
Citation: Shishehgarkhaneh, M.B.;

Azizi, M.; Basiri, M.; Moehler, R.C.

BIM-Based Resource Tradeoff in

Project Scheduling Using Fire Hawk

Optimizer (FHO). Buildings 2022, 12,

1472. https://doi.org/10.3390/

buildings12091472

Academic Editors: Saeed Reza

Mohandes, Timothy Olawumi and

Maxwell Fordjour Antwi-Afari

Received: 13 August 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

BIM-Based Resource Tradeoff in Project Scheduling Using Fire
Hawk Optimizer (FHO)
Milad Baghalzadeh Shishehgarkhaneh 1,† , Mahdi Azizi 2,† , Mahla Basiri 2 and Robert C. Moehler 3,*

1 Department of Construction Management, Islamic Azad University of Tabriz, Tabriz 5157944533, Iran
2 Department of Civil Engineering, University of Tabriz, Tabriz 5166616471, Iran
3 Department of Civil Engineering, Faculty of Engineering, Monash University, 23 College Walk,

Clayton Campus, Melbourne 3800, Australia
* Correspondence: robert.moehler@monash.edu
† These authors contributed equally to this work.

Abstract: Project managers should balance a variety of resource elements in building projects while
taking into account many major concerns, including time, cost, quality, risk, and the environment.
This study presents a framework for resource trade-offs in project scheduling based on the Building
Information Modeling (BIM) methodology and metaheuristic algorithms. First, a new metaheuristic
algorithm called Fire Hawk Optimizer (FHO) is used. Using project management software and
the BIM process, a 3D model of the construction is created. In order to maximize quality while
minimizing time, cost, risk, and CO2 in the project under consideration, an optimization problem is
created, and the FHO’s capability for solving it is assessed. The results show that the FHO algorithm
is capable of producing competitive and exceptional outcomes when it comes to the trade-off of
various resource options in projects.

Keywords: fire hawk optimizer; optimization; metaheuristic algorithms; building information
modelling (BIM); resource management; project resource management

1. Introduction

Understanding the trade-offs between a project’s primary aims is one of the most
critical components of planning and controlling construction projects. The time–cost trade-
off (TCT) problem has triggered many studies to date [1]. Regardless of overhead costs,
reduced project activity time will increase project costs due to the increased resources given
to the_hastening of activity implementation. In other words, shorter project durations are
frequently linked with higher construction costs, necessitating TCT to minimize the cost
of schedule compression [2]. Consequently, Schedulers should do a TCT study to find the
most cost-effective duration for a project; some research has been done using optimization
algorithms to tackle TCT problems in the building and construction industry. Furthermore,
in recent years, most construction projects have considered some other factors of TCT
problems, such as risk, quality, energy, and environmental factors [3–7]. The construction
sector is ultimately accountable for a wide variety of environmental problems caused by the
construction and operation of structures. Construction processes contribute significantly
to air pollution and greenhouse gas emissions, and building materials production emits
more carbon dioxide (CO2) than any other kind of industrial production [8]. Delivering
a project in the intended time, at the desired cost, with the appropriate quality, and with
the least amount of risk or uncertainty is an essential success factor for project assessment.
However, environmental issues have received a lot of attention lately [9].

A majority of real-world engineering problems are complicated; therefore, conven-
tional methods are unable to solve these kinds of problems accurately. In other words,
conventional optimization methods cannot find the optimum solution for time, cost, risk,
and quality trade-off problems; hence, these problems have been solved by metaheuristic
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optimization algorithms, such as rat swarm optimizer (RSO) [10]; the wisdom of artificial
crowds (WoAC) [11]; tuna swarm optimization (TSO) [12]; artificial bee colony (ABC) [13];
Material Generation Algorithm (MGA) [14,15]; and Atomic Orbital Search (AOS) [16–18].

Building Information Modelling (BIM) is a management culture based on the digital
construction of a project. By involving all stakeholders and team members in the design
phase, BIM takes a big step towards reducing the need for reworks during the project and
helps with calculating the exact volume of work and project materials needed, thereby
providing accurate financial and time estimates for a construction project. In the 1970s,
the introduction of 2D CAD revolutionized the drawing process by enabling information
to be copied, electronically shared, and, in some situations, automated. The introduction
of 2D CAD led to an evolutionary shift, by which the drawing board was ultimately
replaced by the computer [19]. Eastman pioneered the use of virtual models in buildings
in the 1970s, while van Nederveen and Tolman introduced the term Building Information
Modelling (BIM) in 1992 for the first time [20]. Over the last two or three decades, the
regular design practice in the Architecture, Engineering, and Construction (AEC) sector
has shifted towards BIM due to its ability to consider project planning, execution, and
maintenance throughout the entire value chain from the planning to the demolition phases.
An exciting opportunity for project management could be provided via the integration of
BIM through the early design phase in every project [21,22]. In comparison with a set of
CAD drawings, BIM is a “richer repository”; it is a multi-disciplinary tool, able to retain and
evaluate various forms of construction information, and digitally and graphically model
the characteristics of buildings. BIM allows the use of information in the architectural
model by sharing and exporting the information demanded by the project team, saving
time to re-create the model and speeding up the design while allowing more repetition [23].
Therefore, a range of public policies aimed at improving the adequacy of the construction
industry are supported by the usage of BIM [24]. In other words, BIM is a faster and
more profitable way to manage construction, increase design and construction quality, and
reduce project execution time and cost [25]. The NBIMS defines BIM as “creating an electronic
model of a facility for visualization, engineering analysis, conflict analysis, code criteria checking,
cost engineering, as-built product, budgeting, and many other purposes” [26]. However, the main
privileges of utilizing BIM in construction are ameliorated design quality and lifecycle
management, effective maintenance, accurate cost estimation, a better-integrated workflow,
efficient collaboration and interoperability between the stakeholders and the project team,
streamlined information sharing, and reduced energy consumption [27]. Moreover, the
BIM-assisted estimate outperforms standard estimation approaches for the entry-level
user. The more complicated the estimating processes, the more pronounced the benefits of
BIM-based estimating tools over conventional estimating approaches became [28].

