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Abstract: In this study, Bayesian Belief Networks (BBN) are proposed to model the relationships
between factors contributing to pavement deterioration, where their values are probabilistically
estimated based on their interdependencies. Such probabilistic inferences are deemed to provide a
reasonable alternative over costly data collection campaigns and assist in road condition diagnoses
and assessment efforts in cases where data are only partially available. The BBN models examined in
this study are based on a vast database of pavement deterioration factors including road distress data,
namely cracking, deflection, the International Roughness Index (IRI) and rutting, from major road
sections in the United Arab Emirates (UAE) along with the corresponding traffic and climatic factors.
The dataset for the analysis consisted of 3272 road sections, each of 10 m length. The test results
showed that the most critical parameter representing the whole process of road deterioration is the
IRI with the highest nodal force. Additionally, IRI is strongly correlated with rutting and deflection,
with mutual information of 0.147 and 0.143, respectively. Furthermore, a Bayesian network structure
with a contingency table fit of over 90% illustrates how the road distress parameters change in the
presence of external factors, such as traffic and climatic conditions.

Keywords: road distress parameters; correlation analysis; Bayesian belief networks; uncertainty

1. Introduction

The ongoing challenge faced by all levels of highway administration is the inadequate
funding for highway projects [1]. Hence, collecting road data is an expensive process in
terms of cost, time, and effort. Storing and analysing the excessive amount of data collected
with a variety of available technologies is a serious problem for road authorities. In addition,
the inclusion of irrelevant data in the database reduces the efficiency of road management
systems in providing optimal and cost-effective pavement solutions. Identifying the factors
that significantly contribute to the deterioration of road conditions would limit the amount
and frequency of data collected, thus providing the right amount of data for pavement
performance analysis [2]. In addition, studying the correlations between different factors
helps in understanding the importance of one factor over another.

Generally, a correlation analysis is carried out to understand the various relationships
between factors that represent pavement conditions for efficient pavement management.
Since many factors influence pavement condition, two important questions arise: which
factors help to represent the overall pavement condition, and how can these factors be
modelled efficiently for pavement management? The condition of the roads are analysed
in the literature based on the intensity of various road distress factors such as the Interna-
tional Roughness Index (IRI), cracking, rutting, bleeding, deflection and many others [3].
However, it is not yet clear which factor provides the highest information gain, which could
be used as an indicator of the general distress condition of the road as well as a predictor
for probabilistically estimating the rest of the distress factors. This is indispensable for
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optimizing road assessment data collection efforts and finding a compromise when it is not
possible to obtain data about all factors but only some of them.

These road distress factors are influenced by various explanatory variables, including
traffic conditions, environmental factors, design features, and similar [4]. The main factors
affecting pavement condition are shown in Figure 1. Due to the distinct nature of the these
factors, the pavement conditions on different road sections are heterogeneous, adding
uncertainty in assessing road performance [5].

Figure 1. Major factors influencing pavement condition.

Researchers have employed different methods to understand the relationships among
road deterioration factors. The most prominent ones are back-propagation neural net-
work [6], random forests regression [7], statistical regression analysis [8], structural equa-
tion modelling [9], linear regression and artificial neural networks [10]. The majority of the
studies select any one distress parameter such as cracks [11], IRI [6] etc., as an indicator
of pavement deterioration and subsequently explore the dependency of this distress pa-
rameter with other deterioration factors. This approach may not be appropriate because in
certain situations, the selected distress parameter is not a surrogate measure of pavement
condition [8,9]. Thus, it is important to identify the central factor which is capable of
representing the overall pavement deterioration. In addition, the existing studies do not
capture the uncertainty associated with distress parameters [6] and even the uncertainty
related to the explanatory variables [7,10].

Bayesian belief networks (BBN) are capable of representing uncertain knowledge
about interrelationships existing between variables in a complex system [12]. The BBN
structure serves as an inference mechanism which aids in probabilistically estimating the
unknown values [13]. In low-data scenarios, BBN allows one to perform inverse modelling
without the problem of overfitting to obtain insights on unobserved variables [14]. As far
as the authors are aware, there is no study that focuses on the application of BBN to model
the correlations between road distress parameters and which factors provide the most
information about road condition. Knowing which parameter best reflects road condition
is beneficial when prioritizing data collection and maintenance activities in the face of
shrinking road budgets. The present work aims to fill this gap by developing different BBN
models that incorporate road distress parameters, traffic factors, environmental factors and
specific road factors to analyse the correlations between the factors for efficient pavement
management.

The manuscript continues as follows: Section 2 mentions several studies in which
BBN was used in pavement research. Section 3 explains the methodology of the study and
describes the data and the steps followed in the analysis. Section 4 presents the results
of the analysis and their implications for developing better management solutions for
pavements. In Section 5, we discuss the results in detail and mention certain limitations
of the proposed approach and possible future directions. Finally, Section 6 presents the
conclusions of the study.
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2. Literature Review: Applications of Bayesian Belief Networks in Pavement Studies

Applications of Bayesian networks range from predicting a disease/treatment for a pa-
tient [15] to performing profit analysis for a company [16] and to creating genetic maps [17].
The most important properties of the Bayesian network are its ability to provide real-time
solutions and its ability to handle missing data under uncertainty [18]. BBN has been used
extensively in various areas of pavement management due to its advantages in accounting
for uncertainty, capturing unobserved heterogeneity and the like. Therefore, BBN is used in
this study to perform a correlation analysis of the factors that cause pavement deterioration.

Mohamed and Tran [19] reported the ability of BBNs to draw causal relationships and
their importance in making accurate decisions by investigating the causal relationships
between 76 variables grouped under 12 quality assurance inspection activities and Portland
cement concrete pavement quality (PCCP). The results show that quality deterioration
decreased by 9.7% when the risk of an inspection activity related to moisture in PCCP
aggregates was changed from high to low and vice versa. Another study by the same
authors found a causal relationship between inspection activities and hot asphalt pavement
quality [20].

