Abstract: This study concerns the determination of empirical evidence of a real estate market
premium for Green Buildings and of an aware role of the private real estate market as driver to
foster-up urban and architectural sustainability and energy efficiency. In real estate markets, there
is growing relevance of Green Buildings, especially in cities where the greater part of residential
buildings is built before the first regulations on energy performance. Through policies oriented
towards sustainable practices, a twofold goal can be achieved: energy consumption mitigation
respecting the historical value for existing buildings, direct economic impacts on real estate values.
In some metropolitan or urban contexts, the “green premium” for buildings can be understood as
a real “gold premium”. This result has been highlighted and quantified with a real estate market
analysis developed for a central area of an Italian mid-size city, pursued through the innovative
tool of Evolutionary Polynomial Regression (EPR). The study highlighted a higher sale price for
properties characterized by the best ecological characteristics and energy efficiency (+41.52%).

Keywords: green buildings; green premium; real estate market; hedonic price model; evolutionary
polynomial regression

1. Introduction

In real estate markets, there is a growing relevance and appreciation for Green Build-
ings, especially in EU countries where the greater part of residential buildings is built
before the first regulations on energy performance.

The European directive 31/2010/UE was imposed on member states to lower the
energy consumption of buildings and provided the first definition of nZEB building (“nearly
Zero Energy Building”); in Italy, this directive was received with Legislative Decree 63/2013,
then converted into Law 90 on 3 August 2013, according to which, from 1 January 2019,
new buildings occupied by public administrations and owned by the latter must be nZEB,
including school buildings; from 1 January 2021, the above provision is extended to all new
buildings and buildings undergoing major renovations, therefore, both public and private
buildings. Based on the most recent surveys, Italy registers a 15.86% nZEB share for new
construction [1].

Green Buildings have amply demonstrated to have not only lower energy bills but
can improve indoor life and productivity, with their sustainable characteristics and design.
All this determines, consequently, an increase in market value for buildings [2].
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Over time, the building energy performance has become an effective assets valuation
tool, as demonstrated by regulatory innovations in many cities or countries.

In Europe, the Energy Performance Certification (EPC) for buildings was provided
for by the European directives 2002/91/CE and 2006/32/CE. However, this application
has different implications in each of the European Member States, as reported by Buildings
Performance Institute Europe (BPIE) [3,4]. The energy label is mandatory in order to
purchase/sell a property in some countries (e.g., Spain or Italy), while, in other countries,
there is not this legislative obligation (e.g., among these: Czech Republic or Netherland, for
example) [5]. EPC may be based on a seven A–G ranks related to the energy classification
system, with or without more subclasses (i.e., A and A+ as in Austria, Portugal and
Ireland, for example [6]), using non-renewable primary energy or not (kWh/m2 year) or
CO2 emissions as indicators to build reference levels for energy ranking. Some countries—
Denmark and Hungary—do not use any indicator to describe building energy performance.

Based on the latest references provided by ENEA [7], in Italy, the buildings with high
energy performance went from about 7% to 10% of the total in the period 2016–2019, thanks
to the contribution of major renovations and new constructions; over 60% of the Italian
housing stock is included in the least efficient energy classes (F–G) because it was mainly
built between 1945 and 1972; new buildings represent only 3.4% of the Energy Performance
Certificates (APE), and of these, more than 90% are of high energy performance (A–B). The
non-residential sector, which accounts for 15% of the total APE, accounts for more than 50%
of the certificates in the intermediate energy classes (C–D–E) and for more than 10% in the
most efficient ones (A–B).

Several international experiences are focused on the topic of green premium for
buildings, in terms of higher sale price for properties having better ecological characteristics
and energy efficiency.

The growing interest in this theme is clear evidence that energy performance certifica-
tion is an element having an increasingly greater weight in real estate investments.

The literature particularly recommends expanding the studies on real estate markets
of mid-size cities and in marginal regions with low per capita output and income [8].

The main aim of this work is to highlight how, through policies oriented towards
sustainable practices, direct economic impacts can be achieved on real estate values and
how, in some urban contexts, the “green premium” for buildings can be understood as a
real “gold premium”.

