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Abstract: Using ANN algorithms to address optimization problems has substantially benefited recent
research. This study assessed the heating load (HL) of residential buildings’ heating, ventilating,
and air conditioning (HVAC) systems. Multi-layer perceptron (MLP) neural network is utilized
in association with the MVO (multi-verse optimizer), VSA (vortex search algorithm), and SOSA
(self-organizing self-adaptive) algorithms to solve the computational challenges compounded by the
model’s complexity. In a dataset that includes independent factors like overall height and glazing
area, orientation, wall area, compactness, and the distribution of glazing area, HL is a goal factor. It
was revealed that metaheuristic ensembles based on the MVOMLP and VSAMLP metaheuristics had
a solid ability to recognize non-linear relationships between these variables. In terms of performance,
the MVO-MLP model was considered superior to the VSA-MLP and SOSA-MLP models.

Keywords: self-organizing self-adaptive; vortex search algorithm; multi-verse optimizer; heating
load; residential

1. Introduction

The heating, ventilation, and air conditioning (HVAC) systems of a freshly constructed
building regulate indoor air quality [1]. On the other hand, the rising trend of individuals
living in energy-efficient buildings necessitates a thorough comprehension of the entire
thermal loads necessary to choose appropriate HVAC systems. Several mathematical and
analytic techniques [2–4] have optimized HVAC systems. According to a recent study,
machine learning techniques (i.e., inverse modeling) can be used to predict and evaluate
the buildings’ energy performance [5]. Due to developments in programming sciences
and computation, various innovative approaches have been created over the past several
years [6–8]. The main goal of these simulations is to make simulations of actual events more
practical [8–10]. Using a range of methods (e.g., numerical [11,12], experimental [13,14],
empirical [15,16]), scientists have been able to select the most suitable technique for the
unsolved problem. Several more conventional processes could be supplanted by machine
learning, which has shown promising outcomes. Using various machine-learning programs,
it is feasible to solve intricate problems with high accuracy.

The artificial neural network (ANN) [17,18] is a powerful processor capable of simu-
lating a variety of scientific objectives and tasks [19–24]. Due to its neural processors and
several layers, the multi-layer perceptron (MLP) [25] is a characteristic form of ANN. The
utilization of these processors in simulations involving energy has been effective [26–28].
Using an MLP, researchers can study the relationship between a dependent parameter and
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other independent factors. Each dependent parameter is assigned a weight in the neurons
of the MLP, which are its processors. The resultant value will then be used to activate a
function by combining it with a bias term. The subsequent development of neurons uses
this strategy to have a unique mathematically forward progress [29].

Consequently, the MLP has become a “feed-forward instrument” [30]. Analytical
approaches were congruent with Ren et al.’s hypothesized ANN results heat loss predic-
tion [31–33]. This model surpasses all others in calculating the strain in a concrete beam’s
tie section, as Mohammadhassani et al. [34]. Sadeghi et al. [35] utilized an MLP to predict a
residential structure’s cooling and heating demands. A sensitivity analysis also indicated
the ideal network response. Sholahudin and Han [36] employed the Taguchi method to
develop a simplified dynamic ANN to accurately predict heat loss (HL) in an HVAC system.
Several prior studies [37–39] have proved the efficacy of ANNs in energy modeling. In
addressing energy-related issues, fuzzy networks [40], random forests, and support vector
machines have all been useful [41–43].

In energy analysis, metaheuristic scholars have been increasingly interested in HVAC
systems and energy analysis [44–49]. Martin et al. [50] calibrated the HVAC subsystem com-
ponent via a metaheuristic and sensitivity analysis. Bamdad Masouleh [51] implemented
ant colony optimization to optimize energy. Moreover, several benchmarks revealed that
the proposed models excelled in traditional methods. Numerous research studies have
demonstrated that machine learning models can benefit from various techniques [52–55].
As part of their research, Zhou et al. [56] investigated how to best estimate the HL and
CL by ANN, utilizing ABC and PSO applied to an ANN [57]. The PSO outperformed the
other algorithm by approximately 22 to 24 percent, demonstrating that both approaches
are effective. Bui et al. [58] used a firefly technique based on electromagnetism to optimize
the ANN for calculating energy use. Researchers discovered that hybrid approaches were
more exact than a conventional ANN technique. In this sense, Moayedi et al. [59] assessed
the performance of grasshopper optimization algorithm (GOA) and grey wolf optimization
(GWO) optimizers in conjunction with an ANN, for estimating the heating load of green
residential construction [60]. As a result of these tactics, the prediction error dropped from
2.9859 to 2.4460 and 2.2898, respectively.