Ismail et al. [5] proposed a knowledge-based BBN model for prioritizing road sections
for efficient management based on several key performance indicators (KPIs) categorized
into pavement condition, road safety, environmental impact and capacity. The causal
relationships between the KPIs were established based on expert knowledge and previous
studies. This shows that BBN can take into account expert judgements (prior knowledge),
which is crucial in the evaluation of road transport systems.

Attoh-Okine [13] investigated the ability of BBN to deal with incomplete and insuf-
ficient data related to highway construction costs by developing random and associative
relationships among cost variables. The probabilistic relationship and the corresponding
information flow between nodes are represented by grouping the variables into environ-
mental costs, road design costs, directed labour costs, other labour costs and material
costs. Once the variables are identified, logical and dependence relationships are estab-
lished among the variables. Based on the relationships obtained among the variables, the
information flows among the network to generate inferences, both predictive inferences
and posterior computations based on available information and historical data. The main
advantages of the literature-based BBN method are shown in Figure 2.

Figure 2. Major advantages of BBN for pavement assessment studies.
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Better data collection would be possible if the most important factor providing infor-
mation on the condition of the road was known in advance. The development of a BBN
model to represent the various relationships between pavement deterioration factors and
the importance of each relationship in the pavement deterioration process would improve
pavement management. The objective of this study is to investigate the use of BBN to derive
correlations between road distress factors and external factors. The database for the analysis
was prepared by collecting road data from 32 road networks in the UAE from 2013 to 2019.
The original data was collected from the Ministry of Energy and Infrastructure (MoEI). The
major objectives of the study are:

• Estimate the correlations between the road distress parameters: cracking, deflection,
IRI and rutting;

• Investigate the influence of external factors related to traffic, environment, and road
characteristics on pavement conditions;

• Perform a sensitivity analysis of road distress parameters to understand what type
of road distress is prominent on each type of road (arterial, collector, freeway and
expressway).

This paper is a first step towards the development of a pavement management system
(PMS) capable of making pavement decisions based on a probabilistically estimated right
amount of quality data.

3. Methodology

This study was carried out based on road data collected from 32 road networks in
the UAE from 2013 to 2019. The major steps followed in this study are given in Figure 3.
Details of the data and the method of analysis are presented in the following subsections.

Figure 3. Methodology of the study.

3.1. Data Collection

Road data along 32 road segments in the northern region of the country from 2013
to 2019 managed by the Road Department of UAE Ministry of Energy and Infrastructure
(MoEI) were selected for the analysis. Figure 4 provides the satellite view of the studied
region where red lines are the roads that are part of the MoEI network. Other roads
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which are not part of the MoEI network are shown in yellow lines. Thus, data from roads
represented by red lines were collected for this study. The dataset considered in this study
can be broadly divided into road data, traffic data and environmental data.

Figure 4. Selected road networks (red lines) for study.

3.1.1. Road Data

The dataset contained values for cracking, deflection, IRI and rutting. The following
devices were used by MoEI to measure these road distress parameters.

• Cracking-Laser Crack Measurement System (LCMS);
• Deflection-Falling Weight Deflectometer (FWD);
• IRI-Laser profilometer;
• Rutting-Laser Rutting Measurement System.

Table 1 shows that these values were not observed uniformly along the entire length
of the road. For example, cracking was measured every 10 m and deflection every 100 m
(approximately). Although cracking, IRI and rutting were measured every 10 m, the
sections considered for measurement were different for these parameters.
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Table 1. Details of distress parameters.

Distress Factor Unit Measuring Interval in Meters Minimum Value Maximum Value

Cracking Percentage (%) 10 0.00 99.87

Deflection mm/100 100 0.00 374.00

IRI m/km 10 0.00 52.99

Rutting Mm 10 0.00 52.65

3.1.2. Traffic Data

Traffic data for the selected road networks were collected from the Road Department.
The components of the traffic data were light and heavy vehicle traffic counts and the
direction of traffic flow.

3.1.3. Environment Data

The environmental conditions of each road corresponding to its location and date of
measurement were collected from weather records available online. The components of the
environmental data include temperature (◦C), humidity (%) and air pressure (mbar).

3.2. Pre-Processing of the Data
3.2.1. Road Distress Measurement Intervals

The measurement intervals of the individual parameters were different, as shown in
Table 1. Therefore, the first task in the pre-processing was to apply different spreadsheet
formulas to obtain uniform measurement intervals and intercepts for the parameters. The
distress values corresponding to the starting point of the road network to the endpoint
were listed in a continuous format of 10 m. Consequently, the road networks in the study
were divided into a total of 132,999 road sections, each of 10 m length. An illustration of
the pre-processing procedure can be found in Table 2.

Table 2. An example of a pre-processing procedure.

Before Pre-Processing After Pre-Processing

Initial Distance Final Distance Initial Distance Final Distance

651 672 660 670

3.2.2. Assumption of Maintenance Treatment Types

No information was available on the frequency of maintenance carried out. However,
the type of maintenance was known from the discussions with the officials at the Road
Department. In the road survey, the type of maintenance is divided into major maintenance,
surface maintenance and partial maintenance. If all the distress values for a road section
are corrected, it means that the section in question has undergone major treatment. In the
case of surface treatment, maintenance measures for cracking, IRI and rutting are carried
out and the deflection of the section is not maintained. Partial treatment, however, involves
correction of IRI, ruts and shallow cracks, while deep cracks and deflection remain. The
maintenance types are shown in Figure 5.

The type of maintenance (major, surface and partial) was decided for each road section
by comparing the values of distress parameters in the present year with the values in the
previous year. Subsequently, in addition to the road sections which have undergone the
above-mentioned treatment types, there were road sections which were not maintained
at all and road sections with maintenance status as “unknown”, due to non-availability
of distress data in the consecutive years. Hence, filtering out the road sections which
were not maintained and with “unknown” status for maintenance resulted in a dataset of
3272 road sections.
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Figure 5. Types of maintenance treatment.