Generally, sustainable interventions on buildings have economic impacts about two
different premia: a technical-thermal premium in terms of better quality of indoor life and
lower energy management costs and a market premium in terms of higher real estate value.
Identifying and quantifying this latter aspect is particularly the main objective of the paper,
to be pursued through the use of Evolutionary Polynomial Regression, a very innovative
tool for analyzing real estate markets. In this sense, we also want to test the reliability and
flexibility of using this innovative tool.

Existing buildings, built in a traditional way, use energy resources in an inefficient
manner, and in their construction phases and management, produce waste, greenhouse
gases and pollutants in large quantities. Green Buildings, unlike conventional buildings or
“Brown Buildings”, as well as trying to use the energy resources efficiently and avoid an
excessive land consumption, aim to preserve environmental resources, together improving
the properties’ indoor life.

The definition of a “Green Building” has evolved over time. The U.S. Office of the
Federal Environmental Executive (OFEE) defines it as “the practice of (1) increasing the
efficiency with which buildings and their sites use energy, water, and materials, and (2) reducing
building impacts on human health and the environment, through better siting, design, construction,
operation, maintenance, and removal—the complete building life cycle” [9].

A Green Building is defined in a similar way by the Environmental Protection Agency
(EPA): “the practice of creating structures and using processes that are environmentally responsible
and resource-efficient throughout a building’s life-cycle from siting to design, construction, operation,
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maintenance, renovation and deconstruction. This practice expands and complements the classical
building design concerns of economy, utility, durability, and comfort. Green building is also known
as a sustainable or ‘high performance’ building” [10].

The two above definitions refer to the concept of Life Cycle Assessment (LCA), which
considers and values the impacts of a service or product under all the aspects (social,
economic and environmental). LCA verifies whether a service or product used in a Green
Building is truly green, taking into account solid waste generated in its phases of industrial
production, exercise and final disposal; in other terms, it considers a wide range of environ-
mental impacts, without even neglecting the issues related to global warming or water and
air pollution associated with the service/product considered.

This article first highlights the main scientific literature about the impact of Energy
Performance Certificate on real estate values, with exclusive reference to those papers
which implemented market analysis using Hedonic Price Models (HPM). Afterwards,
Section 3 delivers the methodological structure of Evolutionary Polynomial Regression. In
Section 4, this tool was applied for the city of Reggio Calabria (Italy) in order to detect the
market premium for Green Buildings. Section 5 contains some final reflections about the
topic and a summary of the results.

2. Literature Review

As already mentioned, Green Buildings generate a whole-family benefits in terms
of possible government incentives or tax deductions, better quality life and productivity,
lower management costs, as many international researches suggest [11–15].

Partial equilibrium models have been adopted in these studies about real estate mar-
kets to analyze the short-term effects on the properties’ rental rate considering architectural
and technical features characteristics, among which the energy and ecological values added.

The increase in the demand curve for Green Buildings is demonstrated to the fact that
if higher initial building costs for better ecological and family benefits are supported, this
causes a consequent decline in demand for “brown” buildings (alternatives to formers).

These works assume that a “rent market premium” in the long-term exist related
to innovations in order to favor the effectiveness of green measures and to reduce the
ecological costs of building projects and preferences and behaviors tending to maintain
adequate standards for the technological characteristics involved. A further “market
premium on the sale price” is derived for Green Buildings by the combination of two
factors: higher rent obtainable due to the better appeal of these buildings and the higher
effect of intrinsic characteristics on real estate values (mainly due to lower risk for “negative
premium” from the real estate market if this latter discloses a growing tend toward green
buildings at the expense of existing non-green buildings; lower risk of future and possible
carbon taxes; adaptation, in advance, to future and possible new environmental laws and
regulations; lower management costs as those related to energy).

The EPC rating is one the most common information currently reported in every real
estate advertisement, providing a description of building’s energy performance mandatory
by law. Because of this, many studies started to investigate whether and/or how much this
information influences the choices in real estate markets.

Hedonic Price Models are the most suitable tools to analyze the EPC’s impact on
real estate values, in this direction a review of the literature was performed for European
countries [16]. The main study cases refer to residential and commercial markets.

