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Abstract: The general context of this proposal is represented by the energy-efficient smart home that
integrates renewable energy sources such as photovoltaic panels. The objective of this article is to
minimize the amount of energy consumed from the national energy grid by producer-consumers of
energy from renewable sources, in their own smart homes. In order to fulfill this goal, it was necessary
to estimate the amount of renewable energy produced on the day-ahead horizon and to schedule the
operation of controllable consumers in a smart home. To predict the amount of energy produced,
two approaches were used: the first was based on data, and used techniques specific to artificial
intelligence, more specifically, multilayer perceptron and radial-basis-function neural networks, and
the second was based on models. The accuracy of the short-term prediction horizon of the techniques
used was evaluated with quantitative performance indicators so that the most appropriate one in
relation to the goal of the article could be selected to be used in the test scenarios. The scheduling of
consumer functioning was based on their classification in relation to their ability to be controlled,
and on the selection from the peer-reviewed literature of an optimization algorithm which, by load
shifting from a smart home, ensured the optimal fulfillment of the objective function. The selected
load-shifting algorithm was then integrated into and tested on a real database. The data used were
monitored for two representative days, in terms of the amount of energy from renewable energy
sources produced and consumed. The load-shifting algorithm proved its effectiveness through the
results obtained and which are reported in the article.

Keywords: scheduling; forecasting; load-shifting; power generation; renewable energy sources

1. Introduction

Recent trends in the energy market require prosumers (producers and consumers of
energy from renewable energy sources) to take into consideration more complex energy-
balance scenarios based on power and load balance, while the integration of large-scale
renewable energy sources in the home increases and the number of home appliances
introduces a not always predictable electricity consumption. Among the categories of
well-known renewable sources, the ones that have experienced considerable development
due to their successful integration into homes, are photovoltaic energy sources. The success
is largely due to the fact that they can convert the Sun’s energy into electricity without the
help of heat engines and with fewer conversion failures.

Prosumers who chose to integrate this type of alternative source into their homes
consider a number of factors that decisively influence the amount of green energy produced,
among which we can mention: the solar constant at the location, the latitude of the location,
the type of climate of the location, the local longitude of the location, the longitude of the
standard meridian for the location, and the standard clock-time of the location. If the values
of these variables are known, there are different mathematical models [1], called classical
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methods, with the help of which we can estimate the amount of energy produced from
RES. In this framework, the problem can be regarded as time-series forecasting, for which
different approaches can be considered [2–5].

The artificial intelligence techniques [6], include artificial neural networks (NN), such
as multilayer-perceptron and feedforward neural-networks [7,8], radial-basis-functions
neural networks [9], adaptive neuro-fuzzy inference systems [10], fuzzy-expert systems [11],
multi-agent-based hybrid systems [12], convolutional neural networks [13,14], recurrent
neural networks [15,16] and restricted Boltzmann machines [17]. Concerning long short-
term memory architectures, these are effective in dealing with a variety of highly complex
problems [18,19]. The incorporation of additional layers within deep-neural-network [20,21]
architectures can significantly improve generalization performance, both for short- and
long-term horizons. The main drawback of these highly complex intelligent topologies is
the training computational-burden.

Unlike classical estimation methods, predictive models based on artificial-intelligence
techniques are based on data. Therefore, a database is needed, resulting from smart-grid
monitoring, which allows us to estimate the power generated from RES. The trend in the
energy market is not only that of diversifying the sources of energy used in a smart home
and estimating the amount of energy produced, but also that of using the energy available
efficiently [22].

Household energy efficiency can be achieved mainly in two ways: by reducing total
energy consumption or by consumption shifting. Consumption reduction refers to reduc-
ing the overall energy load, usually by increasing consumer awareness, shutting down
appliances not in use, purchasing energy-efficient devices, or improving home construction
and design. On the other hand, consumption shifting is focused on deferring certain loads
over time, usually to off-peak periods, taking advantage of local production from renewable
energy sources (RES) and off-peak tariffs in a liberalized energy market. Naturally, these
two alternatives are not mutually exclusive, and can be employed together.

