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Abstract: To improve the safety performance of important rooms, such as operating rooms and disaster
command centers, during an earthquake, a novel partial seismic isolation system suitable for new
and existing frame structures is proposed, and the seismic and optimization analysis is carried out.
Using the finite element numerical simulation method, the models of the ordinary frame structure
and the partial isolated system structures were established. Considering the seismic response of the
isolation room, the design safety of the partial isolation room, and the seismic impact on the overall
structure, this study analyzed the damping effect of the partial isolation system. We changed the
type of isolation bearing, the location of the isolation room, and the load to further optimize the
calculation of the seismic isolation structure. The results show that the new partial isolation system
could significantly reduce the seismic response of the isolated room under the action of a magnitude-8
rare earthquake. The damping rate of the relative acceleration and relative displacement between the
top and bottom of the columns of the isolated room could reach 90%. It was found that the partial
seismic isolation system proposed in this paper was applicable to reinforced concrete frame structures
and could significantly reduce the seismic response of the isolated rooms without affecting the seismic
performance of the main building. This partial seismic isolation system is easy to construct, applicable
to both existing and new structures, and provides a new and effective seismic mitigation measure to
improve the seismic performance of locally important rooms in the structure.

Keywords: partial seismic isolation; frame structure; numerical simulation; seismic performance;
isolation bearing

1. Introduction

Ensuring the safety of all equipment and personnel in some rooms with important
functions, such as the operating room, and not affecting the normal use function of the
room an under earthquake, is one of the important fields of seismic research for build-
ing structures. Relevant specialists have presented some novel ideas and initiatives. Tan
et al. [1] presented a partial seismic isolation system for master−servant coupled structures,
in which a seismic isolation layer is only installed in the servant structure and the servant
structure is sacrificed during strong earthquakes to protect the master structure’s safety.
Morales et al. [2] presented a new low-cost seismic protection system that uses recycled
automobile rubber tires to isolate certain rooms or equipment in buildings in order to mini-
mize the dynamic response and to enhance structural and member performance. However,
complex evaluation of the tire’s characteristics is required before the seismic protection
system can be implemented and deployed in critical health care facilities. Losanno et al. [3]
investigated the use of recycled rubber by focusing on modeling aspects [4] and aging ef-
fects [5], and developed a sustainable foundation isolation system based on a new low-cost
isolator. The results show that the device can effectively reduce the structure’s absolute
acceleration and base shear, indicating that this low-cost isolation device has the potential
to reduce earthquake risk in developing countries. Baggio et al. [6] investigated a double
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concave curved surface slider (DCCSS) seismic isolation device for sculptural seismic
protection and evaluated the effectiveness of this isolation system using nonlinear dynamic
analysis. On the contrary, Pellecchia et al. [7,8] proposed the use of elastomeric bearings to
protect art-objects from earthquake-induced vibrations in order to contribute addressing
similar issues in the challenging task of protecting cultural heritage from earthquake dam-
age. Mezghani et al. [9] improved the metallic dampers to offer a higher performance to
protect sensitive equipment under moderately strong or strong earthquakes, then proposed
the wire mesh vibration damper (WMVD) for vibration-sensitive equipment. The results
revealed that the WMVD isolated system can effectively attenuate a seismic response of
more than 85%. Meanwhile, floor isolation systems have been becoming increasingly
popular as a protective measure for nonstructural components. Jia et al. [10] optimized
the floor isolation system based on the reliability criterion to maximize the probability
that the acceleration response of the protected equipment would not exceed the acceptable
performance limit. In addition, global sensitivity analysis based on samples was integrated
to study the importance of different risk factors regarding system failure probability.