Metaheuristic approaches have developed to overcome common computing restric-
tions, including local minima [61–70]. Employing these methods to find the intelligent
models’ training would result in very accurate predicting models for various goals [71,72].
Because there are so many optimization methods, comparative research on the next genera-
tion of metaheuristics is necessary.

Environmentally and economically, finding a realistic model for thermal load modeling
could be advantageous. The main goal of this article is to forecast the heating and cooling
load via metaheuristic algorithms and check whether these algorithms can predict the
heating and cooling load precisely. Metaheuristic optimizers, such as the multi-verse
optimizer (MVO), self-organizing and self-adaptive (SOSA), and vortex search algorithm
(VSA), are being evaluated to discover whether they can aid in estimating the HL. Also,
these three methods are compared, and the best one is presented at the end of the task.

2. Established Database

The connection between these influencing factors and parameters must be investigated
to estimate a parameter. Hence, the supplied data must be accurate. A total of 768 thermal
load scenarios are employed to train, test, and validate the models in this work. The
data was initially developed by Tsanas and Xifara, who analyzed the heating load and
cooling load of various residential buildings [73]. Due to their work, a valuable dataset was
compiled and made accessible for download at https://archive.ics.uci.edu/ml/datasets/
Energy+efficiency (accessed on 15 July 2022). Overall height (OH), roof area (RA), glazing
area (GA), wall area (WA), relative compactness (RC), orientation (OR), surface area (SA),
and glazing area distribution (GAD) are independent factors identified to affect the HL

https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
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output parameters. A box plot of the heating load and input components is displayed in
Figure 1.
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Figure 1. Box plot of used dataset variations with the heating load. (a) Relative compactness (RC),
(b) surface area, (c) wall area, (d) roof area, (e) overall height, (f) orientation, (g) glazing area,
(h) glazing area distribution, with the heating load.

3. Methodology

This research examines an ANN with three novel optimizers, MVO, SOSA, and VSA,
to test their investigation of how they affect the limits of a typical neural network. These
algorithms seek better hyperparameters than those proposed by more conventional learning
methods (backpropagation and Levenberg–Marquardt).

3.1. Multilayer Perceptron

Multilayer perceptrons, a type of neural network, have recently been demonstrated
to be a viable alternative to conventional statistical methods [74]. Hornik et al. (1989) [75]
demonstrated that the MLP could simulate any smooth and measurable function. Despite
other methods, the MLP method does not consider data processing. This method can model
and teach complex nonlinear functions to generalize correctly using previously unexplored
new data. These properties make it a possible alternative to statistical and numerical
modeling techniques. The multilayer perceptron has several atmospheric scientific uses, as
will be demonstrated.

Figure 2 depicts the predefined connection between the main inputs and output(s) vec-
tors for the multilayer perceptron, a network of fundamentally interconnected neurons or
nodes. Each network node’s output signals and weights are derived from a primary activa-
tion function or nonlinear transfer. The MLP can only model linear functions if the transfer
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function is linear. The node’s output can serve as an input for other network-connected
nodes for each network-connected node. In light of this, the multilayer perceptron is a
feed-forward neural network. There are a variety of structural configurations for multilayer
perceptrons, but they all contain layers of neurons. The input layer serves as a conduit for
data transfer from the input layer to other network layers. A multilayer perceptron’s input
and output vectors can be expressed as single vectors (Figure 2). An MLP structure consists
of multiple hidden layers and one output layer. Multilayer perceptron refers to a network
in which each node is interconnected in the layers above and below with every other node.
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As proven, multilayer perceptrons can estimate any computable function between two
sets of input and output vectors by selecting a fine collection of linking weights and transfer
functions [75]. A multilayer perceptron is capable of learning new abilities by training.
You will require input and output vector-based training data to learn a new algorithm. A
multilayer perceptron decides on the network’s weights until the required input-output
mapping is reached. It can only acquire knowledge in the presence of an observer. When
training an MLP, it is possible that its output for a given input vector may not match the
anticipated output. The difference between the actual and desired outputs characterizes
error signals. Adjusting the direct networks depending on this error signal during training
can help lower the total error of the MLP. A multilayer perceptron can be trained in various
methods with several different algorithms. Once trained with adequate training data, the
multilayer perceptron can generalize to new, unknown inputs.