For determining optimal load-shifting, critical choices need to be made concerning
the appliances to be managed, operational constraints of the grid, and the scheduling
techniques to be considered. Scheduling is usually conducted over a future time-horizon,
for which household demands and electricity generation can be predicted with accuracy.
In this case, adequate and representative consumption and energy production from RES
profiles are required. In addition, the core of the energy-management problem is intelligent
load-shifting, which in an actual European scenario means minimizing energy payment by
maximizing the energy from the self-consumption of renewable energy sources [23].

A wide variety of methods and techniques have been proposed in the scientific litera-
ture to improve the use of energy from RES through load schedules. These methodologies
can generally be grouped into five categories: mathematical optimization, heuristic and
metaheuristic methods, model-based predictive control, machine learning, and game-theory
approaches [24].

The category of mathematical-optimization-based scheduling techniques includes non-
linear programming problems, convex programming problems, and dynamic optimization
problems. These techniques are the most popular choice for small and medium-sized
scheduling problems addressed by home energy-management-systems. We have revised
in our proposal the integration of mixed-integer linear-programming techniques (MILP)
with different applications for energy scheduling purposes.

Thus, we have identified Sou, in [25], who proposes mixed-integer linear program-
ming for minimizing the electricity cost in a smart home by assigning constraints such as
enforcing uninterruptible and sequential operations for residential controllable loads. On
the other hand, Tostado, in [26], uses the MILP for the optimal scheduling of a series of
flexible appliances on various days of the week, involving different tariff options.

For example, [27] the authors describe the use of linear programming to schedule
the electricity use of an industrial consumer for product manufacturing. For this type of
consumer, additional restrictions are added to optimize the scheduling.
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Srilakshmi proposes in [28] an approach for an electric vehicle charging/discharging-
schedule rate in which the cars are modeled using MILP. The algorithm is used to maximize
economic benefit for the prosumers, the owners of electric vehicles, with minimal battery
degradation. In this approach, the optimization using MILP yields a definite optimal
solution rather than a meta-heuristic optimization solution.

In his work, Koltsaklis [29] determines the optimal day-ahead energy scheduling of all
load types for a smart home, through a cost-minimization objective function. The hybrid
prediction model combines the k-medoids algorithm for performing the clustering of the
training set and for input selection with the computing of the prediction using the Elman
neural network.

In the general context of an energy-efficient smart home that integrates renewable
energy sources such as photovoltaic panels, the objective of this article is to minimize the
amount of energy consumed from the national energy grid by producer-consumers of
energy from renewable sources, in their own smart homes. In order to fulfill this goal, it is
necessary to estimate the amount of renewable energy produced on a day-ahead horizon
and to schedule the operation of controllable consumers in a smart home. In consequence,
the smart-prosumer framework, which supposes the smart-home-appliance consumption-
classification and power-generation from renewable sources, is discussed in Section 2 of
this article. Then, Section 3 introduces the mathematical formulation of the load-shifting
algorithm and the principles of scheduling of energy consumption. Section 4 presents the
numerical results obtained from a real prosumer database, and underlines the advantages
of the proposed approach. Finally, in Section 5, conclusions and future research directions
are presented.

2. Energy-Management Framework
2.1. Photovoltaic Power Generation

In the context of smart homes and new trends oriented towards sustainable develop-
ment, the use of renewable energy sources (RES) proves to be very promising.

In our approach, firstly this problem of prediction was regarded as time-series fore-
casting, for which different approaches are considered in the literature [30].

We applied the model proposed by Han [31], to estimate the power generated by
the photovoltaic (PV) panels, which is presented in Equations (1)–(5), and which is a
function of the solar radiation incident on the modules and the ambient temperature.
This method obtains the parameters through meteorological measurements and the panel
manufacturer’s manual.

Thus, the power generated from RES (denoted by PPV) is computed as:

PPV = N·FF·V·I (1)

FF = Vmppt − Imppt·VOC − ISC (2)

V = VOC − Kv(Tc − 25) (3)

I = r[ISC + Ki(Tc − 25)] (4)

Tc = Ta + r(Not − 200.8) (5)

where PPV represents the amount of energy produced from RES and N represents the
number of PV panels; FF is a dimensionless-form factor; V is the voltage in the PV module;
I is the current in a PV cell; Tc represents the PV-panel temperature in degrees Celsius;
Ta is the average environment temperature in the period; r is the solar radiation in kW/m2;
Not is the nominal operating-cell temperature; Isc is the cell short-circuit current; Ki is a
current/temperature coefficient; Voc is the open-circuit voltage of the module; Kv is the
thermal-stress coefficient in V/◦C; Vmppt is the voltage at the point of maximum power;
Imppt represents the current at the point of maximum power.

