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Abstract: This research is focused on improving the conventional response spectrum analysis (CRSA)
method for the elastic shear demands estimation of shear-dominated steel building frames. An
alternative approach named the improved response spectrum analysis (IRSA) method is proposed
and validated in this paper. A simplified procedure to capture the dynamic features of a continuous
shear beam (CSB) with stepped stiffness is first presented, and then validated. The CSB is employed in
IRSA to replace the original eigenvalue analysis in CRSA to provide the modal parameter estimation
for the considered system. A modified SRSS (MSRSS) mode superposition based on a genetic
algorithm is then proposed and employed in IRSA. Based on the analyses conducted in this research,
it is found that using first three modes in MSRSS to execute mode superposition could provide a
great estimation of the elastic shear demands distribution. The amplification of weighting coefficients
for the second and third mode contribution indicates the underestimation of the high mode effect
in CSRSS. Further, response history analyses (RHA) are performed on two demonstration building
frames to evaluate the improvement of the IRSA. The results indicate that IRSA provides a more
precise estimation on the elastic shear force demand distribution in shear-dominated steel building
frames under seismic effects compared with that which was achieved by CRSA.

Keywords: response spectrum analysis; elastic shear demands; continuous shear beam; modified
SRSS mode superposition

1. Introduction

Response spectrum analysis (RSA) is a linear analysis method that is used to estimate
the structural response under dynamic excitations [1]. In this method, the peak response of
a considered multiple-degrees-of-freedom system (MDOF) is combined from those of the
single-degrees-of-freedom systems (SDOFs), each of which has a vibration period that is
equal to that associated with a certain vibration mode of the MDOF system. The modal
contributions from those SDOFs are then combined using a certain criterion. Considering
the nonlinearity of a structure during major earthquakes, the elastic demand derived from
the modal composition needs to be further deducted. The RSA has been widely accepted
by structural engineers in the design process due to its practicability. Many prevailing
codes for seismic designs, such as ASCE/SEI 7-16 [2], treat it as an effective way to estimate
the story shear demands for a considered system during design-basis earthquakes.

Many mode superposition methods have been proposed and studied since the RSA
was proposed. Among these mode superposition methods, the square root of the sum of
the squares (SRSS) method is widely used in mode superposition by structural engineers.
This method is actually a statistical method based on the hypothesis that an earthquake is
a stationary Gaussian process, and the cross-correlation between the modal responses is
negligible [3]. The SRSS method proposes that the peak response of the considered system
can be estimated as the square root of the sum of the squares of the peak response from each
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mode of vibration. To date, this method is recommended in numerous codes for seismic
design [2,4]. From the structural point of view, using SRSS mode superposition in the RSA
provides an alternative approach to include the contribution from the high-mode effect.
Nevertheless, some research has pointed out the detrimental defects of the SRSS method, i.e.,
the cross-correlation between the modal responses is neglected. Hence, the CQC method
was developed to include the effect of cross-correlation between the modal responses [5].
Chopra summarized the application scope of each method and proposed that adopting
modal combination rules in the RSA to conduct an elastic analysis may generally lead to the
inadequate results, especially in upper story of the system [1]. The maximum deviation of
the considered research was up to 25%. Moreover, the researcher also indicated that using
the mode superposition to estimate the response of the structure under a single ground
motion record may lead to much more deviations. This is caused by the assumptions of
the random vibration theory behind the derivations for each method. The similar defect
of RSA also exists while performing a nonlinear analysis. To more accurately capture
the nonlinear demands during major earthquakes, some modified RSA were proposed to
adjust the contribution of the higher mode effect. Khy and Chintanapakdee et al. proposed
a modified response spectrum analysis to capture the shear force demand for tall RC shear
wall buildings [6]. Sullivan, Priestley et al. proposed a substitute structure method to
include the higher mode effect for ductile structures [7]. Pennucci, Sullivan et al. proposed
that the higher mode effect should be considered based on the ductile state [8]. Moreover,
some spine systems were developed to eliminated the higher mode effect under nonlinear
deformation [9,10].