2. Literature Review
2.1. Studies of Resource Trade-Offs

Various metaheuristic algorithms have recently been used to solve TCT problems.
Feng, Liu and Burns [1] applied genetic algorithms (GAs) for TCT problems in construc-
tion. Van Eynde and Vanhoucke [29] offered a precise algorithm to provide the project’s
whole curve of non-dominated time–cost options. Sonmez and Bettemir [30] proposed
a hybrid methodology developed utilizing simulated annealing (SA), genetic algorithms
(GAs), and quantum simulated annealing techniques for the discrete TCT problems; the
authors claimed that the hybrid method could ameliorate convergence of GA and provide
some alternatives to TCT. Babu and Suresh [31] proposed that quality should add to the
problems of TCT. The authors proposed a linear programming model for time–cost–quality
trade-off (TCQT) problems; Khang and Myint [32] implemented the model at a cement
factory in Bangkok, Thailand, to confirm the proposed model. Ndamlabin Mboula et al. [33]
introduced a novel scheduling technique called Cost–Time Trade-off efficient workflow
scheduling, which consists of four basic steps: activity selection, assessment of the Implicit
Requested Instance Types Range, evaluation of the spare budget, and selection of the
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VM. Hu and He [34] presented a time–cost–quality optimization model using a genetic
algorithm. Afruzi et al. [35] proposed a multi-objective imperialist competitive algorithm
(MOICA) to solve the discrete TCQ tradeoff problem (DTCQTP). Sharma and Trivedi [36]
developed a non-dominated sorting genetic algorithm II-based TCQT optimization model
for project scheduling. Nonetheless, some researchers have considered other factors, such
as risk, CO2 emission, and resource utilization. Ozcan-Deniz et al. [37] evaluated environ-
mental effect by considering total greenhouse gas emissions connected with a project and
used NSGA-II to tradeoff time, cost, and environmental impact. Tran et al. [38] created
the opposition multiple objective symbiotic organisms search strategy, which could be
useful way to address challenges including trade-offs between time, cost, quality, and task
continuity. Luong et al. [39] solved the TCQT problem using the opposition-based multiple
objective differential evolution (OMODE) algorithm, which uses an opposition-based learn-
ing method for early population onset and generational jump. However, scant research has
been carried out concerning time-cost-quality-risk trade-off problems. Mohammadipour
and Sadjadi [40] considered risk in the TCQ trade-off. The authors provided proper linear
programming to minimize the total additional cost of the project, the overall risk of the
project, as well as the overall quality reduction in the project. Amoozad Mahdiraji et al. [41]
proposed a new technique for identifying the best implementation situation for each activity
in a project by optimizing and balancing time, cost, quality, and risk. Tran and Long [3]
proposed a multi-objective project scheduling optimization model using the DE method.
By leveraging the existing data and resources, the authors stated that the suggested model
could help project managers and decision-makers finish the project on schedule and with
less risk. Sharma and Trivedi [42] presented a multimode resource-constrained time–cost–
quality–safety trade-off optimization model using the NSGA-III algorithm. Keshavarz
and Shoul [43] formulated a three-objective programming problem associated with the
time–cost–quality trade-off problem using a fuzzy decision-making methodology.

2.2. Applications of Building Information Modelling

In order to create a five-dimensional construction time–cost optimization model with
the benefits of optimization and simulation, He et al. [44] integrated the BIM process with
GA. Rahmani Asl et al. [45] proposed an integrated framework for BIM-based performance
optimization to minimize the energy consumption while maximizing the efficient daylight-
ing level for a residential dwelling. Sekhar and Maheswari [46] aimed to study the impact
of BIM on managing and reducing change orders in off-site construction by optimizing
the design via visualization throughout the planning phase. Kim et al. [47] investigated
the 6–9 percentage quantity discrepancy in quantities obtained from diverse building
interior components to increase the accuracy of cost estimates using BIM. ElMenshawy
and Marzouk [48] proposed a framework for automated schedule generation using the
BIM process and the NSGA-II algorithm to solve the TCT problems; in which, the authors
claimed that the proposed model could choose a near-optimum scenario for the project.
Mashayekhi and Heravi [49] introduced an integrated framework based on BIM, MIS,
and simulation tools for TCT problems. Yongge and Ya [50] proposed a model based on
GA and BIM to solve time–cost–quality tradeoff problems in construction. For large-span
spatial steel structure projects, Yu et al. [51] proposed an integrated framework taking
into account BIM and a time–cost optimization model to optimize construction costs and
duration. Gelisen and Griffis [52] modelled the three-story Systems Engineering Facility
III of Hanscom Air Force Base based on the BIM process to elucidate the effects of time-
and-cost-based stochastic productivity. Khosakitchalert et al. [53] suggested a technique for
improving the accuracy of extracted quantities of compound components from incomplete
or incorrect BIM models by eliminating excess quantities and adding missing quantities
using information from BIM-based clash detection. Ma and Zhang [54] combined the
4D BIM with GA to solve the concurrency-based TCT problem; the authors asserted that
the project manager could create a more exact construction schedule using the suggested
optimization model without exceeding the contract’s specified duration. Shadram and
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Mukkavaara [55] provided a methodology for determining acceptable design choices by
integrating a multi-objective optimization technique with a BIM-driven design process to
solve the trade-off problem between embodied and operational energy. Sandberg et al. [56]
proposed a framework for neutral BIM-based multi-disciplinary optimization of lifecycle
energy and cost. Baghalzadeh Shishehgarkhaneh et al. [57] employed the BIM process in
time and cost management of dam construction projects in Iran.

Table 1 summarizes previous research works that are related to time, cost, quality, risk,
and CO2 tradeoff in construction projects.

The current research work uses the Fire Hawk Optimizer (FHO), an unique meta-
heuristic algorithm inspired by the foraging behaviour of whistling kites, black kites, and
brown falcons, which was developed by Azizi et al. [58]. The key novelty in this study is
the application and use of a novel metaheuristic optimization algorithm to the time–cost–
quality–risk–CO2 trade-off (TCQRCT) issue in a real building project based on the Building
Information Modeling (BIM) procedure. The required number of objective function evalua-
tions, the mean, the worst, and the standard deviation are all determined statistically via
the use of 30 separate optimization runs. Based on a maximum of 5000 objective function
evaluations, a predetermined stopping condition is also taken into consideration. However,
being parameter-free, fast convergence behaviour and the lowest possible objective func-
tion evaluation could be deemed the privileges of the FHO algorithm. On the other hand,
the FHO method, like other metaheuristic algorithms, can only approximate problems; it
cannot supply accurate answers.

Table 1. Summary of previous related research works.

Authors Time Cost Quality Risk CO2 Other Parameters BIM

Hajiagha et al. [59] × × ×
Tran and Long [3] × × ×

Zheng [60] × × × ×
Al Haj and El-Sayegh [61] × ×

Khalili-Damghani et al. [62] × × ×
Moghadam et al. [63] × × ×

Zahraie and Tavakolan [64] × × ×
Huynh et al. [65] × × × ×

Banihashemi and Khalilzadeh [66] × × × ×
Ghoddousi et al. [67] × × ×

Mahmoudi and Feylizadeh [68] × × × × ×
Ebrahimnezhad et al. [69] × × ×

Mungle et al. [70] × × ×
Koo et al. [71] × ×

Heravi and Moridi [72] × ×
Mohammadipour and Sadjadi [40] × × ×

Jeunet and Bou Orm [73] × × × ×
Hamta et al. [74] × × ×

Kosztyán and Szalkai [75] × × ×
Current Study × × × × × ×

3. Framework for Resource Tradeoff

The framework is made up of three primary parts: (1) the initialization and decision
variables module, (2) the BIM Module, and (3) the metaheuristic optimization algorithm
(Fire Hawk Optimizer (FHO)) module. The results of this study provide helpful references
that construction project managers can utilize to rapidly and precisely calculate schedules
when implementing a project.

