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Abstract: Indoor thermal comfort immensely impacts the health and performance of occupants.
Therefore, researchers and engineers have proposed numerous computational models to estimate
thermal comfort (TC). Given the impetus toward energy efficiency, the current focus is on data-driven
TC prediction solutions that leverage state-of-the-art machine learning (ML) algorithms. However, an
occupant’s perception of indoor thermal comfort (TC) is subjective and multi-dimensional. Different
aspects of TC are represented by various standard metrics/scales viz., thermal sensation (TSV),
thermal comfort (TCV), and thermal preference (TPV). The current ML-based TC prediction solutions
adopt the Single-task Learning approach, i.e., one prediction model per metric . Consequently, solutions
often focus on only one TC metric. Moreover, when several metrics are considered, multiple ML
models for a single indoor space lead to conflicting predictions, rendering real-world deployment
infeasible. This work addresses these problems by leveraging Multi-task Learning for TC prediction in
naturally ventilated buildings. First, a survey-and-measurement study is conducted in the composite
climatic region of north India, in 14 naturally ventilated classrooms of 5 schools, involving 512
primary school students. Next, the dataset is analyzed for important environmental, physiological,
and psycho-social factors that influence thermal comfort of children. Further, "DeepComfort”, a
deep neural network based Multi-task Learning model is proposed. DeepComfort predicts multiple
TC output metrics viz., TSV, TPV, and TCV, simultaneously through a single model. It is validated
on ASHRAE-II database and the primary student dataset created in this study. It demonstrates
high F1-scores, Accuracy (≈90%), and generalization capability, despite the challenges of illogical
responses and data imbalance. DeepComfort is also shown to outperform 6 popular metric-specific
single-task machine learning algorithms.

Keywords: thermal comfort; machine learning; multi-task learning; deep learning; classification;
prediction; students; classrooms

1. Introduction

The quality of indoor environment effects health, well-being, and productivity of
the residents/occupants. In the absence of adequate indoor thermal comfort, the perfor-
mance of occupant is likely to deteriorate as their ability to make decisions and/or execute
professional tasks depreciates [1]. Thus, ensuring satisfactory levels of thermal comfort
is necessary and estimating and/or predicting indoor thermal comfort is an important
problem in academia and industry.

The advancements in the domain of machine learning [2,3] and the continually lower-
ing cost of computational resources, has made it possible to solve complex thermal comfort
prediction problems. Recent studies show that Machine Learning (ML)based models are
more precise and accurate [4–6] in predicting thermal comfort of occupants, as compared
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to the conventional numerical models such as the Predicted Mean Vote model (PMV) and
Percentage of Dissatisfied (PPD) model [7], and the Adaptive Thermal Comfort model
(ATC) [8]. Further, ML models can be designed and trained for predicting both, individual
thermal comfort [9] and group-based thermal comfort [10].

Further, ML-based predictive solutions are data-driven and more suited to ensure
energy efficiency while providing indoor thermal comfort (TC). Typically, buildings are
designed to meet the thermal comfort needs of residents in three ways, i.e., through
smart Heating, Ventilation And Cooling (HVAC) systems, natural ventilation (NV), and
mixed ventilation systems. Though HVAC systems are the most effective in ensuring
optimal TC, their energy consumption is up to 50% of the energy budget of a building,
amounting to a staggering 20% of the total energy consumption in USA [11]. Despite
smart HVAC control strategies for energy-conservation [12], this solution is not ecologically
sustainable in the long-term. Moreover, HVACs and mixed systems are not affordable
in most developing countries, where the bulk of indoor spaces including classrooms
are naturally ventilated [13]. From the perspective of energy efficiency and conservation,
naturally ventilated buildings seem ideal [14]. However, natural ventilation also renders
occupants more vulnerable to the temporal changes in the weather, making thermal comfort
estimation and prediction a challenging task.

Most importantly, the current ML-based thermal comfort prediction models often
offer partial or conflicting solutions. This happens because thermal comfort perception of
an individual is highly subjective and personal. It has several dimensions specific to an
occupant, such as sensation, preference, the current level of comfort, etc. These dimensions are
captured through corresponding subjective metrics, viz., Thermal Sensation Vote (TSV),
Thermal Preference Vote (TPV), and Thermal Comfort Vote (TCV), shown in Figure 1.
However, the current ML-based solutions either focus on just one of these metrics, such
as TSV [9,10], or propose a different prediction model for each metric [15]. This leads to
confusing or contradictory predictions, rendering practical real-world implementation
infeasible. This work tries to address this problem.
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Figure 1. Standard Scales for Thermal Comfort Metrics.

For practical implementation of TC prediction models, occupant data must be gath-
ered through field experiments. Schools and classrooms are an ideal real-world setting as
school students spend more time in classrooms as compared to any other built environment
outside their homes [16]. It is well established that higher levels of indoor thermal comfort
and air quality facilitate improved concentration and enhance scholastic learning [17].
Moreover, school children exhibit lower metabolism than adults [18], limited cognitive
abilities to evaluate their environments, and limited opportunities for adaptation in natu-
rally ventilated classrooms. Thus, understanding and predicting students’ thermal comfort
needs in naturally ventilated classrooms is a challenging problem that needs to be solved
for better learning outcomes, health, and energy efficiency.

To remedy these challenges, this work proposes a Multi-task learning inspired solution,
that simultaneously predicts the three most important thermal comfort metrics for primary
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school students in naturally ventilated classrooms. The high-level research problems and
specific contributions are presented ahead.

1.1. Motivation and Research Problems

Subjective responses vary across different TC metrics, which makes the prediction
of occupants’ thermal comfort perception a complex problem. The existing TC predic-
tion studies employ a Single Task Learning approach, wherein an ML model is dedicated
to predicting a single thermal comfort metric. Consequently, studies propose multiple
independent models, each focusing on one of the subjective metrics.

However, this approach is problematic. Considering one thermal comfort metric at a
time does not adequately capture the thermal comfort of an occupant and may yield con-
flicting results. For example, the TCV model may predict that the occupant is comfortable
(response = “Comfortable”) while the TPV model may indicate a preference for a major
change in the environment (response = “Much Warmer”).

Further, the pursuit of high accuracy in the prediction of a single metric requires fine-
tuning of the hyperparameters for that particular TC metric. Thus, a metric-specific model
does not guarantee that it will perform reliably for the other metrics. This causes ambiguity
and confusion in choosing the right TC metric. Moreover, from the perspective of real-world
implementation, maintaining and deploying multiple ML models for a single built space is
practically infeasible for researchers, building administrators, and indoor residents.

These challenges arise because thermal comfort perception is subjective and context-
specific, making multiple TC output metrics necessary. One solution is to identify a
minimal subset of TC output metrics that have a high correlation with all other metrics [15].
However, this solution requires an additional step of linear and non-linear correlation
analysis of only TC output metrics. Doing so may not always yield favorable results leaving
the set of TC output metrics unchanged. Even if successful, the process may also result in
the loss of context-specific information by excluding some of the TC output metrics.

The second primary motivation of this work is to pave the way for a real-world im-
plementation of ML-based TC prediction that encourages energy efficiency. TC prediction
models are context-specific and the predictive capabilities of an ML-based solution will be
sensitive to the characteristics of the occupants, the indoor space, and the outdoor environ-
ment. With respect to occupants, thermal comfort prediction of primary school students has
been largely unaddressed in the ML-based TC studies [5,6]. Further, naturally ventilated
(NV) classrooms are more suitable for energy conservation and long-term sustainability
goals. They offer reduced operating costs, lower greenhouse emissions, improved indoor
air quality, and prevent the spread of COVID-19 [14,19]. However, primary school students
are more vulnerable to external environmental factors in NV classrooms. Given their
limited cognitive ability to assess their environment and capacity for behavioral adaptation,
predicting their thermal comfort responses is far more challenging in NV environments
than it is for adults.