3.2.3. Assumption of the Age of the Road Section

The Road Department indicated the year in which the roads were paved. Therefore,
the age could be easily calculated based on the year of construction. However, it is known
that the life span increases when a road section is maintained [21]. The Road Department
in UAE adopts several initiatives to improve the quality of infrastructure, and the road
networks generally undergo major treatments to improve the road conditions and to attain
well-maintained roads. Due to this fact, this study assumes a maintained road section
equivalent to a newly constructed road. Therefore, the age of the road was calculated
from the time of maintenance. In addition, the road name, road type and location were
also recorded.

3.2.4. Prepared Data for Analysis

After filtering the data, the final dataset for analysis comprised 3272 data points. Each
data point represents a road segment of 10 m in length. A data point from the database
prepared for analysis is shown in Table 3.

Table 3. An example of a data point in the dataset.

Road Data Distress Parameters Environment Factors Traffic Factors
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3.3. Development of BBN Model

The proposed methodology is primarily based on the principles of BBN and algo-
rithms from artificial intelligence (AI). In this research, Bayesian network structures are
modelled by machine learning of the data, making probabilistic inferences considering the
collected evidence, which reduces the associated uncertainty. It is used to gain a deep un-
derstanding of complex problems and to draw conclusions and to predict the consequences
of different scenarios.
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Bayesian networks are directed acyclic graphs. Events are represented as nodes, a
series of arrows connect the nodes, and conditional probability distribution tables repre-
sent the probabilistic relationships between the nodes. Bayesian networks have various
applications in modelling uncertainty with causal and probabilistic relationships. Uncer-
tainty arises primarily from incomplete observations, noisy information, and incomplete
knowledge, which are common in real-life data collection. Bayesian networks are based on
Bayes’ theorem, which is represented by Equation (1).

P(H|D) =
P(H)P(D|H)

P(D)
(1)

where P(H|D) is the conditional probability of the event H given the event D, and P(D)
and P(H) are the probabilities of events D and H correspondingly [22].

In Bayesian statistics, the uncertainty associated with a parameter is first quantified by
a probability distribution known as the prior distribution P(θ), which represents the total
prior knowledge. Further, the newly collected evidence is represented by the likelihood
P(Y|θ). According to Bayes’ theorem, the conditional distribution P(θ|Y) is calculated as
in Equation (2).

P(θ|Y) = P(θ)P(Y|θ)
P(Y)

(2)

where P(Y) is the marginal distribution of Y and is a normalizing constant. Thus,

P(θ|Y)∞ P(θ)P(Y|θ) (3)

This is called posterior distribution. It summarizes the knowledge θ we have after
observing data Y. Thus, the posterior distribution is proportional to the likelihood and the
prior distribution. Bayesian causal inferences are made based on the posterior distribution,
which contains all possible information concerning θ [23]. Compared to a frequentist
approach, the Bayesian approach can not only capture prior knowledge in addition to the
available data to make decisions, but can also deal with missing data, datasets with outliers,
and non-linear relationships, as well as present probabilistic results in a visual way that is
easy to interpret [24].

Missing values are inevitable in real-world data collection, especially when contin-
uously recording the values of parameters. Missing values can be divided into three
categories: missing completely at random (MCAR), missing at random (MAR) and not
missing at random (NMAR). The approaches to deal with these data can in turn be divided
into inference restricted to complete data, imputation-based approaches and likelihood-
based approaches [25]. Bayesian networks can handle the different approaches mentioned,
and the appropriate approach is chosen depending on the type of data. Categorical, contin-
uous, and discrete variables can be included, with continuous variables being discretized
using the appropriate discretization methods. Discretization aims to find a set of thresholds
that can be used to divide the data into finite intervals. BBN adopts several univariate,
bivariate and multivariate algorithms for discretizing continuous variables [26].

3.3.1. Supervised and Unsupervised Bayesian Learning

The most important ML algorithms in Bayesian networks are supervised learning and
unsupervised learning algorithms. Supervised ML algorithms are used when a “target
node” (final output) is available. It is highly recommended to analyse the impact of each
factor involved in the study on the target. Unsupervised ML algorithms, however, are used
when there is no “target node”, and it is recommended to analyse all direct probabilistic
relationships between factors [27]. Different Bayesian networks obtained against different
ML algorithms are further analysed to select the best Bayesian network structure for making
probabilistic inferences.

The minimum description length (MDL) score is used to select the optimal Bayesian
network model. The MDL score is a combination of the complexity of the structure and
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the information obtained from the structure. According to the principles of the MDL score,
any dataset can be learned with a model determined by the degree to which the model can
compress the data. Here, the model and the data are considered as codes, and the code
length represents the generalization ability of the model. The model with the shortest MDL
score is the best [28]. The MDL score is given by Equation (4).

MDL = L(Data|Model) + L (Model) (4)

where, L(Data|Model) is the description length of the data given the model, and L(Model)
is the description length of the model. The framework proposed in this study for devel-
oping a BBN model to estimate the correlation between pavement deterioration factors is
presented below.

3.3.2. Proposed BBN Framework

The framework presented in this study evaluates the use of BBN techniques in mod-
elling road data to help highway authorities make wise decisions. The design of the
framework was carried out using BayesiaLab 10.2, a software tool based on BBN that is par-
ticularly suitable for realizing causal relationships between the variables under study [29].
The framework mainly comprises three phases: the data cleaning and pre-processing phase,
the Bayesian model building phase and the probabilistic inference phase. The first phase is
the most important, as the whole analysis is carried out on the processed data obtained
from this phase. The collected data should undergo appropriate pre-processing before
being fed into the ML tool. In the data cleaning and pre-processing phase, the variable type,
the techniques for processing missing values and the discretization method are determined.