3.1. Initialization and Decision Variables

Finding the best answer from among all feasible alternatives is the goal of an optimiza-
tion problem. A common optimization problem is as follows:

A function f : B→ R from some set B to the real numbers.
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An element x0 ∈ B such that f (x0) ≤ f (x) for all x ∈ B (minimization problem) or
f (x0) ≥ f (x) for all x ∈ B (maximization problem).

Where B represents a portion of Euclidean space and is often defined by a set of
constraints, equality requirements, or inequalities that B members must satisfy. Candidate
solutions or feasible solutions signify the components of B, while the domain B denotes
the search space or option set of f. Function f is referred to as the “objective function”. A
potential solution that minimizes (or maximizes, if that is the goal) the objective function is
known as an optimal solution [76]. The BIM model is utilized in this research to import all
of the project’s data for all 38 activities listed in Table A1. A construction project’s activity-
on-node (AON) diagram is made up of M nodes and the relationships between the activities.
Each activity has a number of execution options, each with its own time, cost, quality, risk,
and carbon dioxide emissions associated with it, all of which depend on the amount of
resources, technology, and equipment used. The TCRQC tradeoff problem optimization
approach tries to minimize project time, cost, risk, and carbon dioxide emissions while
simultaneously maximizing project quality by picking the best execution option for all
activities. Consequently, the first objective function is to minimize the time of the project in
Equation (1):

Tp = min(max(STi + Di)) = min(max(FTi)); i = 1, . . . , M (1)

where Di shows the duration of each activity in the project; STi and FTi are the start and
finish times of an activity, respectively; M demonstrates the total number of nodes in the
project scheduling [9]. Furthermore, a project’s total cost comprises direct costs (DC),
indirect costs (IC), and tardiness costs (TC). There are other techniques for calculating the
entire cost of a project; for theoretical reasons, this study simply considers direct costs,
indirect costs, and tardiness costs. The following objective function is to minimize cost of
the project, as indicated in Equation (2):

minC = Dj
Ci
+ Ij

Ci
+ TC (2)

Dj
Ci

=
n

∑
i =1

Cj
i (3)

Ij
Ci

= Cic × T (4)

TC =

C1(T0 − T) if T ≤ T0(
e

T−T0
T0 − 1

)(
Dj

Ci
+ Ij

Ci

)
if T > T0

(5)

where TCp is total project’s cost; Dj
Ci

and Ij
Ci

are the direct and indirect cost associated with
the jth execution mode of ith activity, respectively; TC is the tardiness cost; T0 elucidates
contractual planned duration of the project; C1 shows reward for completing the task early;
and T is total project duration [77,78]. Due to the fact that a project’s resources may include
a range of materials, equipment, and labour, the overall project’s quality is calculated as
the sum of the quality of each activity. Increasing the length of activities improves the
quality level; nevertheless, extending the time beyond a certain point decreases the quality
somewhat. Hence, The quality of each activity is indicated by the quality performance
index (QPIi), which is given by Equation (6) [78].

QPIi = ait2
i + biti + ci (6)

where ti is duration of activity i; ai, bi, and ci are coefficients decided by the quadratic
function regarding BD (Figure 1). LD, BD, and SD are the longest, best, and shortest
durations, respectively. However, BD is calculated by Equation (7). Finally, the objective
function for quality is formulated in Equation (8), as follows:

BD = SD + 0.613(LD − SD) (7)
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maxQ =
M

∑
i =1

QPIi
M

(8)
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However, some resources might have a negative impact on the environment during
the development phase of a project by generating CO2. CO2 emissions can occur in two
ways during the on-site construction process: directly from electricity consumption and
fuel combustion, and indirectly from the manufacturing of building materials and their
transportation. CO2 emissions can be reduced by not only selecting environmentally
friendly materials, but also by ensuring that materials are transported in the shortest
possible manner. Thus, the objective function to minimize the total amount of CO2 in the
project can be calculated by Equation (9).

minCE =
M

∑
i =1

Edij +
M

∑
i =1

Einij = (
M

∑
i =1

Qed × Fe + Qdd × Fd) + (
M

∑
i =1

Qk × Fj + Qek × Fe + Qdk × Fd) (9)

where CE is the total CO2 emission in the project; Edij and Einij are the direct and indirect
CO2 emissions in the project, respectively; Qed shows an activity’s electricity consumption;
Qdd elucidates an activity’s diesel consumption; Qij shows the consumption of material k
in an activity; Qek indicates the electricity consumption for the transportation of material k
for an activity; Qdk shows the diesel consumption for the transportation of material k for an
activity; Fe, Fd, and Fj are the carbon emission factor (CEF) per electricity unit, diesel unit
consumption, and per unit production of material k, respectively. Concerning the project’s
risk, the actual project risk is mostly determined by the project’s circumstances, delivery
systems, and contract terms. A “risk value” is described as a function that combines the
two components: (i) the project’s overall float, and (ii) resource volatility. When noncritical
operations have a high degree of temporal uncertainty, the usage of float may result in
increased project risk and schedule overruns. Thus, construction managers are required to
execute schedule adjustments to minimize unplanned changes in resource use throughout
the duration of the project’s execution. Allowing noncritical operations to float may result
in more effective resource use [79–81]. Consequently, the fifth objective function for risk
can be formulated as Equation (10):

minR = w1 ×
(

1− TFc + 1
TFmax + 1

)
+ w2 ×

(
∑Pd

i =1
(
Rt − R

)2

Pd
(

R
)2

)
+ w3 ×

1−
−
R

max(Rt)

 (10)
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where TFc and TFmax show the total current float and total flexible scheduling float of the
project; R elucidates the uniform resource level; Rt represents the resources required on
day t; and wi represents the weights.

Finally, to assess the capability of the FHO algorithm for the time–cost–quality–risk–CO2
(All) trade-off, simultaneously, Equation (11) is used:

F(x) =
T − Tmin

Tmax − Tmin
+

C − Cmin

Cmax − Cmin
+

R − Rmin

Rmax − Rmin
+

CO2 − CO2(min)

CO2(max) − CO2(min)
+

Qmin − Q
Qmax − Qmin

(11)

3.2. BIM Module

A numerical case study is deemed to elucidate the efficiency of the FHO optimization
algorithms in dealing with TCT problems. The case study is a five-floor residential building
and a basement with a total floor area of 930 m2 that is used to validate the FHO algorithm
with five objectives: time, cost, quality, risk, and CO2 emissions. As shown in Table A1, all
activity information is elicited by the BIM process, project data, and experts’ judgments in
the planning and designing steps. In other words, in completing this table, the experiences
of various elite people and experts in this field have been used. The time and cost of
executive mode NO.1 are the actual time and cost of the project extracted from the final
status of the construction, NO.3 are obtained from BIM, and NO.5 are the contractor’s initial
offers. In addition, two other executive modes were considered based on expert opinions
in this field. Admittedly, contractors’ initial offers are often illogical and dreamy to attract
the attention of employers, which is why most projects fail. Because most contractors do
not consider rework, clashes, non-payment by employers, severe weather conditions, etc.;
however, each activity is randomly written with three types of quality indicators at distinct
percentages. The final quality in each line is obtained from the percentage of the total effects
of those three quality modes. Finally, for each activity, the risk percentage is randomly
deemed based on the viewpoints of elite professors and experts in this field.