Theoretical and experimental research on seismically isolated buildings has received
increased attention in recent years, and related research has become increasingly com-
prehensive [11–17]. To strengthen a medical building, Ye et al. [18] used three seismic
isolation schemes: foundation isolation, additional flexural restraint bracing, and addi-
tional sway walls. They discovered that the seismic isolation scheme could reduce both
the displacement and absolute acceleration responses of the structure, which has obvi-
ous benefits in reducing the economic losses from earthquakes. Murota et al. [19] used
numerical and experimental methods to explore the suitability of high damping rubber
bearings in the seismic isolation of residential buildings in Turkey, evaluating the seismic
response of the buildings and determining the efficacy of the seismic isolation system. Sung
et al. [20] proposed incorporating an elliptical member equipped with a rubber cylinder in
a portal reinforced concrete frame and conducted shaking table tests, which showed that
the proposed strengthening method could not only restore the seismic capacity, but also
improve the seismic resistance of the reinforced concrete frame damaged by the earthquake.
Zheng et al. [21] created a scaled-down model of a four-story frame structure with friction
pendulum support for seismic isolation and conducted shaking table tests, which revealed
that the friction pendulum can significantly reduce inter-floor displacement and floor accel-
eration, as well as provide good seismic isolation. Xu et al. [22] suggested an SMA-based
self-resetting bracket, and the finite element analysis revealed that the bracket with a super
elastic SMA bolted connection has a strong self-resetting capability, and can significantly
reduce the residual deformation of the structure after the seismic response. Yang et al. [23]
constructed a theoretical mechanical model of an oblique rotating three-dimensional seis-
mic isolation device, and conducted static tests and numerical simulation studies on it,
concluding that the bearing can guarantee the bearing capacity with vertical displacement
and can achieve the vertical energy dissipation seismic isolation goal. Isolation systems
mainly rely on energy dissipation mechanisms, usually using the concept of viscous damp-
ing to evaluate these energy dissipation mechanisms. Li et al. [24] studied the equivalent
problem of friction and viscous damping of a spring friction pendulum vibration isolation
system under sine wave ground motion, providing a new method for unifying the concept
of damping and evaluating the amount of damping in structures.

Although both base and floor seismic isolation techniques are established for new
structures [25–30], overall seismic isolation is costly [31] and difficult to apply to existing
structures. For operating rooms and other local functional rooms with special damping
requirements, it is of great significance to reduce the seismic response of local rooms and to
ensure equipment and personnel work sustainably in the room after an earthquake or even
at the epicenter. At present, there is research on partial isolation considering a floor isolation
system [32], but it mainly focuses on the isolation of equipment. This can only ensure the
equipment is intact, but it cannot protect other ancillary components, and cannot guarantee
the continuity and safety of important work such as surgery in earthquakes. Therefore,
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a novel partial seismic isolation structural system based on foundation seismic isolation
is proposed, which could not only play an isolation and damping role for important
equipment, but could also ensure the safety of equipment and non-structural components
of the whole room, so that the functional room can maintain its complete functionality
during and after an earthquake. This isolation system can be used for partial seismic
isolation retrofit of rooms that require key fortification, such as operating rooms and
intensive care units. In order to determine the effectiveness and safety of the proposed
local seismic isolation system, through finite element numerical simulation technology, this
paper systematically analyzes the seismic reduction effect and safety of the new isolation
system, as well as the impact on the overall structural seismic performance. The new system
proposed in the study can not only reduce the seismic response of the local structure, but
through optimization analysis, it can also gradually form a local seismic isolation design
method applicable to different functional objectives. The research results will expand
the ideas of the research on the seismic performance of local structures and will propose
an innovative design method for local structure seismic reduction, which has important
research significance and engineering value.

2. Partial Seismic Isolation System and Numerical Model
2.1. Partial Seismic Isolation System

This study proposes a partial seismic isolation system based on the foundation isola-
tion for both existing and new frame structures, as shown in Figure 1. The partial seismic
isolation system is composed of structural columns, upper and lower ring beams, floor
slabs, and maintenance members, which is connected to the main beam of the frame struc-
ture through an isolation bearing. Furthermore, the isolation joints between two sides and
adjacent columns are 200 mm. The seismic isolation bearing can be set at the position of the
frame structure’s main beam, and the partial seismic isolation system does not come into
contact with the structural frame columns or the original structural floor slab, retaining a
suitable safety distance.
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Figure 1. Novel partial seismic isolation structure diagram.

The partial seismic isolation system achieves a flexible connection in the horizontal di-
rection between the original frame beam and the partial room through the seismic isolation
bearing. The seismic energy transferred to the partial isolation room is significantly reduced
and changes the dynamic characteristics of the room to approximate whole translation
motion, thereby reducing the seismic response of the partial room [33]. This is because
under the action of an earthquake, the bearing consumes energy because of the hysteretic
behavior, so that the energy transmitted to the isolated room is significantly reduced, thus
leaving it in a whole translation motion. As shown in Figure 2, this study analyzes the
performance and effect of the partial seismic isolation system by comparing the seismic
response of the original structure and the partial isolation structure.
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2.2. Numerical Model

In order to reduce the interference of building construction and other factors on the
seismic response of the partial seismic isolation system, the study takes a four-story frame
structure with relatively simple construction as the research object and discusses the seismic
reduction effect of the partial seismic isolation system.