First, the “type” of data must be mentioned. Most of the variables used in this study
are continuous, except for road type, maintenance type and direction of traffic flow. The
continuous variables are further discretized using different algorithms (univariate, bivariate
and multivariate) and intervals. The different discretization algorithms considered in this
study are Tree, Perturbed Tree, Supervised Multivariate, R2-GenOpt*, R2-GenOpt, K-Means,
Density Approximation, Normalized Equal Distance, Equal Distance, Equal Frequency and
Unsupervised Multivariate. The missing data, either MCAR, MAR or MNAR, are treated
either with the filter method, static imputation, or dynamic imputation. The framework
used in this study is shown in Figure 6.

The second stage involves Bayesian analysis, where ML algorithms are applied to
the imported data based on the requirements of the decision makers to build the Bayesian
model. Then, supervised and unsupervised ML algorithms are applied to define the
causal relationships between road distress parameters, traffic factors and environmental
conditions. The types of supervised algorithms considered in this study include Naïve
Bayes, Augmented Naïve Bayes, Tree Augmented Naïve Bayes, Sons & Spouses, Markov
Blanket, Tree Augmented Markov Blanket, and Minimal Augmented Markov Blanket. The
unsupervised learning algorithms used to determine the probabilistic relationships between
the variables under study are Maximum spanning Tree, Taboo, EQ, SopLEQ and Taboo
order. In this stage, several optimization attempts are made to obtain the best possible
network structure, which is determined based on the MDL score.

Finally, the last stage contributes to the probabilistic inference phase, where the results
obtained from the analysis are used to generate a Bayesian inference for optimal decision
making. The optimal model thus developed is used to test different scenarios related
to road management. Depending on the framework conditions, the Bayesian inferences
obtained are then used to prioritize maintenance measures. In this way, a tailor-made model
is available based on the road conditions specified by the operator. The term “tailor-made”
is used here to indicate that the thresholds accepted by countries and/or authorities may
be different, which influences the decision on determining the critical road sections.



Buildings 2022, 12, 1039 10 of 22

Figure 6. The framework of the proposed BBN model.

3.4. Analysis of BBN Structure
3.4.1. Bayesian Correlation Analysis

The BBN model represents causal relationships between nodes. This is primarily
estimated by the arc force, which measures the strength of the relationships between
the nodes. The Kullback–Leibler divergence (relative entropy) of the two probability
distributions is measured to estimate the similarity between the two probability distribution
functions. Let p and q be the joint probability distributions of a discrete random variable x,
and their Kullback–Leibler divergence (DKL) is shown in Equation (5) [30]. Furthermore,
mutual information, which is a measure of the dependence or information between two
variables, is closely related to the entropy of a variable. The mutual information I(x,y)
between x and y corresponds to the Kullback–Leibler divergence as shown in Equation (6).
The estimate of the Pearson correlation coefficient indicates the strength and correlation
between two variables. The Pearson correlation coefficient plays an important role in
the statistical analysis of the relationship between two variables and ranges from −1 to 1.
The equation of the Pearson correlation coefficient r for a sample size of n is given in
Equation (7).

DKL (p || q) =
∫ +∞

−∞
p(x) log

p(x)
q(x)

dx (5)

I(x, y) = DKL (p(x, y) || p(x)p(y)) (6)

r =
n(∑ xy)− (∑ x)(∑ y)

√
[n ∑ x2 − (∑ x)2][n ∑ y2 − (∑ y)2]

(7)

3.4.2. Optimum Model Selection

The final Bayesian structure is confirmed by measuring the “entropy” of the model.
Entropy (H) is the measure of the “uncertainty” inherent in the possible states of the event.
For example, if the possible outcomes of an event X are x1, x2, ... , xn and the corresponding
probabilities for the occurrence of each outcome are P(x1), P(x2), ... , P(xn), then the entropy
is as in Equation (8). The value of entropy depends on the number of possible states of
the event [31]. The maximum value of entropy increases logarithmically with the number



Buildings 2022, 12, 1039 11 of 22

of states of the event. The maximum entropy is expressed in Equation (9). In this study,
a BBN model is developed with nodes (road deterioration factors) that have different
numbers of states. Therefore, a normalized measure of entropy is used to represent the
data. Normalized entropy (HN) represents a normalized measure of the uncertainty of an
event, independent of the number of states associated with the event [32]. It is the entropy
ratio to the maximum entropy as shown in Equation (10).

H(X) = −∑n
i=1 P(xi) log2 P(xi) (8)

Hmax(X) = log2(n) (9)

HN (X) =
H(X)

Hmax(X)
= −∑n

i=1
P(xi) log2 P(xi)

log2(n)
(10)

The reliability of the model is compared using the values of entropy and other statisti-
cal measures such as the contingency table fit and the Person’s correlation coefficient. The
contingency table represents the frequency distribution of the variables in a matrix format.
Contingency tables are widely used in various research fields to represent the correlation
between variables. Contingency is measured by various statistical tests, including the
G-test, Pearson’s Chi-square test, etc. The value of contingency implies the dependence
between variables [33].

4. Results

This section presents the results of the correlation analysis, interprets the results, and
draws Bayesian conclusions.

4.1. Correlation Analysis among Road Distress Parameters

By estimating the relationships between the road distress parameters, it may be
possible to prioritize areas that need urgent attention and optimize the effort of data
collection. This approach will reduce the huge sums of money highway authorities spend
on monitoring roads. If you are certain that a specific parameter may occur in a road section,
you no longer need to monitor that parameter. Furthermore, the relationships between
road distress parameters can be used to estimate the value of another related parameter
without actual measurement.

Learning algorithm: The nodes representing the road distress parameters are included
in this analysis. Unsupervised learning algorithms are used here, as each parameter is
given the same importance at the beginning. Different unsupervised learning algorithms
are applied until a network structure with the best performance is reached. After several
learning cycles, the lowest MDL score was obtained for the algorithms Unsupervised
Learning-EQ, Discretization-R2 GenOpt* for interval 3 and Missing Value Processing-
Dynamic Imputation. The Bayesian structure is shown in Figure 7. To illustrate the choice
of the optimal model based on the MDL, Table 4 lists the MDL scores for different ML
algorithms under the R2 GenOpt* discretization method for discretization intervals 3 and
4 with Missing Value Processing-Dynamic Imputation. As mentioned in Section 3.3.2,
different discretization options are also tested to obtain the final model. The algorithm with
the lowest MDL value is highlighted.