The activity logic is finish to start for all activities. For modelling, the building
was modelled in three different disciplines, including architecture, structure, mechanical,
electrical, and pipeline (MEP) with Autodesk Revit 2022; meanwhile, all elements were
modelled with Level of Development (LOD) 350 based on BIMFourm 2019 specifications.
Subsequently, dynamo visual programming was used to generate parametric modelling in
Revit. In the following stage, Navisworks software was employed for the project’s soft and
hard clash detection. Finally, MATLAB is used for programming and trade-off of objective
functions. The BIM model in the case study is shown in Figure 2.

3.3. Fire Hawk Optimizer (FHO)
3.3.1. Inspiration

Native Australians have long used fire to manage and preserve the balance of the
surrounding ecology and terrain, and it has been a part of their cultural and ethnic traditions.
People and other factors may spread intentionally started or naturally occurring fires
caused by lightning, escalating the vulnerability of the native ecosystem and biodiversity.
Furthermore, it was recently determined that black kites, whistling kites, and brown falcons
are able to cause spreading fires throughout the region. The mentioned birds, known as
Fire Hawks, strive to spread fire on purpose by carrying blazing sticks in their beaks and
talons, a behaviour characterized as a natural catastrophe. The birds pick up burning sticks
and deposit them in other unburned spots to make small fires to control and capture their
prey. These small flames frighten their prey, such as snakes, rodents, and other animals,
causing them to escape in a fast and panicked manner, making it much simpler for the
hawks to capture them.
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The FHO algorithm imitates the fire hawks’ foraging behaviour, taking into considera-
tion the procedure of starting and spreading flames, as well as capturing prey. Initially, a
set of possible solutions (X) are determined based on the fire hawks and prey’s position
vectors. A random initialization mechanism is used to establish the initial positions of these
vectors in the search space.

X =



X1
X2
...

Xi
...

XN


=



x1
1 x2

1 · · · xj
1 · · · xd

1
x1

2 x2
2 · · · xj

2 · · · xd
2

...
...

...
. . .

...
x1

i x2
i · · · xj

i · · · xd
i

...
...

...
. . .

...
x1

N x2
N · · · xj

N · · · xd
N


,

{
i = 1, 2, . . . , N.
j = 1, 2, . . . , d.

(12)

xj
i(0) = xj

i,min + rand.
(

xj
i,max − xj

i,min

)
,

{
i = 1, 2, . . . , N.
j = 1, 2, . . . , d.

(13)

where N elucidates the total number of solution candidates in the search space; Xi shows
the ith solution candidate in the search space; d is the considered problem’s dimension;
xj

i(0) represents the initial position of the solution candidates; xj
i is the jth decision variable

of the ith solution candidate; rand is a uniformly distributed random number in the range
of (0, 1); and xj

i,min and xj
i,max are the minimum and maximum bounds of the jth decision

variable for the ith solution candidate.
The specified optimization problem is taken into account during the objective function

evaluation of solution candidates so as to identify the Fire Hawks in the search space.
Predators and prey may be distinguished from one other by the greater objective function
values of certain solution candidates. The selected Fire Hawks are employed to spread
flames around the prey in the search zone, making hunting easier for the hunter. The main
fire, which is originally employed by the Fire Hawks to spread flames over the search
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region, is also assumed to be the best global solution. These features are mathematically
represented as follows:

PR =



PR1
PR2

...
PRk

...
PRm


, k = 1, 2, . . . , m. (14)

FH =



FH1
FH2

...
FHl

...
FHn


, l = 1, 2, . . . , n. (15)

where FHl explains the lth fire hawk in a complete search space of n fire hawks; and PRk
reveals the kth prey in the search space depending the whole number of m preys.

The distance among the Fire Hawks and their prey is determined in the following step
of the algorithm, where Dl

k is shown using the following equation:

Dl
k =

√
(x2 − x1)

2 + (y2 − y1)
2,

{
l = 1, 2, . . . , n.
k = 1, 2, . . . , m.

(16)

where m and n demonstrate the overall number of preys and fire hawks in the search space,
respectively; Dl

k shows the total distance between the lth fire hawk and the kth prey; and
(x1, y1) and (x2, y2) represent the coordinates of the Fire Hawks and prey in the search space.

The territory of these birds is recognized using the nearest prey in the vicinity, using
the method described above to determine the overall distance among Fire Hawks and prey.

After that, the Fire Hawks collect hot coals from the primary fire to start a fire at the
designated spot. These two behaviours may be employed as location updating processes in
FHO’s main search loop since some birds are willing to utilize burning sticks from other
Fire Hawks’ territories, as illustrated in the equation below:

FHnew
l = FHl + (r1 × GB − r2 × FHNear), l = 1, 2, . . . , n. (17)

where GB demonstrates the global best solution in the search space considered as the
primary fire; FHnew

l shows the novel position vector of the lth Fire Hawk (FHl); and r1 and
r2 are uniformly distributed random numbers in the range of (0, 1) for illustrating Fire
Hawks’ movements towards the vital fire and the other Fire Hawks’ territories; and FHNear
shows one of the Fire Hawks in the search space.

Prey movement throughout each fire informs the algorithm’s following stage, which
involves updating positions, the hawk’s territory is seen as a crucial aspect of animal
behaviour. The following equation could be employed to take these activities into account
while updating a position:

PRnew
q = PRq + (r3 × FHl − r4 × SPl),

{
l = 1, 2, . . . , n.
q = 1, 2, . . . , r.

(18)

where GB is the global best solution in the search space considered as the main fire; PRnew
q

is the novel position vector of the qth prey (PRq) surrounded by the lth Fire Hawk (FHl);
SPl is a safe place under the lth Fire Hawk territory; and to ascertain the motions of prey in
the direction of the Fire Hawks and the safe location, r3 and r4 are uniformly distributed
random integers in the range of (0, 1).
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Furthermore, the prey may move into the territory of other Fire Hawks. At the same
time, there is a chance that the prey may approach the Fire Hawks that are trapped by
neighbouring flames. Fire Hawks may even try to hide in a more secure region beyond
the Fire Hawk’s territory. The following equation could be employed to account for these
activities throughout the position updating process:

PRnew
q = PRq + (r5 × FHAlter − r6 × SP),

{
l = 1, 2, . . . , n.
q = 1, 2, . . . , r.

(19)

where PRnew
q shows the new position vector of the qth prey (PRq) flanked by the lth fire

hawk (FHl); SP elucidates a safe place outside the lth Fire Hawk’s territory; FHAlter is one
of the fire hawks in the search space; r5 and r6 indicate uniformly distributed random
numbers in the range of (0, 1) to determine the movements of preys towards the other Fire
Hawks and the safe region outside the territory.