Looking far back in time, interest for energy efficiency and environmental awareness
developed with the increase over time in hydrocarbons’ prices: Johnson and Kaserman [17],
Laquatra [18], Longstreth [19], Dinan and Miranowski [20] and Longstreth et al. [21] all
tried to implement hedonic price models including among the real estate attributes as an
energy variable. After these pioneering works, only in 2011 did studies start investigating
the effect of “green” labels on commercial buildings such as ENERGY STAR and LEED [15].
For example, for downtown Chicago, Dermisi and McDonald [22] highlighted that only the
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LEED-certified properties sold for a 23% price premium, while an Energy Star certification
had no influence on real estate sale prices.

About more recent studies, in 2011, Brounen and Kok [23] highlighted for the Dutch
residential market the appreciation of EPC in terms of faster time sales and increasing
price. In 2012, Kok and Jennen [24] investigate on the EPC’s effect on sale prices for Dutch
cities, they highlighted that green office building rents were 6.5% higher with respect to
those with lower EPCs by analyzing about 1100 rental transactions. Cajias and Piazolo [25]
applied in 2013 a hedonic model to verify in Germany the relationship among sales and
rentals in consequence of EPC: buildings with best energy classes (B, C and D) were rented
more than the worst G-ranked buildings; similar results were confirmed for real estate sales
(+32.8% in real estate values for buildings with low energy consumption). Also in 2013,
for single-family homes in Sweden, Högberg [26] verified through 1073 real estate data a
growing real estate prices when the energy class increases.

A report published in 2013 by the Directorate-General for Energy of European Com-
munity collected various studies referred to several European cities or countries (Austria,
Belgium, France, England, Ireland) to elevate the EPC’s effect on properties values [27].
This report highlighted that the EPC’s impact on properties prices is often influenced from
the time this certification was already mandatory in the countries analyzed: a significant
effect on real estate values did exist where the EPC was a consolidated practice, while the
influence of EPC was ineffective in those countries where the rule application was recent.
Concluding, for all countries considered, the real estate values increase in correspondence
to higher energy rankings.

In Ireland, Hyland et al. [28] detected in 2013 that A-ranked energy efficiency prop-
erties registered a rental price premium of about 2% and a sale price premium of 9%, if
compared to D-ranked energy class. In addition, they highlighted that the scarcity of
monetary resources to perform renovation interventions, determines for buildings that not
require further investment on energy retrofitting a preference in the real estate market.

In Portugal, Ramos et al. [29] showed in 2014 that real estate units with better EPCrank-
ing (A, B, C), if compared with D-rank ones, were characterized by a 5.9% higher unitary
price. A reduction of 4% in real estate prices was recorded for properties with low energy
rankings (E, F, G). Subsequently, Evangelista et al. [30] confirmed in 2019 the results of
Ramos et al. [29] for Portugal, with higher values of EPC appreciation (properties with A
and B energy classes recorded a green premium of 12.5% for existing buildings and 13.1%
for new buildings).

Studies in 2015 and 2016 developed by Fuerst et al. in U.K. [31,32] found a relationship
between energy performance rankings and sale prices. Compared to D-rank properties,
buildings with A- and B-rank recorded a 5% market premium, C-rank buildings recorded a
1.8% market premium, while buildings with lower energy classes (F, E, G) recorded a 1–7%
reduction in sale prices [32].

For cultural aspects and, perhaps, for certainly milder climatic conditions, in Southern
European countries, the EPC’s impact on real estate prices is a topic on which little has
been investigated.

Investigating on the premium price of dwellings with high energy rankings (A, B, C
and D classes) in 2016, De Ayala et al. [33] detected in Spain a premium price for these real
estate goods ranging between 5.4% and 9.8% compared to the less efficient ones. Also in
Spain (Barcelona) in 2016, Marmolejo [34] highlighted a low effect on real estate prices,
due to the fact that energy retrofitting upgrading costs are not sufficiently recuperable
by sellers. Italian experiences are mainly attributable to Fregonara et al. [35] in 2017 and
Bottero et al. [36] in 2018, evaluating the EPC’s impact in the residential real estate market of
Turin (Italy) through hedonic models. Their results suggested that, also in Italy, a significant
appreciation for green buildings exists. Marmolejo and Chen [37,38] recurred to a spatial
hedonic model detecting a significant increase in real estate prices related to the EPC
ranking and how, in 2019, this economic impact varies in different housing segments in
Barcelona: for more recent buildings the energy class does not have a significant impact on
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their prices, but they are instead relevant for all other properties. Again, Taltavull et al. [39]
assessed in 2019 the green premium for buildings in the province of Alicante (Spain) in
correspondence to various climate zones. In line with this latter study, and with reference
to the metropolitan areas of Barcelona, Valencia and Alicante, Marmolejo and Chen [40]
found in 2019 that the impact of energy performance was higher a scarcity of efficient
homes in local real estate markets was evident.