This Bayesian model presented here shows that about 94% of the road sections have a
crack value close to 0, which means that the roads in the UAE are well maintained or that
the road sections considered in this study have been recently inspected for cracks.
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Figure 7. Bayesian network structure.

Table 4. An example of selecting the optimum Bayesian model.

Machine Learning Algorithm Discretization
Algorithm

Discretization
Interval

Missing Value
Processing Method MDL Score

Maximum Spanning Tree R2 GenOpt* 3 Dynamic Imputation 20,547.234

Taboo R2 GenOpt* 3 Dynamic Imputation 20,493.881
EQ R2 GenOpt* 3 Dynamic Imputation 18,311.781

TabooEQ R2 GenOpt* 3 Dynamic Imputation 20,493.881

SopLEQ R2 GenOpt* 3 Dynamic Imputation 20,493.881

Taboo Order R2 GenOpt* 3 Dynamic Imputation 20,493.881

Maximum Spanning Tree R2 GenOpt* 4 Dynamic Imputation 24,668.868

Taboo R2 GenOpt* 4 Dynamic Imputation 24,615.515

EQ R2 GenOpt* 4 Dynamic Imputation 22,9140.438

TabooEQ R2 GenOpt* 4 Dynamic Imputation 24,615.515

SopLEQ R2 GenOpt* 4 Dynamic Imputation 24,615.515

Taboo Order R2 GenOpt* 4 Dynamic Imputation 24,615.515

Validation: The model was further validated to obtain the entropy and contingency
table fit (CTF). The values obtained for the network created are given below:

• Entropy (H) = 3.7651;
• Normalized entropy (Hn) = 59.3873%;
• Hn(Complete) = 58.8520%;
• Hn(Unconnected) = 63.2849%;
• Contingency table fit = 87.9245%.

Here, we have obtained three values for normalized entropy: Hn, Hn(Complete)
and Hn(Unconnected). Hn(Complete) is the normalized entropy of the model in which
all variables are connected. Hn(Complete) thus corresponds to the normalized entropy
value of the best possible representation of the model. In contrast, Hn(Unconnected) is the
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value of the model in which all variables are independent and there are no correlations.
Hn(Unconnected) thus corresponds to the normalized entropy value of the worst possible
representation of the model. Here, the normalized entropy (Hn) of the model obtained
is closer to the value of Hn(Complete). Therefore, the model developed in this study can
be considered a good representation of the pavement deterioration factors. Moreover, a
higher CTF (above 87% in this case) also favours the excellent representation of the joint
probability distribution. Normally, the network needs to be restructured or relearned when
the CTF falls below 70% [34].

Bayesian causal inference: The Bayesian network structure (see Figure 7) has revealed
several relationships between road distress parameters. Estimating the overall contribution
(significance of the relationship concerning other identified relationships), KL divergence,
mutual information and Pearson correlation helps in identifying the level of influence
of the relationships. Table 5 thus shows how knowledge of one parameter can reduce
the uncertainty of the other parameters. In this structure, the KL divergence and mutual
information are the same for all relationships because the child nodes have a single parent.

Table 5. Relationship analysis among road distress parameters.

Parent Child KL
Divergence

Overall
Contribution

Mutual
Information

Pearson’s
Correlation

International Roughness Index Rutting 0.1470 49.2141% 0.1470 0.4249

International Roughness Index Deflection 0.1429 47.8553% 0.1429 0.4218

International Roughness Index Cracking 0.0088 2.9306% 0.0088 0.1025

Hence, it is clear that the IRI is related to ruts, deflection and cracks, with a higher
correlation with ruts and deflection. In other words, in this situation, observing the IRI can
provide important information about ruts and deflection without actually measuring them
and vice versa. As mentioned earlier, this type of inference can significantly reduce the cost
of retrofitting and data collection. Based on the values obtained in Table 5, the importance
of each parameter in reducing the uncertainty associated with other parameters involved
is estimated using the nodal force. The nodal force is derived from the arc force, which is
equal to the KL divergence. The sum of the arc forces in the outgoing and incoming arcs is
called the outgoing force and incoming force and gives the total force, as shown in Table 6.

Table 6. Ranking of distress parameters based on Node force.

Node Outgoing Force Incoming Force Total Force

International Roughness Index 0.2986 0.0000 0.2986

Rutting 0.0000 0.1470 0.1470

Deflection 0.0000 0.1429 0.1429

Cracking 0.0000 0.0088 0.0088

For the road sections considered in this study, the ranking of distress parameters
based on nodal strength suggests that knowledge of IRI relative to other variables is
important in understanding the overall condition of the road and that it is, therefore,
beneficial to prioritize IRI in data collection to optimize data collection efforts. In contrast,
the observation of cracks is not recommended, as it provides the least information about
the overall condition of the road. The IRI correlates more strongly with rutting and
deflection than with cracking. In addition, monitoring the IRI can provide evidence for
other parameters. It can also be inferred that a low IRI value indicates lower overall stress
on the road.

Figure 8 illustrates the combination of the prior distribution and observed data to
attain posterior distribution for decision making.
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Figure 8. Posterior probability distribution based on likelihood and prior distribution.

As can be seen in Figure 8, the probability distribution associated with road distress
parameters changes when new evidence (observed data) is available. Further conclusions
are drawn based on the updated probability distributions (i.e., posterior distribution).
It can be observed that the probability of occurrence of 100% for the class <=1.359, the
probability of rutting for class <=2.271 increases from 64.52% to 82.52%, the probability of
deflection for class <=52.8 increases from 66.31% to 83.29% and the probability of cracking
for class <=0.765 slightly increases from 94.25% to 96.33% when the evidence is based on the
availability of data. This again illustrates the correlation between the distress parameters
described above.