Additionally, in order to accurately predict the amount of energy produced from
renewable sources in the short term, we have designed and tested two neural-network
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architectures: multilayer perceptron (MLP) and radial-basis function (RBF). MLPs are
usually used for performing short-time forecasting, being feedforward neural-network
models, able to map sets of input data onto a set of appropriate output. They have multiple
hidden layers of neurons, which are fully connected from one layer to the next. On the other
hand, the RBF architectures used for performing short-time forecasting have an input layer,
one hidden layer and an output layer. The neurons in the hidden layer contain Gaussian
transfer-functions, whose outputs are inversely proportional to the distance from the center
of the neuron. The characteristics of the proposed NN models are presented in Table 1.

Table 1. Characteristics of NN models.

Architecture MLP-RN RBF

Number inputs 1 1

Number layers 1 hidden layer with 5 nodes
1 output layer with 1 node

1 hidden layer with 5 radbas neurons
1 output layer with purelin neurons

Transfer functions tansig—hidden layer
purelin—output layer

gaussian—hidden layer
purelin—output layer

Performance function MSE MSE and MAE
Training mode Supervised

Training method Levenberg-Marquardt
Train epochs 1000

Initial MSE goal 0.0098
Initial spread 0.02719

Learning rate (lr)
Tolerance (goal)

0.05
10−3

2.2. Home Appliances’ Consumption

In our case, the considered smart home integrates not only a photovoltaic-power
contribution and energy exchanges with the national power grid, but also smart loads.
These smart loads are household appliances that can be analyzed and modeled, based on
the characteristics and usage preferences of prosumers.

In the works [32,33], the smart-home appliances are divided into two categories
(see Figure 1): non-schedulable (TCL), e.g., refrigerator, printer, microwave, television
andhair-dryer, and schedulable home appliances (ECL), e.g., washing machine, air condi-
tioner, iron, water heater, and electric vehicles. Non-schedulable appliances rely on manual
control to complete a task, and are needed only when the users are home. Since the comfort
level of users is quite sensitive to the timely services of non-schedulable appliances, their
usage would usually not be delayed.
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The appliances which can complete a task without any manual control, such as air
conditioners and water heaters, are schedulable [34]. These can be further classified
into interruptible (controllable) and non-interruptible (fixed) in terms of the continuity
of operation time [35]. Generally, interruptible appliances are usually more schedulable
than non-interruptible ones. The non-interruptible appliances are constrained by a fixed
operation-period called the hold-time [36], and this should be satisfied; namely, the washing-
machine operation has to be completed for the task of the dryer to be able to start up.

Koltsaklis, in [24], presents the home appliances with their specific characteristics,
including the load-type, and the power consumed (kW). Although it is possible to monitor
the electrical consumptions of each appliance in the dwelling, only some appliance cate-
gories can be identified as “shiftable loads”. These belong to the category of “periodically
used appliances without human interaction” class in the energy-management problem.

The household-energy-management problem includes appliance constraints which
are related to how household appliances are modeled, the appliance-model simplicity, and
the lack of detailed consumption-profile data for controllable appliances.

The total energy consumed at each time slot, t, by all types of appliances from a smart
home can be calculated by Equation (6):

Ptotal(t) = Pf ixed(t) + Pcontrollable(t) + PTCLs(t) (6)

where Pfixed is the amount of energy consumed by fixed appliances, Pcontrolable is the amount
of energy consumed by controllable appliances and PTCLs is the amount of energy consumed
by non-schedulable appliances.

The demand and supply balance is a major concern for prosumers, and is directly
affected by consumer behavior, the amount of energy available, and energy tariffs.

3. Load-Shifting Using Scheduling Techniques
3.1. Scheduling Framework

We will focus in this paper on the first category of deterministic optimization-based
methodologies, because our problem formulation can be formalized as a linear optimization-
based programming problem.