The mathematical presentation of SPl and SP is stated as follows, taking into account
the fact that the safe place in nature is a location where the majority of animals assemble so
as to be safe and sound during a hazard:

SPl =
∑r

q =1 PRq

r
,

{
q = 1, 2, . . . , r.
l = 1, 2, . . . , n.

(20)

SP =
∑m

k =1 PRk

m
, k = 1, 2, . . . , m. (21)

where PRq shows the qth prey surrounded by the lth fire hawk (FHl); PRk is the kth prey in
the search space.

The FHO algorithm’s pseudo-code is shown in Figure 3.
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4. Optimization Results

Five different metaheuristic algorithms were chosen to compare the efficacy of the FHO
algorithm in solving resource trade-off problems in construction projects, including Firefly
Algorithm (FA) [82], Multi-Verse Optimizer (MVO) [83], Particle Swarm Optimization
(PSO) [84], Symbiotic Organisms Search (SOS) algorithm [85], and Teaching-learning-based
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Optimization (TLBO) [86]. All optimization processes have been conducted via MATLAB
programming software using a PC with 8 GM RAM, CORE i7, and 2.8 GHz frequency.
Table 2 shows the best findings of the FHO alongside other alternative algorithms for each
scenario. However, for statistical purposes, 30 independent optimization runs are carried
out for determining the statistical measurements as the mean, worst, standard deviation,
and computational time. A predefined stopping criterion is also considered based on a
maximum number of 5000 objective function evaluations, while the number of populations
for each algorithm is determined by the maximum number of objective function evaluations
and the maximum number of iterations. Figure 4 illustrates the convergence history of
FHO and alternative algorithms in dealing with the mentioned trade-off problems.

Table 2. The best outcomes of the FHO and alternative algorithms for the case study.

FA MVO PSO SOS TLBO FHO (Current Study)

Time 261 258 321 258 281 258
Cost 118,230 117,056 119,564.8 117,104.6 117,512 116,783

Quality 94.35 94.16 93.82 94.41 93.89 87.81
Risk 5.78 5.94 6.53 5.78 5.93 5.78
CO2 76.35 76.74 103.35 76.35 79.60 76.35
All 0.74 0.76 0.99 0.74 0.77 0.74

Table 3 demonstrates the statistical results of optimization in the case study. As can be
seen, the FHO algorithm could dominate most of the alternative metaheuristic algorithms
in the first scenario of time optimization in the case study, which calculates 258 days as
the best and optimum time, similar to the MVO and SOS algorithms. Regarding standard
deviation (Std), the FA algorithm delivers the most minimal result, followed by the FHO
algorithm, accounting for 0.18. In comparison, the PSO algorithm provides the most
significant value of Std, registered at about 35.07. Moreover, the SOS algorithm could
conduct the time optimization process in the smallest feasible time (1.40 s); on the other
hand, the longest computing time is acquired by the FHO and PSO algorithms, needing
significantly more time to conduct the optimization process in this case. Evident is the
fact that the FHO algorithm outperforms other alternative metaheuristic algorithms in the
case study’s second scenario (cost optimization); in other words, the FHO algorithm can
compute the project’s lowest cost, in contrast to the PSO algorithm’s maximum optimal
value of cost. However, the FHO algorithm took the most computational time in this
case, followed by the FA; conversely, the SOS algorithm took the least computing time
for cost optimization in the project mentioned above. Additionally, the FHO algorithm
supplied the smallest feasible Std value, followed by the FA. Meanwhile, the PSO achieved
the greatest standard deviation of all algorithms studied in this case. Therefore, the FHO
algorithm could be an acceptable metaheuristic for project and construction management
cost optimization.

Table 3. The statistical outcomes of the algorithms.

FA MVO PSO SOS TLBO FHO (Current Study)

Time
Best 261 258 321 258 281 258

Mean 261 258.9 392.7 260.76 300.6 258.03
Worst 261 261 453 266 316 259

Std 0 1.21 35.07 1.71 9.04 0.18
Computational time (s) 2.19 1.61 2.35 1.40 1.44 8.66
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Table 3. Cont.

FA MVO PSO SOS TLBO FHO (Current Study)

Cost
Best 118,230 117,056 119,564.8 117,104.6 117,512 116,783

Mean 118,558.6 117,511.9 135,480.6 117,498.3 118,322.9 116,839.7
Worst 118,780 118,284.6 155,151.7 117,920 119,070 117,011

Std 148.09 271.58 9952.33 222.75 397.19 59.57
Computational time (s) 2.16 1.57 2.13 1.39 1.44 9.66

Quality
Best 94.35 94.16 93.82 94.41 93.89 87.81

Mean 94.46 94.24 93.89 94.54 94.01 89.63
Worst 94.56 94.40 94.12 94.62 94.27 91.46

Std 0.04 0.05 0.06 0.04 0.08 0.78
Computational time (s) 9.05 1.44 2.11 1.40 1.44 2.03

Risk
Best 5.78 5.94 6.53 5.78 5.93 5.78

Mean 5.78 6.07 7.13 5.79 6.03 5.78
Worst 5.78 6.28 7.46 5.82 6.20 5.78

Std 9.03 × 10−16 8.45 × 10−02 2.47 × 10−1 0.01 6.99 × 10−2 9.03 × 10−16

Computational time (s) 2.27 1.56 2.05 1.39 1.43 8.67

CO2
Best 76.35 76.44 103.35 76.35 79.60 76.35

Mean 76.35 77.87 116.23 76.68 88.24 76.40
Worst 76.35 80.41 129.54 77.20 94.47 76.59

Std 1.45 × 10−14 0.92 6.20 0.24 4.19 0.06
Computational time (s) 1.93 1.59 2.29 1.38 1.42 12.52

All
Best 0.74 0.76 0.99 0.74 0.77 0.74

Mean 0.74 0.84 1.42 0.75 0.86 0.74
Worst 0.74 0.95 1.67 0.78 0.94 0.74

Std 2.26 × 10−16 0.04 0.21 0.01 0.04 2.26 × 10−16

Computational time (s) 1.98 1.70 2.42 1.38 1.43 10.96

The statistical outcomes of the case study’s quality optimization indicate that the FHO
method can deliver acceptable quality. Additionally, the SOS algorithm achieved the most
outstanding quality value, about 94.41, followed by the FA algorithm. Additionally, the
SOS algorithm could provide the smallest standard deviation, in this case, roughly 0.04. In
sharp contrast, the FHO set the highest standard. However, in terms of computing time for
quality optimization, in this case, the SOS algorithm required the least time, contrasted to
the FHO approach, which required around 0.78 s. As a consequence, although the FHO
algorithm can provide an acceptable level of quality, the SOS method could be a preferred
choice for project managers in this circumstance. Nonetheless, similar to the FA and SOS
algorithms, the FHO could calculate the lowest value for risk in the case study, accounting
for nearly 5.78. Furthermore, the SOS algorithm required as little computational time as
possible in this scenario, followed by the TLBO algorithm. Hence, the FHO algorithm could
be a well-suited algorithm for risk optimization in project scheduling. Meanwhile, the FHO
algorithm could calculate the lowest value for Std in this scenario.