3.2. Multi-Verse Optimizer (MVO)

The multi-verse optimizer [76] is known as a growing metaheuristic algorithm that
tries to mimic the laws of a multi-verse theory. It is a relatively recent development. Parallel
universe theories, including the presence of black, white, and wormholes, were the primary
source of inspiration for the design of this optimizer. A population-based stochastic method
is employed to determine the global optimum for optimization problems [77]. To update
the answers using this method, the probability of wormhole existence (WEP) and the rate
of travel (TDR) must first be computed. These parameters determine the frequency and
magnitude of solution changes during the optimization process and are formulated as:

WEP = a + t×
(

b− a
T

)
(1)
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The total iterations’ number is T, corresponding to the minimum, b to the maximum,
and t to the current iteration.

TDR = 1− t1/P

T1/P
(2)

p indicates the exploitation accuracy. P is the most essential TDR measure. The
emphasis on exploitation increases as the value of this choice rises.

The following equation can be used to update the solution positions when WEP and
TDR have been calculated:

xj
i


{

xj + TDR +
(
(ubj − lbj) ∗ r4 + lbj

)
i f r3 < 0.5

xj − TDR +
(
(ubj − lbj) ∗ r4 + lbj

)
i f r3 ≥ 0.5

xj
roulette Wheel i f r2 ≥WEP

i f r2 < WEP (3)

where xj is set to be the jth element from the best predefined individual, WEP, TDR
are coefficients, lbi and ubi are the lower and upper bounds of the jth element, r2; r3; r4

are randomly generated numbers drawn from the interval of [0, 1], xj
i represents the jth

parameter in ith individual, and xj
roulette Wheel . does the roulette wheel selection mechanism

to pick the jth element of a solution.
This equation can be used to compute a new solution position and compare it to the

most recent best-in-class participant in the WEP. If r3, a random number in the interval [0, 1],
is less than 0.5, then an optimal solution value for the jth dimension requires a solution. By
increasing WEP during optimization, MVO increases the use of the most proper solution so far.

3.3. Self-Organizing and Self-Adaptive (SOSA)

Self-organization (SO) parallels the biologically inspired notions of emergence and
swarm intelligence very closely. Frequently, in this technique, SO and emergence are
conflated. De and Holvoet (2005) [78] examine the phrase’s origins and the difference
between the two conceptions. This is known as SO:

SO is an adaptive and dynamic computational process through which systems retain
their structure independently of external stimuli [78,79]. However, SO can also refer to the
emergence-causing process [80,81]. In addition, ref. [82] differentiates between the terms
called strong SO schemes with no explicit central internal or external control and weak SO
systems with some central internal control. SO and emergent systems are separate concepts,
although they share one characteristic: the absence of direct exterior control. Although the
external effect on self-organized systems is studied more thoroughly in directed SO, less
attention has been paid to it in the context of unguided SO [83]. In this text, external effect
is characterized as either specific or non-specific, with specific influence suggesting straight
control on the functional structure or temporal, spatial, or other non-specific impacts
indicating that the system determines its response to an external stimulus. Consequently,
Prokopenko (2009) [83] defines SO guidance as the potential limiting of the domain or
extent of functions/structures, or selecting a subset of the multiple alternatives that the
dynamics might take.

According to ref. [78], the main distinction between SO and emergence is that individ-
ual entities are informed of the systems planned by global behavior in the former scenario.
Consequently, self-organization may be considered a weak kind of emergence. Utilizing
feedback loops is a common and straightforward method for achieving SO. Components of
the system monitor the state, interpret it according to the expected behavior, and initiate the
required actions. This method is also employed by “single entity systems.” This notion is
referred to as self-adaptation [84,85]. Self-adaptation happens when a decentralized system
composed of several entities adapts to external changes. Self-adaptation within the context
of software is set as follows: SA software modifies its behavior in response to modifications
within its operating environment. The operating environment refers to everything the
software system may see, including human input, sensors and external hardware devices,
and programmed instrumentation [86].
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3.4. Vortex Search Algorithm (VSA)

Ölmez and Doğan [87] initially developed the vortex pattern generated by the vertical
flow of stirred fluids to design the VSA algorithm. As with countless other methods, the
algorithm seeks to balance exploratory and exploitative actions. The VSA uses an adaptive
step-size-adjustment method to determine the optimal response. Consequently, exploratory
behavior is accounted for in the early phases of the VSA, resulting in a better global search
capability. In the following, the optimal response is achieved by employing an exploitative
strategy around the suggested replies [88].