Thus, this work aims to solve two main research problems with respect to thermal
comfort prediction. First, is to address the challenges posed by “multiple models”, for the
TC metrics in an indoor space. Second, develop an intelligent TC prediction model for
primary school students that can be deployed in naturally ventilated classrooms.

1.2. Contributions

This paper addresses the above problems by leveraging the Multi-task Learning (MTL)
paradigm. It adopts a unified approach to thermal comfort prediction through multi-task
prediction wherein multiple TC output metrics are predicted simultaneously, with high
accuracy, by training a single model. Further, for accurate context-specific prediction of
thermal comfort perception of primary school students in naturally ventilated classrooms,
extensive field experiments and surveys are conducted. In particular, the following are the
major contributions of this work.
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• Field-experiments and Surveys: The primary school student dataset is created through
month-long field experiments and surveys involving 512 unique student participants,
in 14 classrooms of 5 different schools, during January (the coldest winter month) in
North India. A total of 2039 survey responses were gathered .

• Data analysis: Distribution of three subjective TC perception responses is analyzed.
• Multi-task learning for Thermal Comfort prediction: The work proposes “DeepComfort”–

an MTL system, which employs Deep Learning (DL) for accurate and simultaneous
multi-class prediction of TSV, TPV, and TCV.

• Validation: DeepComfort is validated on the standard ASHRAE II dataset and primary
student dataset presented in this study.

• Performance Evaluation: DeepComfort is evaluated against 6 single-task machine
learning techniques and is shown to outperform them on parameters such as F-score,
Precision, Recall, and Accuracy. The STL techniques include supervised shallow
algorithms viz., Support Vector Machines, Random Forest, Decision Tree, K-Nearest
Neighbours, Adaboost, and unsupervised Deep Neural Networks.

• Impact of categorical features: The multi-task prediction capability of DeepComfort is
assessed for different sub-categories of the data viz., gender of the students, grade of
students, different schools, field experiment timings, etc.

To the best of our knowledge, this is the first multi-task learning-based thermal comfort
assessment study in naturally ventilated classrooms [5,6,20].

1.3. Paper Organization

The rest of the paper is organized as follows. Section 2 presents a brief overview of
the application of machine learning to thermal comfort studies and discusses the need for
multi-task learning. Section 3, describes several aspects of the data gathering exercise in
great detail, including the questionnaire, school survey, experiments, and the weather data.
Section 4 presents an exploratory analysis of important features and TC output metrics. The
DeepComfort system is proposed in Section 5 and the technical details of the underlying
Deep Learning neural network model are specified. Thereafter, a comprehensive evaluation
of DeepComfort is conducted in Section 6 along with statistical analysis of data wherever
necessary. Finally, the conclusions of the study and next steps are presented in Section 7.

2. Machine Learning for TC Prediction

Thermal comfort prediction models that leverage machine learning are fundamentally
different from the conventional TC estimation models viz., PMV-PPD model, Adaptive
model, Physiological Equivalent Temperature (PET) model, 1-node model, and 2-node
model [7,8,21]. Moreover, the physics-based TC estimation models such as PET are moti-
vated by the energy balance of a human body and require additional measurements such as
the mean skin temperature, core temperature, sweating rate and shivering heat production,
etc. [21]. Unfortunately, conventional TC estimation models are not reliable when it comes
to predicting subjective thermal comfort perceptions [5,6,20].

As a result, recent focus of thermal comfort research has been on predictive modeling
through machine learning techniques. Unlike conventional adaptive models, ML-based
prediction models do not rely on pre-determined equations that represent relationships be-
tween system variables [8]. ML models are data-driven. They can learn multi-dimensional
non-linear mappings between several environmental and physiological parameters and
predict subjective thermal comfort perceptions of occupants with high accuracy.

This section presents a discussion on inputs, objectives, and outputs, for ML-based TC
prediction models, followed by the limitations of single-task approaches, and the need for
multi-task learning.

2.1. Input Parameters, Objectives, and Outputs

Most machine learning-based thermal comfort (MLTC) studies consider features/
parameters that are a combination of indoor environmental measurements (e.g., indoor
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temperature), outdoor environmental measurements (e.g., daily rainfall), and individual
features (e.g., clothing) [6]. Hence, the multi-task DeepComfort model includes input
features that are a combination of indoor environmental measurements (e.g., indoor tem-
perature, relative humidity), individual-specific features (e.g., Clothing value), and weather
data procured from the Indian Meteorological Department (IMD) for the month in which
the field experiments and surveys were conducted.

With respect to the objectives of ML models, MLTC studies address a wide array of
problems pertaining to the thermal comfort of occupants. These include predicting thermal
comfort of individuals and groups [9,10], optimizing HVAC systems for energy efficiency of
buildings [22], predicting occupant behavior e.g., opening/closing windows [23], etc. The
primary objective of DeepComfort is to offer a reliable model for group-based multi-output
thermal comfort prediction. In addition, this work also analyzes the impact of factors such
as age, grade, gender, and spatial and ambient environment (classroom and school) on
multi-task thermal comfort prediction. While the impact of age and gender on thermal
comfort prediction models have been studied earlier in naturally ventilated buildings [24],
it has not been done for multi-objective models. More importantly, the DeepComfort model
aims to overcome the impact of these factors on the accuracy of multi-task prediction.

Coming to output metrics, the subjective metrics used to quantify thermal comfort in
the conventional TC studies are illustrated in Figure 2. It is evident that Thermal Sensation
Vote (TSV), Thermal Preference Vote (TPV), and Thermal Comfort Vote (TCV), are the three
most popular TC metrics [25]. Less frequent ones include Air Movement Acceptability
(AMA), Air Movement Preference (AMP), and Thermal Accepatbility (TA). Likewise, in
ML-based thermal comfort studies, TSV is used as the sole or primary output in close to
50% of works, with TPV being used in 12% of studies [5]. Consequently, in this work, TSV,
TPV, and TCV are considered to be the outputs for DeepComfort. The DeepComfort system
can be trained to predict more than three TC outputs as well.
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Figure 2. Use of popular Thermal Comfort Metrics as Outputs in ASHRAE Databases I and II. (a) TC
Metrics Usage Overall, (b) TC Metrics Usage in Classroom Studies.

2.2. Single-Task vs. Multi-Task Learning

This subsection discusses the characteristics of Single-task and Multi-task learning
paradigms, and the reason why the latter is more suitable.

2.2.1. Single-Task Learning & TC Prediction

MLTC studies analyze multiple thermal comfort perception metrics and propose ML
models that predict these metrics as outputs. For example, TSV and TCV are used in [24,26],
TSV, Effective Temperature (ET), and Standard Effective Temperature (SET) are used in [27],
and TSV, TPV, TCV, and TA are used in [15].
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However, it is noteworthy that while these studies seek to predict “multiple” outputs,
they employ Single-task Learning, which results in one ML model per output. This characteristic
is demonstrated as an illustration in Figure 3a. Thus, each output such as TSV, TPV, or TCV,
has an independent ML model dedicated to it.