The numerical model was established using finite element analysis software SAP2000,
and the original concrete frame structure model is shown in Figure 3. At the same time, a
frame model using the novel partial seismic isolation system was established, in which the
seismic isolation room was set in the middle of the second floor, and the rest of the structure
was the same as the original structure. The basic layout of the building was as follows: there
were five spans in the X-direction with a span of 6 m and three spans in the Y-direction with
a span of 4 m. The structure had four floors and the height of each floor was 3.6 m. The
cross-sectional dimensions of the columns were 700 mm × 700 mm, the main beam was
arranged in an X-direction with a cross-sectional dimension of 300 mm × 700 mm, and the
secondary beam was arranged in a Y-direction with a cross-sectional dimension of 300 mm
× 600 mm. The concrete compressive strength of the beams and columns was 30 MPa, and
the yield strength of longitudinal ribs and stirrup were 335 MPa and 300 MPa respectively.
The constant load of the floor was 3 kN/m2 and the live load was 2 kN/m2. The seismic
precautionary intensity of the structure was magnitude 8, and the corresponding design
basic acceleration of the ground motion was 0.2 g. The beam−column units in the frame
structure were input according to the corresponding frame section and material properties,
and the beam−column nodes were set as rigid junctions; the floor slab was input using
shell units and by specifying the partition bindings to achieve the assumption of the infinite
in-plane stiffness of the floor slab [34].
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2.3. Selection of Seismic Isolation Bearing

In this project, the partial isolation room was set on the main beam only through the
seismic isolation bearing, and the specific size of the bearing was determined by the reaction
force at the bottom of each column and the bearing surface pressure under gravity load,
assuming that the main beam of the original structure had a sufficient support capacity.
The relevant mechanical properties of the selected seismic isolation bearing are listed in
Table 1.

Table 1. Basic parameters of the lead rubber bearing.

Bearing Type Effective
Diameter (mm)

Total Rubber
Thickness (mm)

Pre-Yield
Stiffness (kN/m)

Equivalent
Stiffness (kN/m)

Vertical Stiffness
(kN/mm)

Yield Force
(kN)

LRB300 300 56 6440 760 1100 16

The nonlinear hysteresis curve of the LRB isolation lead core rubber support could be
simplified to the bilinear model shown in Figure 4 [35]. In Figure 4, the pre-yield stiffness
Kb1, post-yield stiffness Kb2, and equivalent horizontal shear stiffness Keq of the seismic
isolation bearing were calculated as follows.

Kb1 =
Qy

Xy
(1)

Kb2 =

(
Qb − Qy

)(
Xb − Xy

) (2)

Keq =
Qb − Qa

Xb − Xa
(3)

where Xb is the maximum horizontal positive displacement, Xa is the maximum horizontal
negative displacement, Qb is the horizontal shear force corresponding to Xb, and Qa is the
horizontal shear force corresponding to Xa.

2.4. Seismic Waves

Considering the site category, fortification intensity, and seismic wave selection prin-
ciple of the model, the EL-Centro wave, Taft wave, and one artificial wave were selected.
Selecting the appropriate peak ground acceleration (PGA) of seismic waves is a key step in
structural seismic response analysis [36,37]. The seismic waves were taken as the horizontal
bidirectional input, and the X-direction peak acceleration was adjusted to 400 gal (the
magnitude 8 rare earthquake level in Chinses code [38]). The peak acceleration curves
of the input were adjusted according to the ratio of X:Y = 1:0.85 [38], respectively. The
adjusted X-direction acceleration time history of the seismic wave is shown in Figure 5. The
comparison of the seismic response spectrum and standard response spectrum is shown
in Figure 6. The empirical response spectrum of the seismic record is consistent with the
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statistical significance of the normative response spectrum, so the selected seismic wave
time curve met the selection requirements.
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3. Analysis of Seismic Isolation Effect
3.1. Modal Analysis

The modal analysis can qualitatively determine the seismic response of the structure,
which is the basis for other dynamic analyses. The natural periods of the original structure
and the partial isolation structure are detailed in Table 2. Table 3 shows the natural periods
of the isolated room in the partial isolated system.

Table 2. Modal analysis data of the structure.