The vortex is depicted by stacked circles, assuming a set in two dimensions. Given U
and L as the current space’s boundaries, Equation (4) produces the starting point λ0. of the
outer circle:

λ0 =
U + L

2
(4)

Then, several neighbor solutions Ct(s) are generated at random. This production
makes use of a Gaussian distribution technique.

C0(s) =
{

S1, S2, . . . , Sg
}

g = 1, 2, . . . , z, (5)

where t is the number of cycles and z represents the total number of potential solutions.
Let x and Σ be the vector and covariance matrix of the random variable. The multivariate
Gaussian distribution is denoted by Equation (6):

P(x|λ, Σ) =
1√

(2π)DΣ
exp

{
−1
2

(x− λ)TΣ(x− λ)

}
, (6)

where D is the magnitude of the issue and is the mean vector introduced as sample.
The main distribution will be spherical if the off-diagonal elements are uncorrelated

and the co-variance matrix values have similar variances (circular for two-dimensional
concerns). I, where I is a D × D identity matrix and σ2 is the distribution’s variance, Σ may
be written as follows:

Σ = σ2 × [I]D×D. (7)

Using Equation (8), the initial standard deviation of the distribution is computed (σ0).
This parameter may correspond to r0. (which requires significant values) [89]:

σ0 =
maximum (U)−minimum (L)

2
(8)

As is well known, the essential concept of metaheuristic algorithms for enhancing the
final result is to update the obtained answers. During the VSA selection phase, the current
λ0 is replaced with the most promising alternative. This requires the proposed solution to
exist inside the given space. This item is assessed using the Equation (9).{

si
g = rand·

(
Ui − Li)+ Li, i f si

g < Li

si
g = rand·

(
Ui − Li)+ Li, i f si

g > Ui (9)

where rand is a random integer with uniform distribution.
The best answer discovered thus far is then applied to the second (or inner) circle’s

center. After successively decreasing the effective radius of the current solution, a new
group of solutions (C1(s)) is produced close to it. Repetitioning the same approach might
yield a more viable answer [89]. Other researches have also described the VSA well [90,91].

4. Results and Discussion

This study analyzes the HL approximation capabilities of three unique neural network
upgrades described in Section 1. The algorithms are synthesized using an MLP neural
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network to accomplish this objective. Each approach uses a unique search strategy to get
the optimal computational weights for the MLP (and biases).

As is commonly known, the size and number of neurons contained inside a hidden
layer define the MLP’s structure. Therefore, these parameters must initially be modified.
Numerous studies have demonstrated that a single hidden layer is excellent at simulat-
ing complicated processes [92,93]. However, the hidden neurons’ optimal number was
established by trial and error. Among the designs studied, 8 × 6 × 1 demonstrated the
most promising performance (where the middling layer contained 1, 2, 3, . . . , 10 neurons).
Figure 2 illustrates the used MLP.

4.1. Accuracy Indicators

Mean absolute error (MAE) as the first used statistical index and root mean square er-
ror (RMSE) as the second index was specified for assessing the potential errors in proposed
structures. Equations (10) and (11) produce are used for RMSE and MAE. Additionally,
Equation (12) defines the coefficient of determination (R2) required to compute the compat-
ibility between the measured and predicted HLs:

MAE =
1
U

U

∑
i=1

∣∣∣Siobserved − Sipredicted

∣∣∣ (10)

RMSE =

√√√√ 1
U

U

∑
i=1

[(Siobserved − Sipredicted)]

2

(11)

R2 = 1−

U
∑

i=1
(Sipredicted − Siobserved)

2

U
∑

i=1
(Siobserved − Sobserved)

2
(12)

Siobserved and Si anticipate represent the measured and expected HLs, respectively, in these
equations. In addition, U represents the number of recordings, whereas Sobserved is the
average of the observed HLs.