The STL thermal comfort prediction models suffer from several problems. First, each
output-specific model may differ in the inputs/features required for maximal prediction
accuracy. Further, the number of samples corresponding to different classes of the outputs
for example TSV (7 Classes), TPV (5 Classes), and TCV (6 Classes), will vary. It is possible
that there may not be sufficient data for each output to train an accurate classification
(prediction) model [28]. Specifically, in such scenarios, the models tend to overfit the
training data losing their generalization ability for real-world deployment. Moreover,
tuning the hyperparameters and optimization techniques such as the number of layers in
a neural network model are context-specific and vary across outputs [28,29]. As a result,
keeping track of the inputs and model specifications for each output variable is tedious
and time-consuming [5].

The most critical problem with this approach is that multiple independent models
may yield inaccurate and contradicting results. For example, a conflict may occur if the
TSV model predicts the sensation felt by occupants to be “Cold”, but the TCV model
predicts that the occupants are “Very Comfortable”. Such contradicting predictions make it
challenging to decide which output or model is considered accurate and take corresponding
corrective action.

There are several reasons for conflicting predictions in single-task learning models.
First, the Pearson and Distance correlation analysis of ASHRAE databases I and II presented
in [15] show that all subjective TC outputs do not necessarily exhibit a high correlation with
each other. Second, the prediction accuracy of the outputs may depend upon the context,
data, and the ML algorithm used. For example, the prediction accuracy for the conventional
Support Vector Machine (SVM) algorithm for TPV and TA outputs is 63.9% and 87.4%,
respectively, leading to a significant performance difference (≈36%) [15]. Likewise, in [27],
the prediction accuracy of models does not just vary across outputs viz., TSV, ET, and SET,
but also across the choice of the ML algorithm chosen, viz., SVM, Bagging, and Artificial
Neural Networks (ANN). Due to these reasons, the single-task approach is not suitable for
practical application in a real-world setting.

(a) Single-task Learning Approach

Model 1

Model 2

Model 3

(b) Multi-task Learning Approach

One Model - Multiple TasksOne Model - One Task

TCV

TPV

Figure 3. Conceptual Schema of Single-task & Multi-task Learning Paradigms.

2.2.2. Multi-Task Learning: One Model to Predict Them All

Multi-task learning (MTL) [30] is the solution to the challenges highlighted above
and is illustrated in Figure 3b. A multi-task model is trained differently in the following
respects:

1. It is a common-input-multiple-output system.
2. The model and hyperparameters for all TC outputs are mainly constant.
3. It optimizes for the cumulative prediction accuracy of all outputs.
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Thus, the constancy of input features combined with concurrent learning of multiple
outputs gives multi-task learning a clear edge in terms of practical implementation in the
real world. The advantage that MTL offers is best summarized by Caruana et al., “MTL
improves generalization by leveraging the domain-specific information contained in the
training signals of related tasks” [30].

The paradigm of Multi-task learning (MTL) has recently been applied to the domain
of thermal comfort, primarily to solve the challenges of energy efficiency of buildings
and HVAC control [28,29,31,32]. In [29], authors employ multi-task learning to propose
a portable building management solution for better HVAC control. The task definition
is based on publicly available building metadata such as the Brick database [33] and the
solution is validated on the ASHRAE RP884 database [34]. Using metadata for task identifi-
cation is suitable to avoid the problem of negative transfer i.e., incorrect task construction
and learning unrelated tasks [31]. However, the use of metadata in MTL is also challenging
due to the problems of inaccurate representation generation, the need for domain expertise
in creating metadata, variation in the context and types of the metadata itself, and improper
integration with the MTL system [29,31].

Thus, when task information and relation are clear (e.g., optimizing heating and cool-
ing in HVAC) and for specific contexts (e.g., residential buildings), MTL without metadata
is equally suitable for thermal comfort prediction. For example, a Deep Reinforcement
Learning (DRL) model that aims to optimize the HVAC efficiency with cooling and heating,
as its two outputs, is proposed in [28]. Likewise, the recEnergy system proposed in [32],
leverages a multi-task DRL model to optimize three tasks, viz. energy efficiency, occupant
comfort, and air quality.

However, the current studies that leverage MTL studies are aimed at optimizing build-
ing and HVAC efficiency and rely on sensor data and metadata. Further, none of the existing
MTL studies have been conducted in naturally ventilated built environments (e.g., class-
rooms) or trained their models using subjective survey and questionnaire data [28,29,31,32].
Deep Learning (DL) is increasingly being used for thermal comfort prediction as it offers
better accuracy than conventional ML algorithms [10]. DL is also generally more suited for
accurate multi-task learning [35]. It is better equipped to learn shared representations from
interrelated tasks through layer-sharing of multi-task networks [36]. Given the capabilities
of DL the proposed DeepComfort model employs deep neural networks. A comparative
analysis of Deepcomfort and STL models is presented in Table 1.

Table 1. DeepComfort vs. Single-task Learning Models for a given Indoor Space.

Model Characteristics Single-Task Learning DeepComfort

Approach One model one task One model multiple tasks

No. of Models No. of TC Metrics Single Model for all TC Metrics

Feature Selection Once for each TC Metric Only Once

ML Algorithm Conventional, Advanced Advanced (e.g., Deep Learning)

Real-world Deployment Difficult to maintain Easy to maintain

Contradictory Predictions Common Rare

Model Reliability Variable Accuracy High Accuracy

Generalization Ability Depends on ML Algorithm High

In this work, TSV, TPV, and TCV are considered the outputs (Labels) of the proposed
DeepComfort model. The responses for these metrics along with other data were gathered
from the survey and measurement exercise, discussed ahead.
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3. Field Experiments and Survey Methodology

The real-world primary student dataset for the analysis in this work was gathered in
the city of Dehradun, which is popularly known as the “School capital of India”.

3.1. Overview of Location, Climate, and Schools

Dehradun city is located in a valley, in the Himalayan state of Uttarakhand, India,
as shown in Figure 4. It has characteristics of both the Himalayan Climate (moderately
cold winters) and Humid Subtropical Climate (Cfa), of the Köppen Climate Classification,
therefore falling in the category of composite climate. Consequently, the city enjoys pleasant
year-round weather, making it an ideal location for learning and academics. The winter
temperatures usually fall in the range 1–20 °C and January is historically the coldest month
of the year when the daily maximum temperature is 6 °C on average. Bearing these facts
in mind, the survey was conducted in January, when the students are likely to experience
maximal discomfort due to the cold.

1.42 KM Radius

Dehradun City

Uttarakhand State 

Dehradun: Capital of Uttarakhand


Climate: Composite (humid subtropical)


City Area:	196.48 KM


City	Population: 803,983

Uttarakhand

Dehradun City

2

Figure 4. Geographical Location of the Schools Where the Study was Conducted.

The field experiments and surveys were conducted in five schools, namely, Grace
Academy, St Thomas School, Kendriya Vidhyalaya, Cambrian Hall, and Jaswant Model
School. The schools lie within a radius of 1.42Km, as shown in the partial map of Dehradun
city in Figure 4.

A few photos of the field experiments and surveys are presented in Figure 5. To ensure
confidentiality, the gathered data is anonymized. Henceforth, the schools are denoted as
Schooli, where i ∈ {1 . . . 5} is randomly assigned to a particular school. The surveys were
administered during school hours on consecutive days, between 8:30 a.m.–12 p.m. It is the
coldest period in a working-day and students are likely to experience the most discomfort.
The typical duration of survey and field experiments in each class/session was 30 min.
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Figure 5. Survey and Experiments in Classrooms of Different Schools in Dehradun city, India.