4.2. Correlation between Road Distress Parameters and External Factors

This analysis aims to understand the behaviour of road distress parameters under the
influence of dependent factors, including road factors, traffic factors and environmental
factors. This allows one to know the deterioration rate of the road section based on various
external conditions to plan repair schedules.

Learning algorithm: All data collected in relation to this study are included in this
analysis. Various unsupervised learning algorithms are applied until a network with the
best performance is obtained. Taboo learning, discretisation-R2 GenOpt* for interval 3 and
processing of missing values via Dynamic imputation resulted in the network with the
lowest MDL score.

Validation: The structure was further validated to obtain the entropy and contingency
table fit (CTF). The values obtained for the network created are shown below:

• Entropy (H) = 8.0357;
• Normalized entropy (Hn) = 33.8716%;
• Hn(Complete) = 30.3863%;
• Hn(Unconnected) = 65.4378%;
• Contingency table adjustment = 90.0567%.

The BBN structure showing the correlations between various road distress parameters,
road factors, traffic factors and environmental factors is shown in Figure 9.
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Bayesian causal inference: This Bayesian structure illustrates that knowledge/observation
of the interrelated factors (road, traffic and climatic factors) reduces the uncertainty as-
sociated with the road distress parameters. A data point from the dataset is randomly
selected to test the model and to verify the efficiency of the BBN approach in managing
road pavements. Table 7 lists the characteristics of the selected data point.

Figure 9. Bayesian network for road distress parameters, road factors, traffic factors and environmen-
tal factors.

Table 7. Datapoint selected for testing.

Features Values

Road type Arterial

Direction of traffic Forward

Temperature 26

Humidity 49

Atm. Pressure 1019

Traffic count (light vehicle) 4,203,429

Traffic count (heavy vehicle) 487,421

Maintenance type Partial

Age from last maintenance 1

Road E11

Initial distance 8540

Final distance 8550
Cracking 0
Deflection 51
International Roughness Index 1.016
Rutting 1.75375
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The features are entered into the BBN model, and the corresponding values of the
distress parameters are observed in Figure 10.

Buildings 2022, 12, x FOR PEER REVIEW 17 of 23 
 

Initial distance 8540 

Final distance 8550 

Cracking 0 

Deflection 51 

International Roughness Index 1.016 

Rutting 1.75375 

The features are entered into the BBN model, and the corresponding values of the 

distress parameters are observed in Figure 10. 

 

Figure 10. Testing of the BBN model. 

The BBN model shows the probability distribution corresponding to each of the dis-

tress parameters. Table 8 compares the actual value and the Bayesian value for the test 

components. 

Table 8. Actual value and Bayesian value for the test datapoint 

Variable Actual Value Bayesian Inference Probability of Occurrence 

Cracking 0 <=0.765 98.29% 

Deflection 51 <=52.8 96.10% 

International Roughness Index 1.016 <=1.359 81.49% 

Rutting 1.75375 <=2.271 86.60% 

This indicates that the proposed approach has a high probability of producing posi-

tive results. The value of each distress parameter was estimated at a probability of over 

80%. Moreover, the model was tested in a scenario where there was no knowledge of the 

distress parameters, and only the data related to the explanatory factors were available. 

Similarly, the model can be applied to different scenarios based on the available 

knowledge. The strength of the approach in reducing uncertainty in unobserved variables 

is thus clearly defined in the case study. 

  

Road type
Value: 0.000 

100.00% Arterial
0.00% Collector
0.00% Expressway
0.00% Freeway

Direction of traffic
Value: 1.000 

0.00% Backward
100.00% Forward

Temperature
Mean: 24.447 Dev: 0.998
Value: 24.447 

100.00% <=26
0.00% <=36
0.00% >36

Humidity
Mean: 47.999 Dev: 1.243
Value: 47.999 

0.00% <=41
100.00% <=52

0.00% >52

Atm. Pressure
Mean: 1018.764 Dev: 1.115
Value: 1018.764 

0.00% <=1001
100.00% >1001

Traffic count (light vehicle)
Mean: 4112217.880 Dev: 233985.082
Value: 4112217.880 

0.00% <=2194950
0.00% <=3592445

100.00% >3592445

Traffic count (heavy vehicle)
Mean: 460594.439 Dev: 43860.943
Value: 460594.439 

0.00% <=252150
100.00% <=539114

0.00% >539114

Maintenance type
Value: 1.000 

0.00% Major
100.00% Partial

0.00% Surface

Age of road section
Mean: 1.000 Dev: 0.000
Value: 1.000 (-2.500) 

100.00% 1
0.00% 2
0.00% 3
0.00% 4
0.00% 5
0.00% 6

Road
Value: 0.000 

100.00% E11- RAK to…
0.00% E611_1 - OB…
0.00% E84 - Maliha …
0.00% E87 - Tawy…
0.00% E88_1 - Sha…
0.00% E88_2 - Dhai…
0.00% E89_1 - Dibb…
0.00% E99_1 - Kho…
0.00% E99_2 - Fuja…
0.00% E99_3 - Om…
0.00% Siji link

Initial Distance
Mean: 11735.229 Dev: 5792.703
Value: 11735.229 

100.00% <=21090
0.00% <=37540
0.00% >37540

Final  Distance
Mean: 11745.229 Dev: 5792.703
Value: 11745.229 

100.00% <=21100
0.00% <=37550
0.00% >37550

Cracking
Mean: 0.036 Dev: 0.353
Value: 0.036 

98.29% <=0.765
1.59% <=5.427
0.12% >5.427

Deflection
Mean: 36.950 Dev: 13.319
Value: 36.950 

96.10% <=52.8
3.90% <=121.5
0.00% >121.5

International Roughness Index
Mean: 1.091 Dev: 0.573
Value: 1.091 

81.49% <=1.359
17.71% <=2.705
0.80% >2.705

Rutting
Mean: 1.702 Dev: 0.761
Value: 1.702 

86.60% <=2.271
13.40% <=4.933
0.00% >4.933

Figure 10. Testing of the BBN model.