Considering sustainability in construction, the FHO could be an ideal algorithm for
project engineers to reduce the carbon footprint, since it could calculate the lowest CO2 in
the case study, thereby realizing environmentally friendly construction. In contrast, the PSO
algorithm provided the highest value for CO2 in this scenario, indicating its unfavorable
performance in achieving the project with the lowest carbon footprint. However, the
SOS algorithm gave the lowest computational time, registered at 1.38 (s), followed by
TLBO. As a result, considering the average computational time, the FHO algorithm could
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be considered an appropriate alternative to optimize the amount of carbon dioxide in
construction projects.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 23 
 

 
Figure 3. Pseudo-code of FHO. 

4. Optimization Results 
Five different metaheuristic algorithms were chosen to compare the efficacy of the 

FHO algorithm in solving resource trade-off problems in construction projects, including 
Firefly Algorithm (FA) [82], Multi-Verse Optimizer (MVO) [83], Particle Swarm Optimi-
zation (PSO) [84], Symbiotic Organisms Search (SOS) algorithm [85], and Teaching-learn-
ing-based Optimization (TLBO) [86]. All optimization processes have been conducted via 
MATLAB programming software using a PC with 8 GM RAM, CORE i7, and 2.8 GHz 
frequency. Table 2 shows the best findings of the FHO alongside other alternative algo-
rithms for each scenario. However, for statistical purposes, 30 independent optimization 
runs are carried out for determining the statistical measurements as the mean, worst, 
standard deviation, and computational time. A predefined stopping criterion is also con-
sidered based on a maximum number of 5000 objective function evaluations, while the 
number of populations for each algorithm is determined by the maximum number of ob-
jective function evaluations and the maximum number of iterations. Figure 4 illustrates 
the convergence history of FHO and alternative algorithms in dealing with the mentioned 
trade-off problems. 

  

Buildings 2022, 12, x FOR PEER REVIEW 12 of 23 
 

  

  
  

Figure 4. Convergence history of 30 independent optimization runs of FHO and alternative algo-
rithms. 

Table 2. The best outcomes of the FHO and alternative algorithms for the case study. 

 FA MVO PSO SOS TLBO 
FHO (Cur-
rent Study) 

Time 261 258 321 258 281 258 
Cost 118,230 117,056 119,564.8 117,104.6 117,512 116,783 

Quality 94.35 94.16 93.82 94.41 93.89 87.81 
Risk 5.78 5.94 6.53 5.78 5.93 5.78 
CO2 76.35 76.74 103.35 76.35 79.60 76.35 
All 0.74 0.76 0.99 0.74 0.77 0.74 

Table 3 demonstrates the statistical results of optimization in the case study. As can 
be seen, the FHO algorithm could dominate most of the alternative metaheuristic algo-
rithms in the first scenario of time optimization in the case study, which calculates 258 
days as the best and optimum time, similar to the MVO and SOS algorithms. Regarding 
standard deviation (Std), the FA algorithm delivers the most minimal result, followed by 
the FHO algorithm, accounting for 0.18. In comparison, the PSO algorithm provides the 
most significant value of Std, registered at about 35.07. Moreover, the SOS algorithm could 
conduct the time optimization process in the smallest feasible time (1.40 s); on the other 
hand, the longest computing time is acquired by the FHO and PSO algorithms, needing 
significantly more time to conduct the optimization process in this case. Evident is the fact 
that the FHO algorithm outperforms other alternative metaheuristic algorithms in the case 
study’s second scenario (cost optimization); in other words, the FHO algorithm can com-
pute the project’s lowest cost, in contrast to the PSO algorithm’s maximum optimal value 
of cost. However, the FHO algorithm took the most computational time in this case, fol-
lowed by the FA; conversely, the SOS algorithm took the least computing time for cost 
optimization in the project mentioned above. Additionally, the FHO algorithm supplied 
the smallest feasible Std value, followed by the FA. Meanwhile, the PSO achieved the 
greatest standard deviation of all algorithms studied in this case. Therefore, the FHO 

Figure 4. Convergence history of 30 independent optimization runs of FHO and alternative algorithms.

The FHO algorithm could outperform other metaheuristic algorithms in dealing with
the TCQRCT problem by considering a residential dwelling as a case study, followed by
the FA and SOS algorithms. Regarding Std. value, the FHO and FA algorithms gave the
lowest value, indicating its superior performance. However, the SOS algorithm required
the lowest computational time to conduct TCQRCT in the case study, followed by the
TLBO, with nearly 1.43 (s). The FHO algorithm could be unique for TCQRCT problems in
construction projects without considering computational time.

5. Discussion

The results and comparisons revealed that the FHO algorithm could outperform for
some optimization problems in the studied case study; hence, the project managers should
use this optimization process in their organizations or projects to obtain the most optimum
solutions regarding time, cost, quality, risk, and CO2.

The modes of all activities are shown in Table 4. It is clear that for the time optimization
in the case study, all the mentioned algorithms opted for the third mode (BIM) as the
BIM process was able to provide the optimum and best time for this residential building.
Furthermore, regarding the cost, the first and second modes are preferable, followed by
the third mode (BIM). Regarding the quality, almost all algorithms preferred the second
mode, which is between the actual and the BIM. Undoubtedly, the first mode is the most
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preferable mode for all mentioned algorithms, indicating the proper mode for providing
the optimum risk in the case study. Regarding the CO2 and the All optimizations, the third
mode is superior to the others. Meanwhile, it should be noted that the 4th and 5th modes
were not preferred by any algorithms for any of the problems in the current case.

Table 4. Modes of different activities in optimization process.

Number Objective Mode of Activities

1 Time

FA:55555555555555555555555555555555555555
MVO:55555555555555555555555555535555555555
PSO:54435325555255525554445513453113245445
SOS:55555555555555555555555555535555555555

TLBO:55555555451455444555452455535554533555
FHO:55555555555555555555555555535555555555

2 Cost

FA:43334343343242333433343332332343434342
MVO:44423244423333243443442432432432444332
PSO:23323225253434543344542434433424342234
SOS:43423432334442343442432533432432434332

TLBO:43444442424243244342432443234444244332
FHO:43424442444242343442432442432442434332

3 Quality

FA:33331133333111131131333333331331133311
MVO:13331131311313331331131111333133113311
PSO:11111111111111111111111111111111111111
SOS:13113333131333313313113333313313313133

TLBO:11311111111111111111111113311111111111
FHO:15344214411545354222554535254442254422

4 Risk

FA:22222222222222222222222222222222222222
MVO:22222222222225525232222222222222252222
PSO:22334322222225253225425431323232412424
SOS:22222222222222222222222222222222222222

TLBO:23222322322222222232231222222322222222
FHO:22222222222222222222222222222222222222

5 CO2

FA:44444444444444444444444444444444444444
MVO:15544232142225444342331444434454444444
PSO:15544232142225444342331444434454444444
SOS:44444444444444444444444444444444444444