This study was conducted in 14 naturally ventilated classrooms which makes the
thermal comfort prediction more challenging [5,6]. Further, the architectural design and
construction styles of schools and classrooms considered in this study differ considerably.
Notable differences in orientation, the number of stories in the buildings, and the ambient
classroom environment were also observed. Therefore, some variation in parameters
such as the indoor temperature and relative humidity was recorded across schools and
even across classrooms in the same school. Elements of campus planning for composite
climates e.g., an open courtyard plan for improved cross-ventilation, can be noticed in the
architectural layout of three of the five schools. The schools and classrooms had certain
commonalities as well. Similar construction materials like a reinforced concrete structure
with a painted wall finish were noticed. In general, building walls and windows were not
well insulated, and classrooms lacked cross-ventilation as the ventilators (higher window
openings in the corridor-side wall) were closed shut. Further, each classroom was well lit
with ample natural and artificial lighting.

The primary school students from class-levels/grade-levels 3rd to 5th, typically be-
longing to ages 6–13, are the participants of this study. Primary school children are not
only more vulnerable to an unfavorable thermal environment due to their limited adap-
tive capacity, they are also less likely to express their discomfort due to psycho-social
constraints [37–40]. These factors introduce additional complexity in predicting their ther-
mal comfort perception. The current body of ML-based thermal comfort prediction studies
is focused on adult participants aged 20–the 30s [5]. Recent surveys also highlight the need
for a greater research emphasis on studies with children as the primary participants [5,6].
Addressing the challenges specific to children that are discussed above will be useful and
add meaning to the current state-of-the-art.

This study intends to bridge this gap. The dataset comprises 2039 responses collected
from 512 primary school children as unique participants. A school-wise quantitative
distribution of the participants is presented in Table 2.

Table 2. Statistical Details of the Survey.

School Grade No. of
Classrooms

No. of
Unique

Participants
No. of Days Timeslots *

Avg Indoor
Tempera-

ture

Min. Avg
Daily Tem-

perature

Max. Avg
Daily Tem-

perature

Total
Survey

Responses

1 3,4,5 3 103 5 2,3,4,5,6 15.2 ◦C 5.6 ◦C 22.4 ◦C
2039

971 Male
(52%)

1068 Female
(48%)

2 3,4 2 74 4 1,2 14.7 ◦C 5.7 ◦C 22.5 ◦C

3 3,4,5 3 135 4 1,2,3 14.2 ◦C 8.0 ◦C 19.9 ◦C

4 3,4,5 5 82 5 1,2,3,4,5 13.5 ◦C 5.8 ◦C 20.6 ◦C

5 3,4,5 3 118 2 3,4 14.6 ◦C 4.4 ◦C 20.6 ◦C

* Slot 1: Before 9 a.m., Slot 2: 9:30–10 a.m., Slot 3: 10–10:30 a.m., Slot 4: 10:30–11 a.m., Slot 5: 11–11:30 a.m., Slot 6:
11:30–12 p.m.

3.2. Survey Methodology

Research show that even minor changes in metabolic activity for a short duration
can impact thermal comfort perception and preference of an occupant [41]. The study
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recommends that participants should maintain a stable level of activity for a duration of
15–20 min prior to thermal responses. Therefore, classes following physical activity (e.g.,
sports, physical education, music, choir practice) were avoided to ensure minimal impact of
heightened metabolism on the thermal comfort survey. It is prescribed that the surveys be
conducted during early winter mornings when children in naturally ventilated classrooms
are likely to experience maximum thermal discomfort [41]. Therefore, despite logistical and
administrative challenges, 93% of the survey responses were collected before 11:00 a.m.,
during the coldest hours of a winter workday. The study divided the surveys into 6 time
slots, each consisting of half-hour duration, from 9:00 a.m. to 12:00 p.m., represented
as Sloti, where i ∈ {1 . . . 6}. On the first day of the study in every classroom, prior to
filling out the questionnaire, students were introduced to the survey and given a brief
description of the purpose and aim of the study. Thereafter, a detailed explanation of
every question and a list of possible responses/answers were provided, followed by an
interactive question-and-answer session to clarify any doubts the children might have had.
This was done to minimize errors due to poor understanding of the questions, terminology,
and answer options. Further, special care was taken to avoid any bias (e.g., leading the
participants, confirmation bias, etc.) through measures such as requesting the teachers
to let authors take control of the classroom for the period of the survey and allowing the
students to randomly place the filled out survey in the stack to ensure anonymity.

3.3. Survey Questionnaire

A questionnaire is an essential component of a thermal comfort study as accurate re-
sponses are extremely necessary for quantitative modeling of subjective responses [5,42,43].
Therefore, the questionnaire designed for this study was in the form of multiple-choice
questions (MCQ) and involved the use of simple vocabulary and illustrations like animated
characters. Whenever necessary, vernacular language was used to explain the terminology
or clarify doubts. Figure 6 shows an illustration of the survey.
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Figure 6. Illustration of the survey.

The survey comprised of 21 questions, focusing on qualitative aspects of thermal
comfort that vary across individuals, such as the subjective thermal sensation (TSV), prefer-
ence (TPV), comfort (TCV), thermal acceptability (TA), etc. These terms were simplified
into questions that were semantically and linguistically compatible with the cognitive
capabilities of the participants, i.e., primary school children. Questions related to layers of
clothing (to derive Clothing insulation value) and whether students modified their clothing
was also asked. In addition, questions pertaining to the adaptive opportunities available to
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the participants were also asked to assess how frequently they can adjust themselves to
their surroundings or modify the environment itself.

The questionnaire also sought information regarding the age and gender of the par-
ticipants to assess the impact of age, cognitive ability, and gender-specific clothing, on
thermal comfort perception and adaptive ability. The gender distribution of the overall
participant group was almost equal, with 52% responses received from male students and
48% from female students. Since the participants were minors, to ensure privacy and
confidentiality, the questionnaire did not ask/collect any personal information such as
physiological data (e.g., height, weight, etc.), racial and ethnic data, household status (e.g.,
single/multiple parent(s)), and parental income group. Please note that the questionnaire
sought the information that the administrators of all participating schools approved.

3.4. Measurements and Climate Data

The field experiments are accompanied by the “right-here-right-now” questionnaire,
specially designed for primary school students. While the students filled in the question-
naire sheet, parameters such as indoor air temperature, relative humidity, and outdoor air
temperature were measured every 2 min using IoT devices/sensors, viz., TandD TR72wf-S
and TandD TR52-i, respectively. The IoT devices were calibrated prior to the measure-
ments and technical specifications are presented in Table 3. Finally, the outdoor weather
data for daily maximum, minimum, and average temperatures was collected from Indian
Meteorological Department (IMD) of the city for the surveyed days.

Table 3. Details of the Experiment Devices.

Sensors Measures Comm.Interfaces Range Accuracy

TandD TR72wf-S
Indoor Air Temperature

(◦C or ◦F)
Indoor Relative Humidity

(%RH)

Wireless LAN, USB
Temperature: 25 to 70 ◦C
Humidity: 10 to 99%RH

Temperature: Avg. ±0.3 ◦C
at −20 to 80 ◦C

Humidity: ±5 %RH
at 25 ◦C, 50%RH

TandD TR-52i

Outdoor Air Temperature
(◦C or ◦F)

Infrared Communication,
Optical Communication

Temperature: −10 ◦C to
60 ◦C

Temperature: Avg.
±0.3 ◦C at −20 to 80 ◦C

The important features and outputs considered in the analysis and the proposed
DeepComfort model are depicted in Figure 7. These include measured indoor and outdoor
parameters, weather data, and survey data (21 subjective questions). Exploratory data
analysis of important features and the three TC output metrics is presented ahead.