The class of problems considered in this paper is represented by the scheduling of
home-appliance loads to minimize the cost paid by the prosumers for the energy consumed
from the national energy grid. This category is a scheduling one, because it involves finding
a least-cost schedule to process a set of orders, denoted by I, using a set of dissimilar
controlled or uncontrolled home-appliances, denoted by M. The processing of an order,
i ∈ I, can only begin after the release date, ri, and must be completed at the latest by the
due date, di. Order i can be processed on any of the appliances. The processing cost and
the processing time of order, i ∈ I, on appliance m ∈M are Cim and pim, respectively.

In these terms, the previously stated objectives could be formalized in this way:
the main decisions involved in this scheduling problem are the assignment of orders to
appliances, the sequence of orders to each appliance, and the start time for all the orders, to
minimize the processing cost of all the orders.

3.2. Load-Shifting Algorithm

Since the objective function and constraints in this context are strictly expressed by
linear relationships, being binary programming, we have considered mixed-integer linear
programming (MILP) [26] as a suitable approach.

In this context, the energy-scheduling problem can be expressed (see Equation (7)) as
the minimization of a cost function, given a certain number of electrical tasks, Ntasks, (e.g.,
the appliance starts) to arrange in NTIME time samples:

min
w, L, C

Ntask

∑
k=1

Ntime

∑
i=1

wk(i)Lk(i)Ck(i) (7)
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where wk(i) expresses whether or not a task is running on time, Ck(i) is the energy cost at
time i, and Lk(i) is the energy consumed by the task in the time interval, i.

In particular, this minimization problem is subject to the following constrains
(Equations (8)–(10)), considering the total power consumed at each time and the absence of
interruptions for each task:

∀ i→∑
k

wk
(
i
)
·Lk
(
i
)
≤ Pmax (8)

∀ k→ wk(i) = 1, ∀ i : Tstart < i < Tend (9)

Ck
(
i
)
=


R
(
i
)

i f ∑
k 6=k

wk
(
i
)
·Lk
(
i
)
> PPV

0 i f ∑
k 6=k

wk
(
i
)
·Lk
(
i
)
≤ PPV

(10)

The shiftable tasks can set wk(i) to 1, according to a determined policy.
For each shiftable load, k, we consider Equation (11):

J(i) = ˆPPV(i)− ˆLTOT(i) (11)

where ˆPPV(i) is the PV production forecasted at time i, and ˆLTOT(i) is the average con-
sumption pattern for the considered day of the week. ˆLTOT(i) is computed by averaging
the last 10 days and excluding the power consumed by the shiftable loads.

We then have to find the best timing to start the task minimizing the costs, as
Equation (12) shows:

minJJ(j)− Lk(j)K
i

Ck(j)unde j = i, . . . , i + Top (12)

where Lk(j) is the power consumed by the load at the relative time j, Ck(j) is the energy
cost and Top is the total cycle-time of the load.

4. Determining Optimal Load-Shifting Using Scheduling Techniques
4.1. Test Conditions and Strategy

In this section, the results obtained after the implementation of the load-shifting
algorithm in the LabView software are presented.

The energy-consuming appliances considered in the scenarios reported here, selected
from those presented in the section dedicated to the home appliances’ consumption, are
presented in figures below. The washing machine (Figure 2) and the dishwasher (Figure 3)
are considered as being, in our scenarios, priority controllable-consumers, meaning loads
whose consumption interval can be established according to the energy produced from
RES, but once they are turned on, it is preferable not to turn them off. In addition, they
have the ability to be shifted, fully or on a specific operation-cycle (see Table 2 for washing
machine), to run at later intervals.

On the other hand, the vacuum cleaner (Figure 4) is an interruptible controllable-
consumer, because its consumption interval can be set according to the energy produced,
and its operation can be interrupted.

Table 2. Washing-machine power consumption during the operating cycles.