4.2. Combining the MLP with Hybrid Optimizers

After combining hybrid algorithms with the MLP, three ensembles of MVO-MLP,
SOSA-MLP, and SOSA-MLP are constructed. Each costume is supplied with training
data to determine the relationship between associated parameters and heating load. One
thousand repetitions are assessed for each model’s optimization behavior in order to
carry out the optimization. The objective function is represented using the RMSE of each
iteration’s findings. In swarm-based optimization algorithms, the population size is a
critical variable. Ten distinct population sizes (50, 100, 150, 200, 250, 300, 350, 400, 450,
and 500) are evaluated for each proposed model, and the population size results in the
lowest MSE chosen as the optimal population size. The MSEs for all calculated iterations
are shown in Figure 3. The populations with the lowest RMSE values (0.3540, 8.8064,
and 0.2887, respectively) are 300, 4500, and 100 for MVO-MLP, SOSA-MLP, and VSA-MLP,
respectively. The SOSA-MLP method, on the other hand, is less sensitive than the other two;
the explanation for this may be found in the optimization approaches’ characteristics. Figure 4
also displays the RMSE values achieved for different levels of complexity over all rounds.
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Figure 3. Model iterations versus the variation of MSE; (a) MVO-MLP, (b) SOSA-MLP, (c) VSA-MLP.



Buildings 2022, 12, 1328 11 of 20

Buildings 2022, 12, x FOR PEER REVIEW 12 of 20 
 

400 0.972 0.128 0.974 0.120 9 9 9 9 36 2 
450 0.972 0.130 0.973 0.140 8 8 7 2 25 4 
500 0.967 0.140 0.970 0.129 4 4 5 6 19 6 

 

  
(a)  (b)  

  
(c)  (d)  

  
(e)  (f)  

Figure 4. The accuracy of the best-fit proposed model for the (a) MVO−MLP training dataset, (b) 
MVO−MLP testing dataset, (c) SOSA−MLP training dataset, (d) SOSA−MLP testing dataset, (e) 
VSA−MLP training dataset, and (f) VSA−MLP testing dataset. 

R² = 0.954

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Pr
ed

ict
ed

Measured

R² = 0.9572

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Pr
ed

ict
ed

Measured

R² = 0.7832

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Pr
ed

ict
ed

Measured

R² = 0.8017

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Pr
ed

ict
ed

Measured

R² = 0.9344

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Pr
ed

ict
ed

Measured

R² = 0.9464

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Pr
ed

ict
ed

Measured

Figure 4. The accuracy of the best-fit proposed model for the (a) MVO-MLP training dataset, (b) MVO-
MLP testing dataset, (c) SOSA-MLP training dataset, (d) SOSA-MLP testing dataset, (e) VSA-MLP
training dataset, and (f) VSA-MLP testing dataset.

The value of R2 for three methods of MVO, SOSA, and VSA is (0.977 and 0.978), (0.885
and 0.895), and (0.974 and 0.975) for testing and training phases, respectively. Also, in
the case of RMSE, MVO, SOSA, and VSA have the value of (0.117 and 0.110), (0.255 and
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0.239), and (0.124 and 0.112) in the training and testing phases, respectively. These results
show that the lowest value of RMSE and the highest value of R2 are related to the MVO
technique, indicating the best performance of MVO-MLP. According to R2 and RMSE
values (Tables 1–4), the second technique for predicting HL and CL is VSA-MLP, and the
last is SOSA-MLP.

Table 1. The network results for the MVO-MLP.

Population Size

Network Result Scoring

Total Score RANKTrain Test Train Test

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

50 0.962 0.149 0.964 0.143 1 1 1 1 4 10
100 0.972 0.130 0.974 0.120 5 5 4 5 19 6
150 0.972 0.129 0.975 0.117 6 6 6 7 25 5
200 0.971 0.132 0.975 0.119 3 3 5 6 17 7
250 0.973 0.127 0.976 0.115 8 8 7 8 31 3
300 0.977 0.117 0.978 0.110 9 9 9 10 37 1
350 0.971 0.130 0.973 0.123 4 4 3 4 15 8
400 0.967 0.140 0.966 0.137 2 2 2 2 8 9
450 0.978 0.113 0.980 0.127 10 10 10 3 33 2
500 0.973 0.127 0.976 0.115 7 7 8 9 31 3

Table 2. The network results for the SOSA-MLP.