Input Features Outputs

Indoor Environmental Features Outdoor Environmental Features Physiological Features Miscellaneous  Features

� Indoor Temperature � Metabolic rate � Grade

� Time of Survey

� Days of Survey

� Outdoor Temperature
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Figure 7. Features & Outputs Considered in the Study.

4. Exploratory Data-Analysis

This section seeks to identify relevant patterns in the data and determine the challenges
to be expected in the multi-task prediction. In particular, the analysis focuses on the
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variation in clothing (Clo), indoor and outdoor temperatures, and most importantly, the
distribution in the three TC output metrics to be predicted concurrently.

4.1. High Level Distribution of Thermal Comfort Metrics

A high-level comparative analysis of the distribution of TSV, TPV, and TCV responses
is presented in Figure 8. The empirical cumulative distribution reveals the complexity in
thermal comfort prediction due to the use of multiple subjective responses. The values of
TSV, TPV and TCV obtained from students responses during the survey is illustrated in
Figure 9. A smaller percentage of student responded to feeling a “Cool” or “Cold” sensation
(TSV = −1 or −2), while a much larger proportion of student responses indicate that they
prefer the classroom environment to be “Bit Warmer” or “Much Warmer” (TPV = 1 or 2).
What makes the problem more challenging is that the sensation and preference indicated by
the students is not reflected in their comfort votes. Most students (regardless of the school
or time slot of the survey) claim to be experiencing varying degrees of comfort (TCV = 1 or
2 or 3), which contradicts the TSV and TPV trends. This indicates a small but significant
volume of “illogical responses”, as it can impact the accuracy (precision) of multi-class
classification models. This problem highlights why the one model per metric approach to
predict occupants’ thermal comfort is not desirable.

The paradigm of Multi-task Learning offers efficient and practical solutions to these
challenges. The following section discusses the proposed DeepComfort MTL system in
great detail.

Figure 8. Distribution of TSV, TPV, and TCV.
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TSV (Thermal Sensation Vote)
–2–1012
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Slightly 

Uncomfortable
UncomfortableVery 

Uncomfortable

Figure 9. Values of TC Metrics in Student Responses.

4.2. School Specific Data Distribution

The 5 schools lie within a close proximity (Figure 4), with similar levels of vegetation
and elevation, and are all naturally ventilated. Further, the prescribed “school uniforms”
also have similar clothing values. Thus, it is relevant to study how the TC perception of
students varies across the 5 schools and how it affects prediction performance.

Despite these similarities, the spatial environment in the 5 schools has marked differ-
ences. The observation of the site and buildings conducted along with the experiments
revealed architectural variation across the five schools in terms of the number of floors,
window sizes, structure, facade, building layout, and orientation. Further, the number and
orientation of windows and the size of classrooms varied as well. Due to the difference in
these factors, the indoor environmental quality would likely differ across schools.

The distribution of TSV, TPV, and TCV responses is presented in Figure 10. It is
discernible that in School 1 the highest proportion of primary students have responded
to feeling “Neutral” (TSV = 0) and prefer “No Change” to their classroom environments
(TPV = 0). In sharp contrast, School 4 has the highest proportion of students who feel
“Cold” or “Cool” (TSV = −2, −1). The typical causes of discomfort to students in class-
rooms include cold/hot wind draft, vertical air temperature difference, radiant asymmetry,
etc. [44]. While the effect of local discomfort on students’ well-being and performance is
well documented, determining the precise impact of each local spatial factor, is a complex
problem. For example, it was observed that an opening in the passageway with no shutters
in a classroom of School 4 allowed a constant draft of cold wind. Further, while two class-
rooms in School 1 were exposed to direct sun, the classrooms in School 4 did not receive
any sunlight during the survey time.
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Figure 10. Probability Distribution of Output Metrics for Schools. (a) Thermal Sensation Vote,
(b) Thermal Preference Vote, (c) Thermal Comfort Vote.

4.3. Distribution of Other Features

Clothing provides thermal insulation which is vital for thermal comfort, especially in
naturally ventilated indoor spaces. Although primary school students who participated
in the field experiments usually have a school uniform, it was observed that children
added/removed layers of clothing. Further, male and female students are usually pre-
scribed a different dress code e.g., trousers for males and skirts for females. With this
context, two interesting findings with respect to clothing are observed. First, the amount
of clothing children wear seems to be reducing with Grade. The mean Clo value for all
students in grades 3rd, 4th, and 5th, is 1.375, 1.398, and 1.451, respectively. The pattern
can be observed in Figure 11a. The finding indicates that students are more likely to resort
to behavioral adaption, e.g., modifying their clothing, with an increase in cognition. The
second aspect, visible in Figure 11b, is that there is a slight variation in average clothing
values based on gender. Female students have a slightly higher Clo on average (1.417) than
male student participants (1.403).
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Figure 11. Distribution of Clothing Values.

Differences in the average indoor and outdoor temperatures during the surveys for
each slot for individual school varies from 0.17 °C to 3.2 °C as presented in Figure 12. It is
observed that in some time slots, the average indoor temperature is higher (by as much as
5.05 °C) in school 1 during slot 6, while it is lower than the average outdoor temperature in
school 5 slot 4 by as much as 4.7 °C.
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Figure 12. Temperature Distribution Across Schools.

5. System Vision and Implementation

This study envisions a practical and feasible real-world implementation of a ther-
mal comfort prediction model. The comprehensive large-scale survey was conducted
with that vision in mind. However, implementing the proposed DeepComfort model in
classrooms will require resources and greater institutional participation. Nevertheless a
high-level overview of practical solution is presented next, followed by the technical details
of the implementation.

5.1. System Concept and Vision

The DeepComfort system architecture is illustrated in Figure 13. It is conceptualized
as a two-stage system with an offline data gathering and training stage and an online
thermal comfort prediction stage. DeepComfort initializes the offline stage by data gathering
of ambient temperature, relative humidity, clothing level, etc., and students’ subjective
thermal comfort responses. The data can typically be collected by a Thermal Collector
App running on the student’s tablets in school. In this study, the data was gathered using
paper questionnaires at schools as tablets could not be used due to logistical reasons.
Thereafter, the collected data is sent to the local server for further processing. The pre-
processing modules handle missing information and put the data in a format appropriate
for further processing.

Data Collection

Weather Data 
Collection

Data Pre-processing

Trained  Model

Data Pre-processing
Thermal Comfort Prediction

Model Creation

Figure 13. The DeepComfort System Architecture.

Next, the Model Creation module builds and trains a deep learning-based multi-task
learning model to accurately predict students’ thermal comfort, thermal sensation, and
thermal preference. This module also determines the optimal model hyperparameters
(discussed in Section 6.3). To do so, the module employs grid search – an exhaustive search
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that iterates on numerous combinations of parameters’ values until the optimal value, that
maximizes the model accuracy, is achieved.

Finally, the trained MTL model is stored for later use in the online phase. During the
online phase, the school admins or instructors can at any time estimate the thermal comfort
of each student by providing the inputs (e.g., ambient temperature, clothing values etc) to
the trained model in the offline stage.