Mode of
Vibration

Original Structure Isolated Structure

Period (s) UX UY RZ Period (s) UX UY RZ

1 0.413 0.820 0 0 0.413 0.798 0 0
2 0.383 0 0.826 0 0.384 0 0.804 0
3 0.340 0 0 0.830 0.340 0 0 0.825
4 0.124 0.118 0 0 0.133 0 0 0
5 0.117 0 0.116 0 0.132 0 0 0
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Table 3. Modal analysis data of the partial isolation room.

Mode of Vibration Period (s) UX UY RZ

1 0.669 0 0.025 0
2 0.668 0.025 0 0
3 0.486 0 0 0.001

From Table 2, it can be seen that the vibration periods of the isolated structure and
the original structure were almost the same, indicating that the partial isolation system
did not affect the self-oscillation characteristics of the overall structure. UX, UY, and UZ
were the mass participation ratios in the X, Y, and Z directions, respectively, of the vibration
type, and the analysis shows that the first order of the structure was whole translation
motion in the X direction (UX + UY > UZ), the second order was whole translation motion
in the Y direction, and the third order was a torsional vibration type around the Z axis
(UX + UY < UZ). The first three orders of the period of the partial isolation room were
0.669 s, 0.668 s, and 0.486 s, which were significantly larger than the first three orders of the
self-oscillation period of the original structure, namely, 0.413 s, 0.380 s, and 0.340 s. The
self-oscillation period of the partial isolation room was significantly longer, which was
conducive to avoiding the high frequency zone of seismic waves and greatly reducing the
seismic energy transferred to the isolated room, thus improving the safety of the partial
isolation room.

3.2. Dynamic Properties of Seismically Isolated Rooms

The three selected seismic waves were input to each model and the dynamic history
analysis under a magnitude 8 rare earthquake was carried out. It was found that the
X-direction seismic response was larger compared with the Y-direction, so the envelope
value of the X-direction response of the structure under the action of the three seismic
waves was taken as a representative value for the nonlinear time−history analysis. A
reasonable evaluation index, the damping rate (∆), was chosen to assess the damping effect
of each seismic isolation structural model using the following equation:

∆ =
(REPori − REPiso)

REPori
× 100% (4)

where REPori is the seismic response of the original structure and REPiso is the seismic
response of the isolated structure.

Figure 7 gives the relative acceleration and displacement time histories of the partial
isolation room for the two structural systems under magnitude 8 rare earthquakes, i.e., the
relative acceleration and relative displacement between the top and bottom of the columns
of the isolated room. As shown in the figure, the seismic response of the room with a new
partial isolation structural system is significantly smaller than that of the original structure.
The maximum values of the relative acceleration before and after seismic isolation were
4.98 m/s2 and 0.46 m/s2, respectively, and the maximum values of relative displacement
were 19.93 mm and 2.07 mm, respectively, which were calculated from Equation (4). The
seismic isolation system changed the dynamic characteristics of the isolated room through
the seismic isolation bearing. The isolated room showed the whole translation motion, and
its seismic response was effectively reduced.

3.3. Hysteresis Performance of the Vibration Isolation Bearing

The choice of seismic isolation bearing has an important influence on the seismic
isolation effect. Figure 8 shows the hysteresis curve of the seismic isolation bearing. Under
the effect of a magnitude 8 rare earthquake, the maximum horizontal displacement of the
bearing was 53 mm. The bearing compressive stress was 1.27 MPa, which was much less
than the specification requirement. At the same time, the hysteresis ring of the bearing
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was full, indicating that the partial seismic isolation system had a good hysteresis energy
dissipation performance.
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Figure 8. Hysteretic curve of the isolated bearing.

3.4. Safety of Partial Seismic Isolation Systems

During the seismic response of the partial isolation rooms, collisions with the original
structural frame columns should be avoided. Therefore, the study analysed the variation of
the distance between the structural columns of the partial isolation room and the adjacent
frame columns under seismic loading, as a means of determining the safety of the structure.
Figure 9 shows the displacement time curve between the frame column of the seismically
isolated room and the adjacent members with an initial distance of 200 mm, which was
the width of the reserved seismic isolation joint. Non-positive spacing means a collision
occurred. The minimum distance between the partial isolation room and the adjacent
members was 167 mm under a rare earthquake of magnitude 8, indicating that no collision
would occur between the partial isolation room and the adjacent members, and that the
partial isolation structure had a high safety reserve. At the same time, the shear force
and bending moment of the beam below the bearing were calculated to be less than its
cross-sectional load carrying capacity.