In any case, it should be noted that some studies have shown no positive relationship
between real estate prices and energy class. This because EPC is often used as “proxy”
variable to include in it the impacts of more and omitted real estate characteristics. Among
these studies, in 2017, Olaussen et al. [41] highlighted in Norway the possibility that
energy efficiency may incorporate the effect of construction quality variable. In addition,
Cerin et al. [42], analyzing 67,559 real estate transactions in Sweden in the time period
2009–2010, recorded a negative relationship among energy label and real estate prices, likely
for the lack of an EPC classification reference value. However, the latter study is conflicting
with the study of Högberg [26] that, for the same time period, verified in Stockholm a
positive impact of better energy class in the property market.

The literature review confirms and recognizes that a market premium for buildings’
green characteristics does exist. Hedonic price models have a higher degree of reliability
and completeness. Certainly, the consumers’ choices in building energy performance
vary depending on location, economic factors, real estate stock, time and variation in
climate zones.

3. Materials and Method: Evolutionary Polynomial Regression

Evolutionary Polynomial Regression (EPR) is a data-driven hybrid technique, where
genetic programming is combined with numerical regression to develop flexible mathemat-
ical models, suitable for multiple application purposes.

The EPR approach overcomes the main limits of so-called “black-box” data-driven
models. Often, the latter can be difficult to build or understood, or in other cases, they
need many data that are difficult to be quantified or find. For example, artificial neural net-
works or genetic algorithms are effective to reproduce databases related to some observed
phenomenon but have obvious limits in the model structure identification and overfitting.
Instead, the stepwise regression is generalized in EPR by considering non-linear model
components, although, with respect to regression parameters, these components are linear.

From this point of view, EPR is similar to non-linear global stepwise regression, since
mathematical expressions of optimal models are searched taking into account a full set of
available formulas by leveraging flexible modifications of the original mathematical struc-
tures. Some general expressions of EPR models can be represented as follows: in particular,
they are “pseudo-polynomial” expressions because the parameters can be calculated as for
a linear problem or for polynomial forms [43,44]:

Ŷ = a0 +
m

∑
j=1

aj(X1)
ES(j,1) · . . . · (Xk)

ES(j,k) f
(
(X1)

ES(j,k+1)
)
· . . . · f

(
(Xk)

ES(j,2k)
)

(1)

Ŷ = a0 +
m

∑
j=1

aj f
(
(X1)

ES(j,1) · . . . · (Xk)
ES(j,k)

)
(2)

Ŷ = a0 +
m

∑
j=1

aj(X1)
ES(j,1) · . . . · (Xk)

ES(j,k) f
(
(X1)

ES(j,k+1) · . . . · (Xk)
ES(j,2k)

)
(3)

Ŷ = g
(

a0 + ∑m
j=1 aj(X1)

ES(j,1) · . . . · (Xk)
ES(j,k)

)
(4)

In the above equations, Ŷ represents the vector of model predictions, m is the number
of additive terms, the parameter aj to be assessed is determined by a least squares (LS)
method, Xk is candidate explanatory variables, the exponent (j, l) with l = (1, . . . , 2k) is the
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exponent of the l-th input within the k-th term (the exponents are chosen among candidate
values, real numbers, which should include the value 0) and, at last, the function f is
selected among a set of possible alternatives and may be exponential, tangent hyperbolic,
natural logarithmic or others. Note that structure of Equation (4) requires the assumption
that function g is invertible, due to the subsequent step of parameter estimation.

The LS method has the advantage of relating the “pseudo-polynomial” structure of
the model with its coefficients; furthermore, it is possible to impose the LS to find for
mathematical structures that only contain positive coefficients aj in particular modeling
systems, where negative coefficient values are often used to balance the realization of
specific errors related to the finite training dataset [45,46].