5.2. Model Design and Implementation

We define the prediction of TPV value as a task that require learning and similarly for
TSV and TCV. Thus, the aimed prediction model is expected to maximize the likelihood of
correct prediction of the joint performance of all targeted tasks at the same time given the
input features. This is different from the state-of-the-art techniques that build a single model
for each task and thus yield confusing predictions (e.g., too cold and very comfortable).

DeepComfort employs multitask learning of different thermal comfort metrics. The
intuition behind this is to effectively and simultaneously boost the learning ability of the
trained model for all target thermal comfort metrics leveraging the inherent correlation
between them. This leads to a general model that jointly improves the prediction accuracy
of each individual metric (task) as well as avoids the model overfitting while training. The
state-of-art techniques, usually, build a single model for each target thermal comfort metric
which in general leads to overfitting problem and/or partial estimation of thermal comfort.

DeepComfort adopts hard parameter sharing which is the most commonly used ap-
proach to training multitask neural networks [35]. It is generally applied by sharing the
hidden layers between all tasks while keeping several task-specific output layers. Hard
parameter sharing greatly reduces the risk of overfitting. In fact, it showed that the risk of
overfitting the shared parameters is an order T–where T is the number of tasks–smaller
than overfitting the task-specific parameters, i.e., the output layers. This makes sense
intuitively: The greater the number of tasks that are learned simultaneously, the more the
proposed model has to find a representation that captures all of the tasks, thereby reducing
the chance of overfitting.

To formally state the of proposed multi-task learning model, assume there are T tasks.
For each task t, we have N samples; st

i = (xi, yt
i) denotes to the ith sample, where i ∈ N, xi

is the set of features and yt
i is corresponding label of the tth task. A task is an abstraction

read from raw data. Typically, each task t has a set of training samples that overlaps with
the other tasks in the input features. The most traditional way is to train an individual
model f t

θ(x, yt) for each task t that maximizes the probability P(yt|x) of obtaining the true
label yt given the input x, where θ is the model parameters. However, we build multitask
learning over all tasks leading to a tasks-collaborative prediction model fθ(x, y) where
y = {y1, y2, .., yT}. This ensures that obtained model is more robust since it optimizes the
cumulative prediction performance of all tasks together.

Figure 14 shows the proposed deep network structure. We construct a deep fully
connected neural network consisting of a common cascaded hidden layers of non-linear
processing neurons. Specifically, we use the hyperbolic tangent function (tanh) as the
activation function for the hidden layers due to its non-linearity, differentiability (i.e.,
having stronger gradients and avoiding bias in the gradients), and consideration of negative
and positive inputs [45]. The input layer of the network is also common with a vector of
length d representing the collected features from the students in the school of interest.
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Backward Propagation

Figure 14. The Proposed Multi-task Deep Neural Network Structure.

The network consists of three subnetworks stacked over the common hidden layers;
each subnetwork is dedicated to one of the thermal comfort metrics (TSV, TPV and TCV).
The number of neurons at the output of each subnetwork is corresponding to the number
of comfort levels (values) of its dedicated metric. For instance, thermal comfort can be
reported by three levels of TSV including, −1, 0, 1 for cool, neutral, and warm. Thus the
TSV subnetwork is trained to operate as a multinomial (multi-class) classifier by leveraging
a softmax activation function in the output layer. This leads to a probability distribution
over the reference TSV levels given an input. The same architecture is considered for TPV
and TCV.

To increase the model resilience to over-fitting, DeepComfort employs the dropout
regularization [46] which is shown to be feasible for the efficient training of deep neural
networks. This technique can sample from many neural networks of different architectures
during the training process. This can be realized by stochastically removing (i.e., dropping
out) some neurons in addition to their connections from each layer in the network. In effect,
each layer has a new “view” different from the original configured layer in each epoch
in the training. Dropout has the effect of making the training process noisy, forcing units
within every layer to stochastically take on more or less responsibility for the inputs. As a
result, it prevents the neurons from co-relying on each other during the training process,
leading to a more robust model that is less likely to overfit the training data.

The current implementation and validation of DeepComfort is done locally, and both
training and testing of the models ability to predict students’ thermal comfort perception is
performed in the offline mode. The proposed deep learning model was implemented using
Keras, which is a high-level neural networks API running on top of the Google TensorFlow
framework [47]. The model is trained on a Lenovo ThinkStation P920 server with Nvidia
RTX3080 ti GPU, and 320GB RAM. After running numerous experiments, the deep learning
architecture of 20 × 50 × 80 × 100 × 120, delivered the best performance.
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6. Evaluation of DeepComfort

This section presents the performance evaluation of the proposed DeepComfort multi-
task model and highlights the challenges involved in thermal comfort prediction for pri-
mary school students.

6.1. Evaluation Methodology

To evaluate the proposed system and its trained multi-task learning model and confirm
its generalization ability, K-fold cross-validation is employed, where k = 5. The dataset is
partitioned into k subsets i.e., folds. Each time, k− 1 folds are merged to form a training
set and the remaining one is leveraged as the validation set. Hence, every sample of our
dataset appears in a validation set exactly once and appears in a training set k− 1 times.
Thereafter, the average error across all k folds is reported and is used to select the model
parameters. This significantly reduces the impact of the bias-variance problem due to the
interchange of the training and validation sets.

In this section, we quantify DeepComfort’s performance using different criteria in-
cluding, Accuracy, Precision, Recall, F-Measure, and Confusion Matrix. Accuracy is the
percentage of predictions our model correctly obtained. Precision quantifies the number of
correct instances out of all predictions as an arbitrary class. Recall quantifies the number
of correct predictions made out of all instances of a specific class. F-Measure (F1-score)
provides a single score that balances both the concerns of precision and recall in one number,
as: F1 = 2× Precision × Recall

Precision + Recall .
The overall validation and performance evaluation of DeepComfort is done using Preci-

sion, Recall, F-Measure, and Confusion Matrix. However, for the clarity of presentation,
the effect of different system parameters and categorical features is presented in terms
of Accuracy.
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Figure 15. DeepComfort Performance Evaluation on our Primary Student Data & ASHRAE II Database.
(a) Thermal Sensation Vote, (b) Thermal Preference Vote, (c) Thermal Comfort Vote.

6.2. DeepComfort Validation on ASHRAE II & Our Data

The first step is to evaluate the generalization ability of the proposed DeepComfort
model. To that end, the model is trained and tested on the ASHRAE II dataset [25]. The
ASHRAE Global Thermal Comfort Database II is the largest publicly available open-source
database, created from landmark thermal comfort field studies in 28 countries, spread
across the globe. The database includes over 50 attributes, including objective environment
data, subjective TC metrics, built environment characteristics, climate and weather data,
and participant information [25]. However, the ASHRAE II database doesn’t have provide
a dataset for primary school students, i.e., for students of age 14 or lower. (Please note that
less than 250 samples with only TSV and TPV data are available). Therefore, all data for
students under the age of 18 in naturally ventilated classrooms available in ASHRAE II
database available was considered for evaluation of DeepComfort.
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Figure 15 shows the performance of DeepComfort benchmarked against ASHRAE II
data. There are some characteristic differences between the two datasets, which include
the number of features, the number of classes of each TC metric, and the number of
samples. The comparison is performed in terms of Precision (Accuracy), Recall, and
F1-score metrics. Despite the differences in the two test sets, the DeepComfort system
demonstrates a consistent performance for all three metrics. The, prediction performance is
slightly better for ASHRAE II database. This is justified, as ASHRAE II data participants are
young adults (ages 14 to 18) or adults with developed cognition and reasoning. In contrast,
our primary student data is mainly gathered from participants in the age range of 6 to 13,
and due to children’s cognitive limitations, is likely to have a higher frequency of “illogical
votes”, which can be considered to be outliers but can not be ignored or dropped from
the model. Nevertheless, DeepComfort overcomes this challenge and demonstrates high
prediction Accuracy for all three TC response metrics. The results validate the suitability of
multitask learning for thermal comfort prediction even when outliers are present.