TLBO:54443454444543444544444445445444544444
FHO:44444444444444444444444444444444444444

6 All

FA:33333333333333333333333333333333333333
MVO:33333333333333323333333333333333333353
PSO:33323343223244133333535234333222333333
SOS:33333333333333333333333333333333333333

TLBO:33333333333333333333333332333333332333
FHO:33333333333333333333333333333333333333

Notably, there have been several instances in the construction industry when bad
project management caused things to spiral out of control. The newest Veterans Affairs
medical facility was supposed to have been built in Colorado by 2013, with a projected
project cost of $328 million, according to a news report. However, the actual cost, which
was $1.73 billion, went above budget by more than $1 billion. Additionally, the project took
5 years longer to finish than expected. This illustration demonstrates the seriousness with
which optimization procedures and practical project management techniques, such as BIM,
in construction should be approached [87]. Considering the current case study, the BIM
process and the FHO algorithm could decrease the total cost from approximately $125,630
to nearly $116,839.70, a 7% reduction in cost. Therefore, implementing the BIM process in
large-scale projects such as the Veterans Affairs medical facility could save $121 million.
Furthermore, since BIM and the FHO algorithm could diminish the total time from 313
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to 258 days (17.5%), they could decrease the total time of the project’s execution, thereby
decreasing the indirect and direct costs, as well as the CO2 emission caused by the logistics
and equipment at the project’s site. Furthermore, project managers and schedulers of all
projects are able to analyze and propose the most feasible resource options, considering the
organization’s goals and scopes, to the employers or owners by using the BIM process and
an optimization process with metaheuristic algorithms, such as the FHO algorithm.

6. Conclusions

This paper established a unique framework that involves building information mod-
elling (BIM) and a novel metaheuristic algorithm to solve the resources trade-off problem
in construction projects. For this purpose, Fire Hawk Optimizer (FHO) is used as a novel
metaheuristic algorithm. A 3D BIM-based modelling of the case study was created using
different software, including Revit, Navisworks, Lumion, and also dynamo was utilized to
perform parametric modelling. The key results and main outcomes of this research work
are summarized as follows:

• Based on the outcomes of best optimization runs conducted by different methods in
dealing with time optimization, the FHO algorithm could reach the lowest time for
the case study, accounting for 258 days.

• The FHO can provide 116,783 ($) for the cost of the case study, which is the best among
all approaches.

• Regarding quality optimization, the FHO is capable of providing reasonable quality
value, but the SOS algorithm gave the best results.

• The FHO algorithm is able to provide the best results for both risk and CO2 optimiza-
tion in the case study, compared to other alternative algorithms.

• Based on the best results of the TCQRCT problem, the FHO algorithm can provide a
score of 0.74, which is much better than the other algorithms.

Based on the results and conducted analysis, the main reasons for the superiority of the
FHO algorithm compared to the other mentioned metaheuristics algorithms are threefold;
namely, fast convergence behavior, being parameter-free, and the lowest possible objective
function evaluation. The limitation of this research work is that only a residential building
was used as the case study, and thus, future works should evaluate the capability of the FHO
algorithm for other case studies, such as residential projects or infrastructure construction
projects, and compare the results with those of other metaheuristic algorithms. Furthermore,
the FHO algorithm should be tested for future studies utilizing intricate optimization
problems in miscellaneous fields, such as real-size engineering design problems such as
truss structures. Additionally, future works should focus on proposing and developing the
multi-objective version of the FHO algorithm (MOFHO) in order to optimize the time, cost,
quality, risk, and CO2 in a two-by-two manner.
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Appendix A

Table A1. Project data of case study.

NO Activity Logical Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Time Cost $ Quality
% Risk CO2 Time Cost $ Quality

% Risk CO2 Time Cost $ Quality
% Risk CO2 Time Cost $ Quality

% Risk CO2 Time Cost $ Quality
% Risk CO2

1 Foundation - 26 8100 90.65 14.96667 225.3313 24 7850 89.2 12 198.45 20 8120 92.1 12.5 187.52 15 8400 78.9 12.9 98.32 13 9408 74.955 16.31367 108.152
2 Retaining wall 1FS + 1 15 2252 94.905 13.21667 137.9707 13 2150 94.51 10.5 125.08 11 2220 95.3 11.3 111.04 9 2410 87.1 11.54 54.25 8 2699.2 82.745 14.40617 59.675
3 Columns of ground 2FS 13 2015 91.155 10.33333 116.3133 10 1980 90.21 8 101.3 7 2042 92.1 9.4 98 6 2100 85.45 9.5 36.32 5 2352 81.1775 11.26333 39.952
4 Beam and roof of ground 3FS + 1 10 4325 91.98 11.95167 188.2833 8 3652 91.4 9.65 169.91 6 3920 92.56 9.8 152.36 4 4150 86.41 10.3 111.25 3 4648 82.0895 13.02732 122.375
5 Columns of 1st floor 4FS + 2 13 1550 93.605 5.58 190.8767 10 1200 92.65 4.2 178.35 7 1356 94.56 5.4 148 6 1420 89.36 6 128.6 5 1590.4 84.892 6.0822 141.46
6 Beam and roof of 1st floor 5FS + 1 10 3600 95.625 12.82 177.7653 8 3200 94.8 10.3 177.88 6 3410 96.45 10.65 125.36 4 3540 85.45 11.02 45.25 3 3964.8 81.1775 13.9738 49.775
7 Columns of 2nd floor 6FS + 2 13 1550 92.04 8.038 158.5137 10 1200 91.3 6.32 143.65 7 1356 92.78 7.05 127.63 6 1420 84.12 7.8 35.98 5 1590.4 79.914 8.76142 39.578
8 Beam and roof of 2nd floor 7FS + 1 10 3600 97.575 9.275 183.8583 8 3200 96.5 7.25 169.25 6 3410 98.65 8.25 145.25 4 3540 88.89 8.5 89.54 3 3964.8 84.4455 10.10975 98.494
9 Columns of 3rd floor 8FS + 2 13 1550 93.99 6.903333 150.1917 10 1200 93.4 5.3 145.25 7 1356 94.58 6.4 111.25 6 1420 78.45 6.45 74.63 5 1590.4 74.5275 7.524633 82.093