Population Size

Network Result Scoring

Total Score RANKTrain Test Train Test

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

50 0.810 0.343 0.806 0.355 2 2 2 2 8 9
100 0.776 0.378 0.781 0.384 1 1 1 1 4 10
150 0.874 0.289 0.893 0.274 6 7 6 7 26 4
200 0.889 0.289 0.894 0.278 10 6 7 6 29 3
250 0.881 0.307 0.898 0.302 7 4 9 5 25 5
300 0.871 0.278 0.836 0.304 4 9 4 4 21 7
350 0.832 0.327 0.807 0.342 3 3 3 3 12 8
400 0.884 0.285 0.899 0.270 8 8 10 8 34 2
450 0.871 0.293 0.880 0.255 5 5 5 9 24 6
500 0.885 0.255 0.895 0.239 9 10 8 10 37 1

Table 3. The network results for the VSA-MLP.

Population Size

Network Result Scoring

Total Score RANKTrain Test Train Test

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

50 0.961 0.152 0.965 0.140 2 2 2 3 9 9
100 0.965 0.143 0.967 0.135 3 3 3 4 13 8
150 0.968 0.138 0.968 0.133 5 5 4 5 19 6
200 0.959 0.155 0.964 0.141 1 1 1 1 4 10
250 0.974 0.124 0.977 0.112 10 10 10 10 40 1
300 0.969 0.136 0.973 0.122 7 7 8 8 30 3
350 0.968 0.136 0.970 0.128 6 6 6 7 25 4
400 0.972 0.128 0.974 0.120 9 9 9 9 36 2
450 0.972 0.130 0.973 0.140 8 8 7 2 25 4
500 0.967 0.140 0.970 0.129 4 4 5 6 19 6
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Table 4. Selection of the best fit structures among the most accurate items of each model.

Swarm Size
Training Dataset Testing Dataset Scoring

Total Score Rank
RMSE R2 RMSE R2 Training Testing

MVOMLP 300 0.977 0.117 0.978 0.11 3 3 3 3 12 1

SOSAMLP 500 0.885 0.255 0.895 0.239 3 3 1 1 8 2

VSAMLP 250 0.974 0.124 0.977 0.112 2 2 2 2 8 2

According to Figure 3, the MVO method has a little more constrained convergence
curve than the other methods. This shows that this approach decreases error rates when
ANN parameters are altered. As a result, the algorithm’s findings are given to develop
a prediction model. Referring to Figure 2, the output of the most recent neuron consists
of seven parameters (one bias and six weights). This neuron is nourished by six layers of
neurons, each responsible for nine parameters (one bias and eight weights). The network
consists of 61 optimized variables with metaheuristic methods.

4.3. Prediction Results

In this section, the reliability of the applied models is assessed by considering both
the outputs (i.e., the predicted HLs) to the target values (i.e., the measured HLs). Figure 5
illustrates the outcomes of the training phase by displaying the difference between each pair
of output and HL goals. During this phase, the error rate for the MVO-MLP, SOSA-MLP,
and VSA-MLP range between [−0.000034913 and 0.11776], [−0.011611 and 0.25559], and
[−5.4249 × 10−5 and 0.12416], respectively. The preceding section indicates that the RMSE
values are 0.3540, 8.8064, and 0.2887. In addition, the estimated MAEs of the three models
(0.08499, 0.19662, and 0.088861) demonstrate a small degree of training error. Moreover,
the computed R2 values indicate that greater than 93% of the objective and output HLs
are consistent.

4.4. Efficiency Comparison

The models with the lowest RMSE (or MAE) and the highest R2 are chosen as the most
exact HL predictors, considering the learning and prediction stages. Table 4 displays the
accuracy standards that must be satisfied to attain this objective. As demonstrated, the MLP
constructed utilizing the MVO’s weights and biases provide the most accurate knowledge
of the HL and predicting it. The VSA appears as the second possible optimizer after the
MVO. This study’s MVO and VSA algorithms appear to outperform previously proposed
models in the training and testing phases. For example, six different MLP network’s
hybrids (for instance, based on other hybrid techniques, such as whale optimization
algorithm (WOA) [94], ABC [95], PSO [96], the salp swarm algorithm (SSA) [97], wind-
driven optimization (WDO) [98], the spotted hyena optimization (SHO) [99], the imperialist
competitive algorithm (ICA) [100], GOA [101], the genetic algorithm (GA) [102], and
GWO [103]) were utilized to estimate the HL by using the same dataset. This suggests that
the objective of developing more effective HL assessment tools has been met.