3.5. Effect of Partial Seismic Isolation on the Structure as a Whole

The seismic response of the original structure and the top of the partial isolation
structure, as well as the inter-story displacement angles and shear forces, are shown in
Figure 10 to Figure 11, respectively. Because of the small effect of the partial isolation system
on the change in stiffness of the overall structure and the limited mass of the isolated rooms,
by comparing the overall structural response of the two models, it was found that the use
of partial seismic isolation or not had little effect on the overall seismic performance of the
structure. The maximum inter-story displacement angle of the partial isolation structure
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was 1/180 under a rare earthquake of magnitude 8, which still met the code requirement of
1/50 for the elastic−plastic inter-story displacement angle under a rare earthquake. It was
thus judged that the partial seismic isolation system had no effect on the seismic response
and stability of the overall frame structure.
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4. Optimal Design of Partial Seismic Isolation Systems
4.1. Influence of Bearing Type on Vibration Damping in Isolated Rooms

To further optimize the partial seismic isolation system and improve the seismic
performance of the structure, the effect of different bearing types on the seismic performance
of the structure was investigated. The study added a partial seismic isolation model using
natural rubber bearings, which was the same as the partial seismic isolation structural
model in Section 2 except for the bearings. The relevant mechanical performance parameters
of the natural rubber bearings used are shown in Table 4.
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Table 4. Basic parameters of the linear natural rubber bearing.

Type of Bearing Effective Diameter
(mm)

Total Rubber
Thickness (mm)

Equivalent Stiffness
(kN/m)

Vertical Stiffness
(kN/mm)

LNR300 300 56 490 900

By comparing the analysis results of the two bearing models with the original frame
structure, the seismic response of the partial isolation room is shown in Figure 12. The
relative peak accelerations of the partial isolation room under the lead-core rubber bearing
and natural rubber isolation bearing were 0.46 m/s2 and 0.51 m/s2, and the relative
displacement peaks were 2.07 mm and 2.52 mm, respectively. Both of them were far less
than the partial room seismic response of the original structure, and the lead rubber bearing
was better than the natural rubber bearing.
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Figure 12. Damping effect of the isolated room.

Figure 13 shows the time history curves of the distance between the column of the
seismically isolated room and the adjacent column for both types of bearing, with an initial
distance of 200 mm, i.e., the width of the reserved seismic isolation joints. The results show
that the minimum distance between the partial isolation room and the adjacent members
was 167 mm for the lead-core rubber bearing and 108 mm for the natural rubber bearing,
indicating that no collision occurred between the partial isolation room and the adjacent
members under the action of either bearing, and that the partial isolation structure had a
high safety reserve. Because of the greater stiffness of the lead-core rubber isolation bearing,
the displacement of the partial isolation structure could be better controlled than with the
rubber isolation bearing.
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Figures 14 and 15 show that the overall seismic response of the structure was analyzed
in terms of acceleration, displacement, inter-story displacement angle, and inter-story shear
at the top of the structure under the two types of bearing, which had no obvious change
with the original structure. Therefore, it was considered that the effect of changing the type
of bearing on the overall seismic response of the original frame structure under this partial
seismic isolation system was minimal and could be ignored.
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4.2. Effect of Spatial Variations on Seismic Damping in Vibration Isolated Rooms

In order to apply the research results of the local isolation system to practical engineer-
ing, it was necessary to further explore the effect of the spatial variations of an isolation
room on the seismic performance of the structure. On the basis of the original model, four
additional isolated rooms were arranged on the second, third, and fourth floors, separately,
as shown in Figure 16 below. The layout of the isolated room selected the corner, central,
and two other characteristic locations on the floor. The analysis was helpful to find the
rules of the optimal position of the isolated room in the structural design. The seismic
wave inputs and bearing selection were consistent with the above, and a total of 12 partial
isolation models were established.