6.3. Impact of Hyperparameters

Hyperparameter tuning is vital for a deep neural network’s performance. Recent
surveys on the application of machine learning to the domain of thermal comfort have
expressed a concern that a deep neural network may become a black box for the research
community if the inner workings of the models are unknown [5,6]. It also poses challenges
in replicating the proposed models. To address these concerns, this section analyzes the
impact of different hyperparameters on DeepComfort performance viz., the number of layers
in the network, the number of epochs, and the learning rate.

6.3.1. Number of Layers

One of the salient hyperparameters is the number of layers of the deep network as
it reflects the distributed (i.e., hierarchical) capability of the model. Figure 16a shows the
effect of changing the number of hidden layers of the multitask model on DeepComfort
accuracy. The figure shows that increasing the number of layers increases the performance
due to increased model capacity until it reaches six layers. After that, the model tends to
overfit the training data, reducing performance in all TC metrics. Therefore, we choose six
layers as the default number of layers in our to multitask thermal comfort model.

6.3.2. Number of Epochs

Training a deep network is a challenging process since overtraining may force the
model to stop generalizing and learn to memorize the training data. On the other hand, too
little training may lead to underfitting leading to poor performance even on the training set.
Figure 16b shows that 750 epochs is an optimal value which leads to the best performance
of DeepComfort.
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Figure 16. Effect of Varying Hyperparameters on DeepComfort Performance. (a) Impact of Layers,
(b) Impact of Epochs, (c) Impact of Learning Rate.
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6.3.3. Learning Rate (α)

Tuning the model’s learning rate is an important step as it controls how much the
network weights are adjusted with respect to the loss gradient. Figure 16c shows the impact
of changing the learning rate on the DeepComfort performance. The figure shows that a
learning rate of α = 0.001 obtains the best performance of DeepComfort in all thermal comfort
metrics. This can be justified as the model at this value balances between larger and smaller
learning rates. Larger learning rates may lead to a divergent training process. On the
other hand, smaller learning rates may conversely lead to non-optimal convergence of the
training process.

Table 4. DeepComfort vs.Single-task Learning Algorithms.

Machine Learning Techniques

Thermal Comfort Output Metrics

Thermal Sensation Vote Thermal Preference Vote Thermal Comfort Vote

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

SVM 67 66 55 43 48 44 50 60 51
Random Forest 55 58 56 45 46 46 53 57 55
Decision Tree 58 55 56 48 48 48 51 52 52

KNN 53 53 53 44 45 44 51 51 51
AdaBoost 58 62 54 39 38 37 34 59 43

DNN 67 67 67 64 64 63 63 64 64
DeepComfort 90 90 90 87 87 87 89 89 89

6.4. Deepcomfort vs. Single-Task Models

An important aspect of evaluation is to compare the performance of DeepComfort
with single-task thermal comfort prediction models implemented using state-of-the-art ML
techniques. A total of 6 single-task models are considered which include both supervised
and unsupervised, shallow and deep algorithms, briefly described below.

In [15] Support Vector Machine (SVM) is employed to implement single-task models
that predict the TSV and TCV individually. Further, a deep neural network (Bayesian
Network) approach, denoted as “DNN”, is adopted in [10] for estimating TSV. DeepComfort
is also compared with Decision Tree which is a commonly used technique for single-task
TC classification and prediction [48]. Additionally, Random Forest classifier is also included
in the comparison due to its effectiveness as it builds a forest of many decision trees; each
of them outputs a class prediction, and the class with the majority votes will be reported
by the model [48]. In K-nearest neighbor (KNN), a class is estimated by its plurality
among its neighbors, i.e., the sample is assigned to the class most common among its “k”
nearest neighbors [49]. Finally, the Adaptive Boosting (AdaBoost) technique is an ensemble
boosting classifier. It builds a robust classifier by combining multiple weak classifiers
ensuring accurate predictions of unusual samples [6].

Table 4 shows DeepComfort’s performance when compared to these single-task tech-
niques with respect to F1-score, Precision, and Recall. F1-score is chosen for comparison
instead of Accuracy because due to the data imbalance in the dataset, prediction of minority
classes is not adequately reflected in Accuracy. The results confirm that the proposed
multi-task learning model outperforms the other techniques, even the Bayesian deep
neural network.

This can be justified for two primary reasons. First, the distributed learning ability
of the deep neural network enables automatic feature learning improving the accuracy of
prediction. Second, the enhanced generalization ability due to the multi-task learning model
further maximizes the prediction accuracy of all tasks simultaneously. The second reason is
the main point of distinction when compared to the 6 single-task models. Moreover, the
proposed MTL model’s design boosts the learning of general and accurate models through
regularization techniques.
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6.5. Classification Challenges & Performance

Next, the analysis of the multi-class classification performance of DeepComfort is pre-
sented. Figure 17 shows the confusion matrices of the system performance corresponding
to each task (e.g., TSV, TPV, and TCV). Relevant sections of each TC metric scale are also
presented for ease of reference.

TCV (Thermal Comfort Vote)TPV (Thermal Preference Vote)TSV (Thermal Sensation Vote)

(a) Confusion Matrix for TSV (b) Confusion Matrix for TPV (c) Confusion Matrix for TCV 

+3–2 +22–1 +110 01 –1–1 –2–3
Very 

Comfortable
ComfortableCold Slightly 

Comfortable
Cool Bit 


Cooler
Slightly 

Uncomfortable
Warm Bit 


Warmer
Neutral No 


Change
UncomfortableMuch 


Warmer
Very 

Uncomfortable

Predicted Label

Tr
ue

 L
ab

el

–2
1200

1000

800

600

400

200

0

–2 –1 0 1

0

–1

1

73

5

7

2

7

442

58

3

17

81

1283

14

1

0

6

38

Predicted Label

Tr
ue

 L
ab

el

–1 700

600

500

300

400

200

100

0

–1 0 1 2

1

0

2

5

0

0

0

1

796

114

30

1

55

755

12

2

17

30

219

Predicted Label

Tr
ue

 L
ab

el

–3

–2

–1

1

2

3

1000

600

800

400

200

0
2–1–3 31–2

5

0

0

0

0

0

0

9

0

0

2

1

0

1

1

187

33

6

0

0

9

0

0

0

0

1

0

21

1091

65

0

1

2

16

82

504

Figure 17. Confusion Matrix for Individual Classes in the Multi-Task Model.

The confusion matrices show the robustness of the system in dealing with data bias.
For example, since the proposed model is trained with winter data in the composite
climate, the majority of samples for TSV are either “Neutral” or “Cool”. This biased data
distribution, in general, leads to a biased model that incorrectly estimates other values
such as “Cold” or “Warm” as “Neutral” or “Cool”. Despite this challenge, the model
shows a good generalization and non-biased capability by leveraging the generalization
ability of multi-task learning and through regularization techniques. A similar non-biased
performance, across all classes, can be observed for the other two metrics, viz., TPV and
TCV in Figure 17b,c.