The structure of the model is searched by exploring the combinatorial space of expo-
nents to be assigned to each candidate input. Any real number could be chosen as exponent
values; however, they are coded as integers during the search procedure. Genetic algo-
rithms and iterative implementation of LS method allow searching for EPR the statistically
better function expressions that link the possible combinations of vectors of the explanatory
variables (i.e., real estate characters) to the dependent variable (i.e., property sale price).
Note that for EPR method implementation, an exogenous definition of the mathematical
expression and a minimum number of parameters to fit the dataset in the best way are not
required, since the optimal solution is directly provided by an iterative process related to
genetic algorithm.

Two main phases characterize EPR: identification of the model structure by generating
a set of polynomial expressions and traditional regression method to estimate the poly-
nomial coefficients. At the basis of the algorithm used, there is the idea of generating a
population of functional expressions considering their capacity to adapt to the available
data. For this reason, the algorithm of EPR finds both the functional forms of the model
and the values of the polynomial coefficients. All this without the identification a priori of
a specific functional expression or with several inputs of the model, namely, the parameters
and the exponents, preliminarily defined at the first stage of the method implementation.

The Coefficient of Determination (COD) allows us to check the statistical accuracy of
each model provided by the EPR implementation, ranging between 0 and 1:

COD = 1 − N − 1
N

· ∑N(yestimated − ydetected)
2

∑N [ydetected − mean(ydetected)]
2 (5)

where yestimated is the dependent variable value assessed by EPR, ydetected is the collected
values of the dependent variable and N is the dataset size. The model statistical accuracy is
greater when the COD is close to the value 1.

A more recent version of EPR exploits Multi-Objective Genetic Algorithms (MOGA)
to identify those models which maximize accuracy of data and parsimony of mathematical
expressions simultaneously [47]. Then, EPR-MOGA provides an expression set with
several accuracy to experimental data and different complexity degree of mathematical
structure of models. The trade-off between accuracy and complexity allows an optimization
strategy leading to a range of model solutions, among which the user could select the
most appropriate one according to the specific requirements of interest and typology of
experimental data considered.

The genetic algorithm underlying EPR-MOGA carries out a multi-objective optimiza-
tion strategy based on the Pareto dominance criterion. These objectives aim to maximize the
model accuracy with appropriate statistical criteria for verification of the model equation,
maximization of the model’s parsimony considering the minimization of the number of
terms of the model equation and reduction in the model complexity by minimization of the
number of explanatory variables in the model equation.
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4. Discussion and Results

The aim of the case study is to highlight the capabilities of EPR-MOGA as an analysis
tool and particularly to detect the market real estate premium for green buildings character-
ized by the higher degree of energy efficiency. Firstly, this application should demonstrate
that EPR-MOGA is significantly helpful as a tool for data modeling and analysis; secondly,
EPR-MOGA is tested on a wide real estate dataset aimed at determining the relationship
between the selling price and a set of real estate characteristics influencing it (among them,
the energy class of the building/residential unit).

To highlight the impact of Green Buildings in marginal economic regions, the case
study examines a mid-size real estate market related to a non-metropolitan city (Reggio
Calabria, about 180,000 inhabitants). In particular, for some its semi-central neighborhoods,
EPR implementation involved a real estate market segment of newly built residential build-
ings. All features are unexplored so far in the real estate market analysis of Green Buildings.

The analysis concerns a sample of 515 residential properties located in the urban
central area of Reggio Calabria (Southern Italy) and detected over 25 years. Only 24 are
Green Buildings (energy class equal to A or B), but the data are not insignificant; on the
contrary, it makes the research even more significant taking into account that the market
for green buildings is practically in its infancy for the city of Reggio Calabria. Most of
the observation of green buildings are located in zone 6, i.e., in a semi-peripheral area of
a suburban district (see Table 1). This avoids any effects related to the context. We also
excluded any possible interference due to the characteristic of its panoramic character.

Table 1. Variable description.

Variable Description

Real estate price (PRC) expressed in thousands of Euros

Property’s age (AGE) expressed retrospectively in no. of years

Sale date (DAT) expressed retrospectively in no. of months

Internal area (AREA) expressed in sqm

Number of services (BATH) no. of services in residential unit

Positional Variable (ZONE) expressed with a score scale (from 1 to 6, passing
from more central areas to more peripheral areas)

Maintenance (MAIN)
expressed with a score scale (1 for bad conditions, 2
for mediocre conditions, 3 for good conditions, 4 for

optimal maintenance state)

Floor level (FLOOR) no. of floor levels of residential unit

Energy efficiency class (EN) expressed with a score scale (1 for “A” or “B” energy
efficiency class, 0 for “G” energy efficiency class)

Given the lack of transparency in the Italian real estate market, the methodology used
in the research has provided data collection through the difficult and complex process of
“elicitation”, that is, the confidential confession of information to the researchers from: the
direct actors (buyers, especially, and sellers), operators (promoters), intermediaries (realtors
and agencies) and by notaries.