4.5. Discussion

In several engineering applications, the superiority of intelligent computational tech-
niques over conventional and even solid experimental methods is well acknowledged. In
addition to appropriate accuracy, the simplicity of applying these models is a determining
factor in their application. In energy-efficiency studies, for instance, forward modeling
methodologies (low capabilities for inhabited buildings [104]) and prevalent simulation
software may have limitations (low capabilities for occupied buildings [104]). (Different
accuracy of simulation [105]). Consequently, like the models reported in this study, indirect
evaluative models outperform destructive and expensive methods. This is emphasized
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further when an optimal strategy is created using metaheuristic methods [106]. In other
words, these optimization techniques yield competent ensembles that function optimally.

Realistic applications for the offered approaches may be developed in terms of appli-
cability. Here are two illustrations:

The developed technique can provide an accurate estimate of the needed heating
thermal load for an upcoming construction project based on the size and features of the
structure [26,107,108]. Engineers and property owners might benefit from the models when
developing HVAC systems. Another early-stage support for reconstruction projects is
modifying structural design and architecture based on input parameters. Consequently, it
is also feasible to examine the effect of each input parameter separately to comprehend the
thermal load behavior. Although the trend is not predictable nor regular, the MVO-MLP
predicts it precisely. Consequently, this approach may yield approximations of real-world
structures that are correct.
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Even if there are several benefits to addressing an optimization problem, it is essential
to commit the time necessary to discover a global solution. Consequently, achieving a
balance between model time economy and precision may impact selecting the most efficient
model. Nevertheless, according to the authors, lowering the complexity of the problem
space and locating better solutions may be as simple as configuring the hyper-parameters
of optimizers correctly and doing feature validity analysis. In contrast, the MVO model was
the most precise; this requires establishing the optimal time and accuracy-based method.
In projects in which time is not a factor, for instance, it makes sense to choose the most
precise technique (regardless of how time-consuming), but in time-sensitive applications, a
tolerance for accuracy may be considered in order to find a speedier solution. However,
the models’ overall performance was comparable, and it should be emphasized that all
versions would be adequate for real-world applications. Table 5 indicates the previous
research focused on heating load prediction. Noting that the outcomes were less accurate,
either using R2 or RMSE, as those were the hybrid techniques that we employed in the
current study.
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Table 5. Studies focused on research on heating load prediction.

References Article Title Scope

Refs. [26,60]
Comprehensive preference learning and predicting
heating load in residential buildings using machine
learning techniques

Using traditional machine learning in predicting
heating and cooling load

Refs. [57,107]
Proposing a novel predicting technique using
M5Rules-PSO and M5Rules-GA model in estimating
CL and HL in residential building system

Estimating cooling and heating load via a novel
predictive technique using M5Rules

Ref. [108] Predicting heating and cooling loads in residential
buildings using two hybrid intelligent models

Hybrid intelligent models in predicting heating and
cooling load

Ref. [109]
Optimal modification of HVAC system performances
in energy-efficient buildings using the integration of
metaheuristic optimization and neural computing

Using neural networks and metaheuristic
optimization in modifying HVAC systems

Ref. [56]
Employing ABC and PSO techniques for optimizing a
neural network in prediction of HL and CL of
residential buildings

Using neural network algorithms in predicting cooling
and heating load in residential green buildings

Ref. [39] A teaching-learning based optimization Neural
Processor for Predicting HL in Residential Buildings

Predicting heating load using a novel neural network
algorithm of TLBO

5. Conclusions

This study evaluates the MVO, SOSA, and VSA metaheuristic algorithms for analyzing
and determining the HL. These methods served as the optimizer for a common neural
predictive network simulation. The models predicted the HL based on a total of 768 design
scenarios of the heating load. The following conclusions can be drawn from this work:

According to the sensitivity analysis, the MVA-MLP, SOSA-MLP, and VSA-MLP en-
sembles achieved optimal complexity at corresponding swarm sizes of 300, 500, and 250,
respectively. The optimal MVO design required more calculation time than alternative MLP
optimization algorithms. In terms of precision (MAEs of 0.08499, 0.19662, and 0.088861),
all three ensembles profoundly understood the link between the HL and essential factors.
During the testing phase, the measured value for the R2 was 0.978, 0.895, and 0.977 demon-
strating that the developed models were successful and had minimal prediction error. The
most powerful model was the MVO-MLP, followed by the VSA-MLP and the SOSA-MLP.
The MVO-MLP methodology was presented for use in real-world situations, but potential
ideas for future projects were also presented in light of the shortcomings of the research,
such as data enhancement and future selection, optimizing building characteristics using
the model, and comparing the model to improved time-saving methods.
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