It is noteworthy that some false predictions emerge from the unclear boundaries
between different classes, e.g., “Slightly Comfortable”, “Comfortable”, and “Very Comfort-
able” in TCV. The role of cognition is crucial here, which highlights why TC prediction for
primary school students in naturally ventilated environments is challenging. Despite the
use of illustrations and easy-to-understand language, primary school students seem to find
difficulty in assessing their situation with respect to the standard TC metric scales (TCV
in this case). Multiple classes with nuanced differentiation achieved through the use of
qualifiers such “Slightly” or “Very” seems to confuse young primary students. This lack
of clarity also affects the correspondence (if not correlation) between student responses
that fall in minority classes for the three metrics. Case in point, in Figure 17, the number of
“Cold” sensation (TSV = −2) labels, are far less than “Much Warmer” preference (TPV = 2)
labels, both of which are much higher than “Uncomfortable” and “Very Uncomfortable”
comfort labels (TCV =−2,−3). Thus, the inconsistency in responses while filling the survey
(the model ground-truth), often results in inaccurate model predictions. Yet, despite these
challenges in the multi-task multi-class classification goal, the DeepComfort system is able
to simultaneously achieve a prediction Accuracy of 90%, 87%, and 89%, for TSV, TPV, and
TCV metrics, respectively.
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Figure 18. Impact of Features on DeepComfort.

6.6. Categorical Features & Model Accuracy

Figure 18, demonstrates the impact of various features such as clothing, grade, and
gender on DeepComfort performance. Two observations can be made. First, the features
invariably impact the performance of the classification models. Second, the impact of the
feature on a model’s performance i.e., feature importance, varies across features.

It is a worthwhile objective for a classification/prediction model to have high gener-
alization capability, i.e., achieve high accuracy regardless of the distribution of features.
However, from the perspective of prediction of subjective TC responses, it is important to
ensure that the model performance is consistent for all categories of a feature.

Thus, it is desirable, and an objective of this work, to stabilize DeepComfort performance
across schools, survey timings, the gender of students, days of the survey, and the grade of
students. DeepComfort achieves this objective by precisely training the model for specific
variations in the categorical features, e.g, Male and Female students. The complexity of the
task lies in the trade-off involved between achieving generalization ability and maintaining
high accuracy for all values of categorical features. An alternative goal can be to highlight
the differences in the impact of individual features on students’ TC perception, which is
beyond the scope of this current work.

The results for the five features analyzed earlier are presented in Figure 19. DeepComfort
is able to achieve high Accuracy (80–96%) in all three metrics, for all features in the feature-
category-specific evaluation. There is some variation in Accuracy, which is expected.
Further, explanations for the fluctuation in Accuracy in feature categories can be attributed
to the unusual distribution of TSV, TPV, and TCV values in those categories.



Buildings 2022, 12, 750 23 of 26

School 1 School 2 School 3 School 4 School 5
Schools

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
) 

Samples=542 Samples=298

Samples=544
Samples=514

Samples=139

TSV TPV TCV

(a)

Female Male
Gender of Students

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
) Samples=970 Samples=1067

TSV TPV TCV

(b)

3rd Grade 4th Grade 5th Grade
Grade of Students

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
) Samples=703 Samples=738 Samples=596

TSV TPV TCV

(c)

Day 1 Day 2 Day 3 Day 4 Day 5
Day of the Survey

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
) 

Samples=462 Samples=490 Samples=432
Samples=437

Samples=216

TSV TPV TCV

(d)

Slot1 Slot2 Slot3 Slot4 Slot5 Slot6

Survey Time-slots
50

60

70

80

90

100

Ac
cu

ra
cy

 (%
) Samples=647

Samples=647
Samples=414

Samples=185

Samples=104

Samples=40

TSV TPV TCV

(e)

Figure 19. Impact of Features on the Consistency in DeepComfort Performance. (a) School Architecture,
(b) Gender, (c) Grade & Cognitive Abilities, (d) Survey Duration, (e) Survey Timings.

With respect to Schools as the feature, School 3 and School 4, have the lowest Accuracy.
Considering the case of School 4, the fluctuation is due to the fact that a higher proportion
of students respond to feeling “Cold” and “Cool” sensations (TSV = −2, −1), yet they also
respond to feeling varying levels of comfort (TCV = 1, 2, 3). This ambiguity is less prominent
in other schools, where the majority of students experience a “Neutral”, sensation along
with varying levels of comfort. In School 3, there exists a lack of congruence between the
distribution of sensation, temperature preference, and comfort, votes. For example, School 3
has a high proportion of both “Cold” sensation votes (TSV = −2) and “Very Comfortable”
(TCV = 3) votes, which confuses the model, resulting in poor Accuracy.

Considering female and male students as the categories for Gender, a higher propor-
tion of female students responded that they feel “Cold” (TSV = −2) but did not express any
discomfort on the TCV scale. As a consequence, the Accuracy for male students is slightly
higher. A similar trend is observed in 3rd, 4th, and 5th grades as categories for the grade
feature. As the cognitive ability of the students increases with the grade, the number of
illogical votes goes down, leading to slightly improved Accuracy.

For days of the survey, the Accuracy results for specific days conform to the trend of
TSV, TPV, and TCV distributions, discussed in Section IV. The Accuracy for the first 3 days
remains stable, with minor variations, but drops slightly on Day 4 and is highest for Day 5.
Another reason for very low Accuracy is high data imbalance. For example, for Slot 6 in
survey time-slots, the Accuracy drops down to 80%, which is because of the high data
imbalance in this class.

The analysis presented in this section demonstrates that the proposed DeepComfort
model offers high generalization capability and stable performance. Based on the results
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and the challenges encountered, a few inferences and conclusions are presented in the
next section.

7. Conclusions and Future Work

This work sought to address the problem of multiple TC prediction models for each
indoor space, one specific to each metric. To that end, it proposed multi-task learning
inspired deep learning model named “DeepComfort”, which concurrently predicts three
TC metrics, viz, TSV, TCV, TPV. Further, this work envisions a real-world implementation of
the proposed DeepComfort MTL model. Thus, the model was validated on a large dataset
gathered through a month-long comprehensive survey and field experiment involving
5 schools, 14 classrooms, and 512 unique primary school student participants.

The first inference can be made on the suitability of multi-task learning for thermal
comfort prediction. The proposed MTL solution requires a single model to simultaneously
predict the three subjective TC response metrics, viz., TSV, TPV, and TCV. Deepcomfort is
shown to outperform 6 single-task learning models. Further, predicting thermal comfort
for primary school students in naturally ventilated environments is challenging because
of children’s limited cognitive ability to perceive and assess the classroom environment.
Consequently, there is a higher volume of illogical responses in the surveys that typically
lower the accuracy of multi-class classification. Despite these challenges, the deep network
architecture of DeepComfort allows it to maintain high prediction Accuracy for our primary
student data as well as ASHRAE II data, ensuring high generalization capability. The
DeepComfort model also demonstrates consistent performance for different categories of
categorical features with different characteristics.

Given the satisfactory performance of the proposed multi-task learning model, the next
step is to extend the implementation to predict a larger set of TC metrics including Thermal
Acceptability, Temperature Satisfaction Levels, etc. The future work also entails including
not just TC metrics but also adaptation behaviors such as opening/closing windows and
modifying clothing, as prediction “tasks” in the multi-task model. We also intend to address
the problem of illogical votes through imbalanced classification, autoencoders, etc. Further,
the impact of spatial and temporal variability on thermal comfort prediction will also
be explored.
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