The quality and build type are the same for all sampled real estate units (apartments
located in used multi-story buildings), and the central area of interest is homogeneous
under the points of view regarding the qualification and distribution of main urban services.
About the sample, georeferencing procedures have been used to verify the “Zone” variable
to facilitate and support data building. For this purpose, with WebGIS tools, the data
collection is facilitated by the fact that the geodatabase makes available, in a coordinated
way and continuously, every real estate document specifically relating to each property,
with further possibilities to integrate the information systems [48,49].
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In Table 1, the variables considered are described, their acronyms given, their typolo-
gies provided (cardinal, ordinal or dummy) and the description and measurement units
specified. Table 2 reports the statistical description of real estate variables.

Table 2. Statistical description of variables.

Parameter PRC AREA FLOOR MAIN AGE BATH DAT ZONE EN

Mean 124,360.35 106.51 3.13 3.00 27.33 1.62 10.43 4.10 0.05
Median 115,000.00 105.00 3.00 3.00 24.00 2.00 10.00 5.00 0.00

Std. Dev. 150,000.00 120.00 3.00 3.00 5.00 2.00 8.00 5.00 0.00
Kurtosis 60,844.53 29.87 1.47 0.89 19.01 0.54 6.92 1.56 0.22

Asymmetry 4.71 5.16 −0.92 −0.66 1.07 2.04 −0.20 −1.23 15.82
Min 1.62 1.26 0.21 −0.47 1.04 0.42 0.45 −0.35 4.21
Max 13,000.00 39.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00

EPR-MOGA methodology is iteratively implemented for the real estate sample by
considering the structure of the generic expression as reported in the mentioned equation
(1) without the function (f ). Each additive monomial term of the mathematical expression
is assumed to be a combination of the input variables raised to the proper numerical expo-
nents. The candidate exponents selected from the research belong to the set (0; 0.5; 1; 2),
and the maximum number l of additive terms in the final expressions is assumed to be 5.
The implementation of the econometric technique for the real estate sample considered
has generated several models. The optimal model to be analyzed for highlighting the
relationship between the real estate characteristics and the selling price has been selected
according to the statistical performance level, the complexity of the algebraic expressions
and the coherence of the coefficients’ signs under an empiric profile. The first two aspects
are resolved through the COD associated by EPR-MOGA with each model, and the mathe-
matical form is visible in the quantity of the terms of the equation and in the combination of
the variables in each term. The empirical coherence of the functional relationships between
the explanatory variables in each model and the selling price, is a less immediate operation
with some complex aspects related to the presence of more variables combined in the terms
of the equation and/or they occur repeated more times.

The application of EPR-MOGA has generated five equations (Table 3) classified—from
the first to the fifth—according to the increasing statistical accuracy of the outputs in terms
of COD and to the complexity of the models in relation to the number of terms, the number
of selected explanatory variables and the combination of the explanatory variables that
constitute each term.

Table 3. Models generated by EPR-MOGA.

Model Mathematical Expression

I PRC = +5.8514e − 7 AREA0.5·MAIN0.5·BATH0.5

ZONE0.5·EN0.5 + 58, 251.253
II PRC = +693.3236 AREA·MAIN0.5·BATH0.5

ZONE0.5 + 37, 692.884
III PRC = −197, 671.948 DAT0.5

AREA0.5 + 629.405 AREA·MAIN0.5·BATH0.5

ZONE0.5 + 103, 351.203
IV PRC = −28, 398.709 DAT

AREA0.5 + 638.164 AREA·MAIN0.5·BATH0.5

ZONE0.5 + 203.749 AREA·FLOOR·MAIN·EN0.5

ZONE + 70, 234.119

V PRC = −500, 117.237 ZONE0.5

AREA0.5 − 32, 825.256 DAT0.5

AREA0.5 + 523.570 AREA·MAIN0.5·;BATH0.5

ZONE0.5

+197.789 AREA·FLOOR·MAIN·EN0.5

ZONE + 206, 216.537

The models selected by EPR-MOGA are characterized by a different algebraic form
complexity, with COD ranging from about 29% to about 91%. Then, under the point of
view of statistical performance indicator associated by EPR-MOGA, for some models, there
is a high statistical reliability in terms of the coherence of the detected data (models IV
and V).
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The reliability of the model chosen is checked by another calculated statistical index,
i.e., the absolute percentage mean error which takes into account all the percentage errors
measured for each detected prices respect to corresponding values estimated through
the model.