The BBN model shows the probability distribution corresponding to each of the
distress parameters. Table 8 compares the actual value and the Bayesian value for the
test components.

Table 8. Actual value and Bayesian value for the test datapoint.

Variable Actual Value Bayesian Inference Probability of Occurrence

Cracking 0 <=0.765 98.29%

Deflection 51 <=52.8 96.10%

International Roughness Index 1.016 <=1.359 81.49%

Rutting 1.75375 <=2.271 86.60%

This indicates that the proposed approach has a high probability of producing positive
results. The value of each distress parameter was estimated at a probability of over 80%.
Moreover, the model was tested in a scenario where there was no knowledge of the distress
parameters, and only the data related to the explanatory factors were available. Similarly,
the model can be applied to different scenarios based on the available knowledge. The
strength of the approach in reducing uncertainty in unobserved variables is thus clearly
defined in the case study.

4.3. Correlation between Road Type and Road Distress Parameters: Sensitivity Analysis

A sensitivity analysis was conducted to examine which distress parameter had the
greatest impact on each road type. The widely used method for conducting a sensitivity
analysis is to vary the probability distribution of each input factor and to observe the
associated change in the target variable [19]. Here, the distress parameter is the input factor,
and road type is the target variable. This approach was followed in this study to examine
the variations in road type for two cases for each distress parameter.
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• Case 1: The probability of the distress parameter is set high, e.g., P(IRI > 2.705) = 100%,
while the probability of the other three parameters is not changed (no evidence). This
case is shown in Table 9 as IRI = high.

Table 9. Sensitivity analysis.

States (Road
Types)

IRI Rutting Deflection Cracking

Low High Low High Low High Low High

Arterial 56.9683% 76.5180% 72.5815% 82.6908% 70.8836% 91.7979% 70.1623% 66.6197%

Collector 3.2154% 4.4249% 1.4362% 4.9982% 1.6350% 1.6369% 2.8507% 10.0693%

Expressway 4.7211% 3.5550% 1.9244% 1.5604% 11.1251% 0.0000% 7.3121% 8.6105%

Freeway 35.0952% 15.5021% 24.0580% 10.7505% 16.3563% 6.5651% 19.6748% 14.7006%

• Case 2: The probability of the distress parameter is set to a lower value. For example:
P(IRI <= 1.359) = 100%, while the probability of the other three parameters is not
changed (no evidence). This case is shown in Table 9 as IRI = low. Figure 11 represents
the scenarios for IRI.
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Figure 11. Scenarios tested for IRI: (a) case 1; (b) case 2.

The road type is more sensitive to a particular distress parameter if the difference
between the two cases is more significant than for the other three parameters. For ex-
ample, P(arterial) increased from 56.9683% to 76.518% when the IRI was changed from
“low” to “high”, which contributed to a 19.55% difference in the probability of arterial
state with respect to IRI. Table 9 summarizes the results of the sensitivity analysis for
four distress parameters.

Findings from this analysis:

• For arterial roads, deflection and IRI are the prominent distresses with a difference of
20.91% and 19.55%, respectively.

• For collector roads, cracking is the most important with a difference of 7.22%.
• For expressways, deflection is the most important with a difference of 11.13%.
• For freeways, IRI is particularly pronounced with a difference of 19.59%.

The results of this analysis suggest that deflection and IRI should take priority over
other parameters when inspecting arterial roads. Knowing the main distress parameter for
each type of road can save time and effort in data collection.

5. Discussion and Future Scope

In this study, Bayesian Belief Networks (BBN) are used to develop inferences for
pavement management. Bayesian models effectively captured the historical data of roads
with missing values to estimate (1) the interrelationship between the distress parameters,
(2) the behaviour of the distress parameters concerning traffic and environmental conditions,
and (3) the road distresses prominent on different road types. Mutual information is a
central concept in learning and analysing the relationships between two variables and
therefore has paramount importance in prioritizing and optimizing activities. It is a measure



Buildings 2022, 12, 1039 18 of 22

that indicates the amount of information gained by observing another variable. In this
study, mutual information is emphasized as the basis for optimizing data collection.

The correlation analysis between road distress parameters showed that the highest
mutual information is between IRI and rutting (see Table 5), indicating that IRI and rutting
are strongly related, as shown in previous studies [33,34]. However, the mutual information
between IRI and cracking is the lowest, suggesting that knowledge of IRI conveys less
knowledge of cracking, and therefore, they are less interdependent. A regression analysis
conducted on road networks in Saudi Arabia found that IRI is more strongly related to
cracking than to rutting [8]. A similar trend was observed for rural roads in India where
cracking and potholes attained higher correlation coefficients compared to other distress
parameters [35]. This shows that the behaviour of the distress parameters varies depending
on the road section, location and other factors. In Table 6, cracking and deflection have a
lower nodal force, which means that these two parameters contribute less to the overall
deterioration of the road network. The lower influence of cracking could be due to the
well-maintained road network in the UAE. Another possible reason could be that the road
sections investigated in this study might have been recently repaired for cracking [36]. In
addition, if loads are distributed equally over an area, the deflection will be distributed
evenly and consequently, and deflection could become less prominent. This could be a
possible case in this study; however, it needs further investigation. The correlations identi-
fied in this study are expressed as probability distributions that represent the weightage
of each relationship, considering various uncertainties arising from missing and complex
data. This leads to better pavement management decisions.