Operating Phase Min. Power [W] Max. Power [W] Operation Time [min]

Movement 27.2 2100 26
Pre-heating 5 300 6.6

Heating 206.5 2200 59.7
Maintenance 11.0 200 19.9

Cooling 10.8 500 10
1st rinse 10.3 700 10.4
2nd rinse 9.9 700 10.3
3rd rinse 23.6 1170 19.8
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In addition to these controllable consumers, in our case, some uncontrollable con-
sumers chosen for the study, such as room lighting, a hair-dryer and a microwave oven,
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whose consumption is shown in Figure 5. Two scenarios were considered: scenario 1 for
the 31 May 2022 (Figure 5a) and scenario 2 for the 11 November 2022 (Figure 5b).
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The considered house has an installed power capacity from photovoltaic-energy
sources, of 3.3 kW. The characteristics of the 12 PV panels integrated ino the smart grid,
produced by Luxor (ECO LINE P60-275W) are presented in Table 3 The system contains
the Huawei SUN2000-3KTL inverter.

Table 3. Characteristics of PV panels.

Model of PV Panel No.
Characteristics (Per Module)

Pnom C Inom Vnom ISC VOC Tref NS

PV, Luxor, 275 W, Polycrystalline 12 275 W 60 8.77 A 31.42 V 9.27 A 38.58 V 25 ◦C 12

Pnom = nominal output power; C = the number of cells; Inom = nominal current; Vnom = nominal voltage;
Isc = short-circuit current; Voc = open-circuit voltage; Tref = reference temperature; NS = the number of solar
panels connected in series.

4.2. Case Studies and Results

The system was able to meet the energy-load demand from May through August,
even with the excess energy which can be stored in the battery system. For this reason,
we considered a day in June for scenario 1. From October through April, the PV sys-
tem was deficient in meeting the energy-load demand. To put in evidence this fact, for
scenario 1 we considered a day in June as a reference. More precisely, to build the test sce-
narios, two representative days for the load and energy produced by RES were considered:
the 2 June 2022, and the 12 November 2022.

The data used in the predictions were monitored for solar radiation and ambient
temperature. The simulations were run over a 1-day time-horizon, with a time-step of
5 min.

Firstly, considering the mathematical model in Equations (1)–(5), we obtained an
estimated profile of the PV power generated by the PV panels in relation to the real PV
power monitored. These results are depicted in Figure 6a,b, for both scenarios.

Secondly, similar profiles were predicted with the RN-MLP and RN-RBF architectures
proposed in Section 2.1. Figure 7 shows the power-curve forecasted by RN-MLP (green),
RN-RBF (blue) and real PV-power (black), for both scenarios.

The performance of the forecasting approaches for different prediction horizons was
measured using root-mean-square error (RMSE) and mean absolute percentage error
(MAPE) between the predicted values and the real measurements monitored on a grid of
PV panels with 3.3 kW installed power. The model with the smallest RMSE and MAPE,
for a day-ahead prediction horizon, was the RBF neural network. This profile of the en-
ergy generated from RES by RBF-RN was later used in the test scenarios. Table 4 shows
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the RMSE and MAPE values computed for the RN models and for the regression model
(denoted “model”).
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Table 4. RMSE and MAPE.

Prediction
Horizon

RMSE MAPE

MLP-RN RBF-RN Model MLP-RN RBF-RN Model
T+1 0.4186 0.5325 0.5725 0.0718 0.0579 0.0598

T+10 1.1395 1.228 1.228 0.2665 0.2863 0.4808
T+20 10.515 3.2758 3.2758 1.0757 0.915 0.915

The load-shifting MILP algorithm is satisfied by the scheduling approach, firstly by the
constraint relating to the uncontrollable-load supply with energy from RES. Thus, Figure 8
presents the PPV estimated by RBF (black), PUL (the power consumed by the uncontrollable
loads) (the red line), and PUTIL = PPV − PUL (the difference between the estimated PPV and
the power consumed by the uncontrollable-loads) (the blue line), for both scenarios.
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The second step of the shifting algorithm simulation consists in supplying the
washing machine and dishwasher, which are controllable loads of first and second
priority, respectively.

Figure 9 depicts the scheduling of the amount of energy for both scenarios.
PPV (the power estimated by RBF) is represented in black, PUTIL (the difference between the
estimated PPV and the power consumed by uncontrollable loads) is the red line, and PINT
(the difference between the estimated PPV and the power consumed by the uncontrollable-
loads and the priority controllable-loads) is the blue line.