Interpreting the results, the only use of the statistical criterion would lead to choose
equation V (see Table 3) as the model that better replicate the analyzed phenomenon, as it
is characterized by a COD next to unity and, therefore, by a very high degree of statistical
reliability. This model consists of all the explanatory variables considered, with exception
of “AGE” variable (Table 4). This is because the property’s age for the various real estate
sampled is sufficiently overlapping.

Table 4. Variables selected (green) or excluded (red) by EPR-MOGA for each model.

Model/Variables PRC AREA FLOOR MAIN AGE BATH DAT ZONE EN
Model I
Model II
Model III
Model IV
Model V

Table 4 shows, for each model, the variables selected by EPR-MOGA reputed as the
most relevant on the real estate sale prices. Regarding this aspect, it should be pointed out
that the internal area, maintenance status, positional variable and the number of bathrooms
are included in all models, whereas the property age variable is not included in any model.
The energy class variable is relevant in three of the five models.

Note that the complexity of the terms of the mathematical expression V does not
allow an immediate interpretation of the functional relationships among the explanatory
variables. For this reason, the functional links of the i-th independent explanatory variable
with the variation in the selling prices has been explained through an exogenous simplified
approach that, instead of determining the partial derivative of the dependent variable with
respect to the i-th variable, considers the values of the other variables in the model equal to
their average values of the starting database and provides the analysis of the variations in
value of the assessed changes of selling prices in correspondence to each i-th variable in the
admissible range of its corresponding sample values.

Among the main objectives is that of highlighting the impact of the variable energy
class, whose presence, in the model with greater statistical reliability, determines a variation
of 41.52%. Confirming the significant weight that this variable assumes in valorization of
residential properties.

The outputs of the elaborations carried out for all models have been represented in
Figures 1–5, where Xaxis represents the number of observations, and on the Yaxis of each
model, the selling price determined by EPR-MOGA (PRCEPR) is compared to the selling
price expected in correspondence of each model (PRCexp).
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5. Conclusions

The research reached the objective to obtain empirical evidence of a real estate market
premium for Green Buildings and of an aware role of the private real estate market as a
driver to foster urban and architectural sustainability and energy efficiency.

The negative environmental impact of the construction and buildings sector has
worsened over time due to the over-use of resources in the last decades. Pollution, mainly
produced by energy over-consumption in buildings, has increased considerably due to
wrong architectural design and urban management. A set of issues makes the adoption of
general mitigation measures no longer able to be extended, creating to significant incentive
toward building sustainability.

Urban and architectural policies, in fact, are increasingly oriented towards sustain-
ability, energy efficiency, conservation, reuse, architectural retrofit in an ecological manner,
re-vitalization of the existing city and a more effective management of historical and
architectural heritage, including energy aspects.

Housing market analysis is the basis that defines links between housing characteristics
and their market price.

In the study area, it has been detected that the first sale of apartments in some buildings
with proven ecological characteristics carrying energy certification belonging to energy
class A or B show a higher selling price than usual housing, which is unexpected in a small
market of a poor city in a marginal region. This differential is due to the marginal price
(i.e., market premium) paid for the ecological feature (i.e., energy efficiency).

Through a real estate market analysis carried out for the urban area of Reggio Cal-
abria (Italy), the market premium for green buildings has been detected, i.e., the positive
differential in terms of higher selling price for buildings having better energy efficiency
and ecological characteristics. This research’s goal has been pursued with an innovative
tool: the Evolutionary Polynomial Regression.

The results obtained by the application of the proposed method suggest there is a
percentage impact equal to 41.52% in relation to the incidence of the price of the properties
on the presence of a good/excellent energy class (A or B).
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