Effective pavement management to improve the service life of the pavements is not
possible unless the contributions made by external factors in pavement performance are
becoming known [37]. This study examined the influence of various factors on the oc-
currence of road distresses. The results indicated that variations in the road and traffic
and environmental factors influence the pavement performance as found in previous
studies [38]. Increased traffic load and hot weather result in rutting even on newly con-
structed roads [39,40]. Another study which focused on various climatic conditions on
the performance of pavement found that pavement performance is highly sensitive to
temperature and less sensitive to humidity and precipitation [41]. The environmental data
used in this study were collected based on the date of measurement of the road distress
parameter from the road sections. The region under study does not have much climatic
variation throughout the year. Hence, the influence of environment is not completely
captured in this study. The impact of climatic variations will be more prominent for regions
experiencing differences in climatic conditions throughout the year. Minhoto et al. [42]
compared the road costs of overloaded vehicles and identical vehicles with legal loads. For
overloaded vehicles, pavement costs increased by more than 100%. Although the present
study agrees with the previous studies in confirming the influence of external factors on
the pavement deterioration process, the conclusions obtained in both cases are based upon
particular datasets. However, the application of Bayesian analysis in this study helps to
incorporate expert knowledge on unknown factors, thus extending the applicability of
the results. For example, ruts are the longitudinal depressions created in the roadway by
heavy axle loads. When ruts increase, there is a possibility that water will accumulate in
the depressions when it rains, leading to the formation of potholes and making it difficult
to steer, which in turn affects road safety [43]. This type of knowledge (such as possibility
of occurrence of an event) can be captured in the Bayesian model, leading to more realistic
road network management.

In addition, this study has investigated the distress parameters that occur with different
types of roads. Although previous studies have focused intensively on the influence of
structural, traffic and environmental factors on pavement deterioration, less attention has
been paid to variation according to road type. The results suggest that the effort and time
required to monitor roads can be optimized if the road distress parameter prominent on
each type of road is known. Bayesian belief networks are advantageous over other methods
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when dealing with complex data, as they facilitate the interpretation of results, offer better
computational efficiency and provide more practical results [24].

The proposed approach has proven that it can effectively reduce the uncertainty of
the road deterioration factors with the existing knowledge. However, the approach itself
has many drawbacks. Bayesian networks discretize the continuous variables because their
ability to deal with continuous values is limited. Moreover, finding the best discretization
algorithm is a tedious task. Table 8 shows the importance of discretization intervals to
obtain more complete results. For example, the actual value of the crack is 0, and Bayesian
inference corresponds to a value <=0.765. This value (interval) is determined based on the
chosen discretization interval, which in this case is 3. Tighter values can be obtained by
choosing a different interval. However, the most suitable discretization algorithm and the
criteria for choosing the interval are still being developed. Incorporating expert knowledge
in the form of probability distributions is another challenge. Various efforts are being made
to address these issues [44]. Inferences are made based on the posterior distribution, which
is the result of the prior distribution (prior knowledge) and likelihood (collected data). For
mathematical and computational reasons, the choice of the prior distribution should be
made carefully, as it affects the posterior distribution and ultimately the decisions made.
Furthermore, the prior distribution should be chosen to be a conjugate prior distribution
for the likelihood function [45].

In this study, the prior distribution is based on road data collected over six years, which
is a large dataset. For small datasets, the results may not be reliable. Although advanced
BN software packages are available, research and development in this area are still ongoing,
and various concepts are still being investigated [24]. Despite these limitations, it is evident
that the BBN approach will help in optimizing road budgets. Data on road monitoring costs
and other maintenance strategies should be considered in future studies to fully understand
the relevance of this approach.

6. Conclusions

This study investigated the relationships between different factors contributing to
pavement deterioration using Bayesian belief networks. The relationships between signif-
icant parameters of pavement deterioration, namely cracking, International Roughness
Index, deflection, and rutting, were shown. The behaviour of the road distress parameters
under the influence of other damage parameters, various road factors, traffic factors and
environmental factors was shown. Furthermore, road distresses prominent on different
road types were quantified through sensitivity analyses. The major conclusions of the study
are summarized hereafter:

• Correlation analysis among road distress parameters revealed that IRI is strongly corre-
lated with rutting and deflection, and it has a less significant correlation with cracking.
IRI was found to be the central factor to represent overall pavement condition, which
could be used as an indicator of the presence of rutting and deflection that generally
progress at similar rates within the analysed UAE dataset. Further studies are needed
to verify whether a similar trend is also generalizable for different countries

• The Bayesian analysis of road distress parameters and external factors unveiled the
role of external factors in the development of road distress parameters. The BBN
model developed in this paper indicated that the knowledge of external factors such as
traffic, environment and road characteristics are capable to probabilistically estimating
the values of road distress parameters at a higher accuracy without actually measuring
them in the field.

• Sensitivity analyses revealed that the road distresses are sensitive to each road type
(i.e., arterial, expressway, freeway and collector). Deflection and IRI were found to be
prominent in arterial roads. Cracking was prominent in collector roads, deflection in
expressways and IRI in freeways.

• Practically, these results provide the basis for optimizing road assessment data col-
lection efforts and finding a compromise when it is not possible to obtain data about



Buildings 2022, 12, 1039 20 of 22

all distress factors. Since pavement deterioration factors are expressed as probability
distributions in the developed Bayesian belief network models, road maintainers
could adopt the proposed BBN approach to approximate the values of unknown road
distress parameters even with the minimum available data.

This study provides an insight into the application of Bayesian belief networks to
optimize efforts for pavement management. The ability of BBN to capture the uncertainties
associated with natural processes such as road deterioration and to incorporate the judge-
ment of experts would lead to efficient pavement management. Prior knowledge of the
behaviour of road distress parameters under the influence of external factors would enable
decision makers to apply economic management strategies in terms of data collection,
monitoring and maintenance. Future research should investigate the application of BBN at
different levels of pavement management. Such analyses would extend the applicability of
BBN to other infrastructure facilities such as bridges, tunnels and other structures, thus
extending its application to nationwide structural health monitoring (SHM) of infrastruc-
tures, where carefully selected data are collected automatically to infer the most needed
information required for maintenance prioritization and optimization.
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