In our case: PINT = PPV − PUL − PWM − PDW, where PPV (power estimated with RBF),
PINT (between estimated PPV and power consumed by uncontrollable-loads and priority
controllable-loads), PFIN = PINT − PP2 (PP2 = sum of all priority controllable-consumers
which can be interrupted), PFIN = difference between estimated PPV and power consumed
by all loads. In our case: PFIN = PPV − PUL − PWM − PDW − PVR.

The third step of the shifting-algorithm simulation consists in supplying the vacuum-
cleaner load, as an interruptible controllable-consumer in which the operation can be
interrupted. Figure 10 depicts the amount of energy after the third step of the algorithm for
scenario 1 and scenario 2.
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In conclusion, the results obtained for the first scenario show that in the first third (the
night and the morning period) of the day, more energy is consumed by uncontrollable-loads
than produced. In the second third (the afternoon period), more is produced, and in the
last third (the evening and the night period), much more is consumed than produced.
Figure 11a shows that when we have a surplus of energy consumed compared with the
energy generated by the photovoltaic system, then energy will be taken from the national
grid (situation 1). When we have a surplus of energy generated by the photovoltaic system,
it is preferable to turn on the controllable-loads (situation 2), in both scenarios.
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On the other hand, in the case of the second scenario (Figure 11b), due to the weather
conditions in November and the significantly reduced amount of energy from renewable
sources compared to the case of the first scenario, the periods in which loads must be
shifted with the help of the proposed algorithm are more and more difficult to achieve
with optimization.

5. Conclusions and Work in Progress

This paper’s goal is represented by the minimization of the amount of energy con-
sumed from the national energy grid by producer-consumers of energy, from renewable
sources, in their own smart homes.

Firstly, the general context of smart grids integrating renewable energy sources was
defined. Beyond the identification of challenges and opportunities in the field during
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a bibliographic study, three methods were proposed to estimate the energy produced
from renewable sources: two of them were based on MLP and RBF neural networks, and
one used linear-regression methods for estimation. The performance of the forecasting
approaches was measured using RMSE and MAPE, to find the differences between the
predicted values and the real measurements monitored on a grid of PV panels with 3.3 kW
installed power. The model with the smallest RMSE and MAPE was the RBF neural
network. This profile of the energy generated from RES by RBF-RN was later used in the
test scenarios.

The second issue addressed in the article was related to loads from smart homes.
They were classified from the point of view of their ability to be controlled, their priority
of operation, and the possibility of being interrupted or not while in operation. This
preliminary analysis was necessary in view of the objective pursued in the article, of
minimizing the amount of energy consumed from the national energy grid by load-shifting
using scheduling techniques.

In the third section of the article, the algorithms for load-scheduling in a smart home
were reviewed, and the MILP algorithm was selected to be integrated into the particular
context of a smart home with an installed power-capacity of 3.3 kW.

In the fourth section of the article, the forecasting methods and the load-shifting
algorithm were integrated and tested on a real database. The data were monitored for two
days which were representative in terms of the amount of energy from RES produced and
consumed, in June and November.

The load-shifting algorithm proved its effectiveness, through the results obtained
and which are presented in Section 4.2, mainly in the periods when the amount of energy
produced was reduced, due to meteorological conditions.

The limitations of the work reported here are due to the fact that the case study was
carried out on a single family-smart-home, whose installed power from renewable energy
sources was 3.3 kW, and to the fact that the number of controllable loads selected was
limited by this framework.

In addition, the context was established by the national energy strategy, which encour-
ages the installation of photovoltaic panels with an installed capacity of 3.3 kW in family
homes, by granting a subsidy for this purpose. Therefore, the major interest is to identify
energy-management systems for smart homes that ensure as much as possible a share of
the consumption from the homes’ own production.

The proposed framework can be extended with an analysis carried out on a smart
home in which there would be, in addition to the production and consumption devices
considered in our case study, a storage source of energy produced from renewable sources,
such as battery banks. We consider that the influence would be significant, because it
would make the prosumers’ participation in the liberalized energy-market more flexible, as
it would depend on the energy market price and the amount of available stored energy.

In addition, the work could be improved with a multi-objective optimization ap-
proach, by considering an additional criterion, for example, the way in which the degree of
consumer comfort is impacted by load-shifting.
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