Figure 17 shows the peak relative acceleration and displacement of the partial isolation
rooms for each model. The analysis and calculation results showed that the relative
acceleration damping rates of the isolated rooms located on the second, third, and fourth
floors were 90%, 87%, and 83%, respectively, and the relative displacement damping rates
were 89%, 85%, and 75%, respectively. It can be seen that as the location of the isolated
room moved to the upper floors, the damping effect of the isolated room decreased, but
was still much less than the seismic response of the corresponding room of the original
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structure. Meanwhile, as shown in Figure 16, the in−plane variation in the location of the
vibration isolated rooms had no significant effect on their damping effect.
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Figures 18 and 19 show the peak acceleration and displacement at the top of the
structure, the inter-story displacement angle, and the inter-story shear for the structure as a
whole. It can be seen that the acceleration and displacement, inter-story displacement, and
shear force decreased as the location of the isolated room moved to the upper floors. The
best damping effect on the structure as a whole was achieved when the isolated room was
located at the fourth floor, where the damping ratio of acceleration and displacement was
about 10%, indicating that the elevated location of the isolated room effectively reduced
the overall seismic response of the structure. The change in the in−plane location of the
isolated rooms had no effect on upgrading the overall seismic performance of the structure.
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Figure 19. (a) Inter-story displacement angle and (b) inter-story shear.

4.3. Effect of Load Level on Vibration in Isolated Rooms

In addition, by increasing the floor load of the partial isolation room, it was expected
that the damping effect would be similar to TMD. In addition, to further investigate the
effect of partial isolation room loads on the seismic performance of the structure, the
constant floor loads of the isolated rooms were adjusted to 3 kN/m2, 6 kN/m2, 12 kN/m2,
and 24 kN/m2, respectively, and all of the conditions were the same as the isolated structure
model in Section 2, except for the isolated room loads, and a total of four partial isolation
models with different loads were established.

It can be seen in Figures 20–22 that as the partial isolation room loads increased, the
relative acceleration and displacement of the partial isolation rooms increased, but were
much smaller than the original structural seismic response. There was no significant change
in peak acceleration, displacement, inter-story displacement angle, and inter-story shear
at the top of the structure. Therefore, it was considered that changing the mass and load
of the partial isolation rooms had little effect on the seismic damping effect of the partial
rooms and the overall seismic response of the house, and could be ignored. At the same
time, when the floor load of the partial isolation room was 24 kN/m2, the deformation of
the bearing and the shear and bending moment of the beam under the bearing were still
within the safe range.
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Figure 21. (a) Peak acceleration at the top of the structure and (b) peak displacement at the top of
the structure.
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5. Conclusions

This paper proposes a novel partial seismic isolation structure system and optimizes it
by changing the type of seismic isolation bearing, the location of the partial isolation room,
and the load. By comparing the seismic response of the original frame structure with the
partial isolation structural model, the following conclusions are found:

(1) The partial seismic isolation system of the frame structure proposed in the study can
significantly reduce the seismic response of the isolated rooms, with a relative acceleration
and displacement reduction rate up to 90%, which is an obvious effect of seismic reduction.
In addition, the partial seismic isolation system has a high safety reserve and has no effect
on the seismic response and stability of the whole frame structure.

(2) The seismic performance of the structure was analyzed by changing the type of
seismic isolation bearing and it was found that the lead-core rubber bearing could better
control the relative displacement of the partial isolation room, and the deformation of the
bearing was smaller than that of the natural rubber bearing, so the lead-core rubber seismic
isolation bearing was chosen as more ideal.

(3) The relative acceleration and displacement of the seismic isolation room decreased
significantly with the lowering of the floor position of the partial seismic isolation room,
indicating that the developed partial seismic isolation system is more effective in reducing
the seismic at lower floors. Moreover, the location of the partial isolation rooms can be
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considered according to the functional objectives of the structure. In addition, changing
the horizontal position of the partial isolation room has a limited effect on the seismic
performance of the structure as a whole and on the partial isolation room.

(4) Changing the mass and load of the partial isolation room has a negligible effect on
the damping effect of the isolated room and on the seismic response of the overall structure.

(5) The novel partial isolation system can significantly reduce the seismic response of
the isolated room, but it has little effect on the overall seismic performance of the structure.
More studies will be done to improve the seismic performance of both the isolated room
and the structure. Moreover, the nonlinear behavior of the materials will be concerned
under greater seismic loads.

In addition, there are some limitations in this study that need to be added in the
follow-up work, as follows:

(1) Some assumptions proposed in the finite element numerical simulation may differ
from the real engineering applications, among which the arrangement and design of the
seismic isolation bearings are relatively simple, and the nonlinear response of the main
body and the partial isolation structure is not sufficiently considered.

(2) In order to investigate the damping performance of the partial isolation design
method under extreme load conditions, more seismic loads need to be added for effect
verification, and the effect of near-fault ground shaking with impulsive components on the
structure will be further analyzed in the subsequent study.
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