10 Beam and roof of 3rd floor 9FS + 1 10 3600 91.475 3.541667 167.4697 8 3200 90.5 2.65 151.72 6 3410 92.45 3.47 134.89 4 3540 82.1 3.9 125.25 3 3964.8 77.995 3.860417 137.775
11 Columns of 4th floor 10FS + 2 13 1550 92.825 6.316667 114.523 10 1200 91.4 4.5 106.58 7 1356 94.25 6.8 89.25 6 1420 86.45 7 65.32 5 1590.4 82.1275 6.885167 71.852
12 Beam and roof of 4th floor 11FS + 1 10 3600 96.375 15.29833 156.7313 8 3200 95.3 11.85 143.56 6 3410 97.45 13.9 124.58 4 3540 91.2 14.2 43.56 3 3964.8 86.64 16.67518 47.916
13 Columns of 5th floor 12FS + 2 13 1550 95.315 11.845 163.6473 10 1200 94.62 9.45 144.32 7 1356 96.01 10.02 135.98 6 1420 86.41 11.3 97.2 5 1590.4 82.0895 12.91105 106.92
14 Beam and roof of 5th floor 13FS + 1 10 3600 98.57 4.689 139.1107 8 3200 97.4 3.21 126.98 6 3410 99.74 5.4 111.04 4 3540 91.02 5.52 56.98 3 3964.8 86.469 5.11101 62.678
15 Columns of ridge roof 14FS + 1 5 420 91.815 5.851667 124.31 3 356 91.6 4.25 114.25 2 411 92.03 6.08 98.4 1 580 83.25 6.85 75.98 1 649.6 79.0875 6.378317 83.578
16 Beam and roof of ridge floor 15FS + 1 6 1110 92.96 3.342333 168.6317 4 980 92.45 2.51 156.32 3 995 93.47 3.25 132.07 2 1020 87.98 3.65 100.36 2 1142.4 83.581 3.643143 110.396
17 Brickworks of ground 4FS + 1 14 1620 94.035 1.658333 166.89 11 1480 93 1.05 157.45 9 1620 95.07 2.14 127.8 8 1740 79.99 2.45 98.65 7 1948.8 75.9905 1.807583 108.515

18 Mechanical installations of
ground 17FS + 2 10 1300 95.355 8.316667 109.0827 8 1220 94.5 6.5 101.98 6 1352 96.21 7.4 84.52 4 1480 82.14 7.65 24.65 3 1657.6 78.033 9.065167 27.115

19 Electrical installations of
ground 17FS + 2 15 1250 95.54 6.08 128.7647 13 1100 95.3 4.9 121.07 9 1260 95.78 5.01 99.04 6 1350 89.65 5.63 68.42 5 1512 85.1675 6.6272 75.262

20 Brickworks of 1st floor 6FS + 1 14 1800 92.21 5.149333 125.9527 11 1620 90.7 3.54 114.06 9 1870 93.72 5.89 101.5 8 1942 80.45 6 45.65 7 2175.04 76.4275 5.612773 50.215

21 Mechanical installations of
1st floor 20FS + 2 10 1600 97.525 5.934667 130.917 8 1520 97 4.22 125.97 6 1710 98.05 6.41 97.65 4 1780 91.45 6.54 82.63 3 1993.6 86.8775 6.468787 90.893

22 Electrical installations of 1st
floor 20FS + 2 9 1420 97.65 3.786333 167.2277 7 1350 96.4 2.87 151.26 5 1420 98.9 3.61 134.95 4 1500 87.26 3.75 111.52 3 1680 82.897 4.127103 122.672

23 Brickworks of 2nd floor 8FS + 1 14 1800 93.495 5.546667 193.3917 11 1620 92.3 4.2 178.32 9 1870 94.69 5.3 152.47 8 1942 83.45 5.5 97.52 7 2175.04 79.2775 6.045867 107.272

24 Mechanical installations of
2nd floor 23FS + 2 10 1680 94.93 12.066 138.6687 8 1532 94.15 9.34 126.47 6 1750 95.71 10.98 110.8 4 1780 88.98 11.36 64.52 3 1993.6 84.531 13.15194 70.972

25 Electrical installations of
2nd floor 23FS + 2 9 1420 92.55 10.74167 181.7427 7 1350 90.47 8.45 175.65 5 1420 94.63 9.41 134.74 4 1500 78.32 9.5 86.52 3 1680 74.404 11.70842 95.172

26 Brickworks of 3rd floor 10FS + 1 14 1800 94.16 2.455 165.5457 11 1620 93.32 1.65 149.08 9 1870 95 2.91 134.29 8 1942 85.65 3.2 98.42 7 2175.04 81.3675 2.67595 108.262

27 Mechanical installations of
3rd floor 26FS + 2 10 1680 91.82 2.866 178.6877 8 1530 91.24 2.04 170.36 6 1740 92.4 3.09 134.95 4 1780 86.97 5.2 74.77 3 1993.6 82.6215 3.12394 82.247

28 Electrical installations of
3rd floor 26FS + 2 9 1420 90.435 8.185 159.032 7 1350 90 6.45 156.65 1420 90.87 7.14 114.78 4 1500 82.42 7.65 64.52 3 1680 78.299 8.92165 70.972

29 Brickworks of 4th floor 12FS + 1 14 1800 96.155 12.95467 159.094 11 1620 94.98 10.32 142.36 9 1870 97.33 11 130.02 8 1942 86.41 11.4 111.78 7 2175.04 82.0895 14.12059 122.958

30 Mechanical installations of
4th floor 29FS + 2 10 1695 93.375 8.26 163.8757 8 1570 92.63 6.4 153.21 6 1760 94.12 7.5 126.97 4 1780 86.35 7.7 42.63 3 1993.6 82.0325 9.0034 46.893

31 Electrical installations of 4th
floor 29FS + 2 9 1420 94.63 6.648667 158.8867 7 1350 94.17 4.98 147.36 5 1420 95.09 6.5 124.36 4 1500 87.42 6.52 35.59 3 1680 83.049 7.247047 39.149

32 Brickworks of 5th floor 14FS + 1 14 1800 93.02 4.885 128.853 11 1620 92.83 3.45 120.32 9 1870 93.21 5.34 99.99 8 1942 88.2 5.98 65.42 7 2175.04 83.79 5.32465 71.962

33 Mechanical installations of
5th floor 32FS + 2 10 1680 94.025 3.137667 124.2857 8 1530 93.4 2.09 111.14 6 1740 94.65 3.77 101.65 4 1780 85.72 3.89 85.41 3 1993.6 81.434 3.420057 93.951

34 Electrical installations of 5th
floor 32FS + 2 9 1420 95.065 2.351333 213.33 7 1350 94.42 1.52 199.32 5 1420 95.71 2.95 165.42 4 1500 90.45 3.02 123.65 3 1680 85.9275 2.562953 136.015

35 Rooftop 34FS 15 935 93.62 8.639667 188.6087 10 870 92.41 6.47 178.65 7 890 94.83 8.45 143.68 5 920 80.65 9.2 99.98 4 1030.4 76.6175 9.417237 109.978
36 Elevator 34FS + 2 17 2400 90.805 7.126 105.351 15 2150 90.56 5.24 100.36 11 2350 91.05 7.23 79.65 8 2680 82.42 7.77 24.63 7 3001.6 78.299 7.76734 27.093
37 Facade 34FS + 5 55 5320 91.575 4.351333 194.41 52 4580 91.15 3.12 189.32 37 5120 92 4.63 142.62 29 5980 79 4.97 75.63 25 6697.6 75.05 4.742953 83.193
38 Outdoors 35FS + 1 37 2420 92.63 11.958 143.945 32 2100 91.78 9.12 134.65 25 2850 93.48 11.25 111.45 19 3412 84.53 11.32 80.25 16 3821.44 80.3035 13.03422 88.275
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