In this research, the authors intend to propose an improved response spectrum anal-
ysis (IRSA) method in two dimensions to estimate the elastic base shear demands in the
preliminary design stage on steel building frames, whose earthquake-induced lateral dis-
placements are dominated by shear and which are denoted as shear buildings hereafter.
Note that this preliminary study is focused on normal two-dimensional steel building
frames with well-separated natural frequencies. The cross-correlation between the modal
responses is minor and neglected. Thus, the SRSS method, instead of CQC method, is
adopted in this study. A simplified model was first proposed to obtain the modal properties
of the considered shear building frames, which are needed in the IRSA. Specifically, in the
model, a considered shear building can be represented by a shear-dominated cantilever
with varied shear stiffness. As will be described in detail in the following sections, the
simplified model eliminates the needs for the eigenvalue analysis of the original shear
building in finite element software. As such, the simplified model is particularly attractive
in the preliminary design stage when many design parameters may be varied. Aside from
the simplified model for gleaning the modal properties, this paper establishes a new rule to
combine the shear demands of the story associated with different vibration modes, which
is denoted as the modified SRSS method (MSRSS). The advantage of the MSRSS method
over the other existing approaches and design code recommendations are demonstrated
through the parametric analyses of representative shear building examples. Finally, the
authors summarize the application scope and limitation of the study and point out the
direction of further research.

2. A Simplified Model for Shear Building

While the earthquake-induced lateral displacement of a building structure combines
the contributions of the shear and flexural demands, according to past investigations [2,11],
a cantilever member can be used to approximate the modal property of the building.

Generally speaking, finite element (FE) model analysis could provide a precise pre-
diction about the modal parameters for the RSA. However, the modeling process will
cost great deal of time in the preliminary design stage. Additionally, adjusting the design
parameters will incur a large workload to revise the FE model. Thus, in this study, an algo-
rithm based on a cantilever member is adopted, which can also be involved in parametric
analyses. When a building frame is categorized as a “shear building”, it can be represented



Buildings 2023, 13, 258 3 of 17

by a cantilever member with proper shear stiffness and mass distributions. This section
introduces how to build a continuous shear beam model with stepped stiffness based on
the uniform shear beam model.

2.1. Continuous Shear Beam with Stepped Stiffness

Referring to prior research [12], the differential equation of a shear beam along its
height is shown as Equation (1).

ρ
∂2u(z, t)

∂t2 − ∂

∂z

[
GA(z)

∂u(z, t)
∂z

]
= 0 (1)

where u is displacement, t is time, z is height from the ground, and GA is the shear stiffness.
The mass distribution ρ is assumed to be uniform along the height in this model. When we
substitute x = z/H and GA(x) = GA0S(x) into Equation (1), Equation (2) can be obtained. x
is the normalized height, S(x) is the shear stiffness ratio of the section of x height to that
of base, H is the height of the structure, and GA0 is the shear stiffness at the base of the
shear beam.

ρ
∂2u(x, t)

∂t2 − GA0

H2
∂u(x, t)

∂x
d[S(x)]

dx
− GA0

H2 S(x)
∂2u(x, t)

∂x2 = 0 (2)

When we decompose the variables, u(x, t) can be expressed as Equation (3), where φ(x)
is the mode shape which determines the relative distribution of displacements along the
height, and the function q(t) defines the way it varies over time.

u(x, t) = φ(x)q(t) (3)

By substituting Equation (3) into Equation (2), Equation (2) can be decomposed into
Equations (4) and (5). Equation (4) defines the free vibration of an undamped SDOF system
with circular vibration frequency ω.

d2q(t)
dt2 + ω2q(t) = 0 (4)

S(x)
d2[φ(x)]

dx2 +
d[S(x)]

dx
d[φ(x)]

dx
+

ρH2

GA0
ω2φ(x) = 0 (5)

It is Equation (5) which precisely governs the vibration mode shape and the corre-
sponding circular vibration frequency ω. This equation also indicates that the dynamic
features of the shear beam system can only be affected by the stiffness distribution function
S(x) with the given parameters ρ, H, and GA0.

For most building structures, the inter-story stiffness is not uniform along the build-
ing’s height. Generally speaking, the inter-story stiffness of a lower story is higher than
that of an upper story. For a multi-story building structure, adjacent stories often possess
the same beams and columns. Thus, the stiffness distribution of a multi-story building is
usually stepped, and it decreases progressively from the base to the roof of the building,
as shown in Figure 1. The stiffness distribution function S(x) for this distribution type is
correspondingly stepped as shown. This distribution makes S(x) remain as a constant in
a specific length of a shear member. Thus, for the nth segment of the shear-dominated
cantilever member, Equation (5) can be transformed into Equation (6), where Sn is the
stiffness distribution coefficient of nth segment of the member. Note that Equation (6) is
also remain valid for the member with uniform properties.

Sn
d2[φ(x)]

dx2 +
ρH2

GA0
ω2φ(x) = 0 (6)
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Figure 1. Illustration of the stiffness distribution along building height.

The general solution of Equation (6) can be easily obtained as Equation (7).

φn(x) = A1,n sin(βnx) + A2,n cos(βnx) (7)

where A1,n and A2,n are constants of the nth segment of the member, which depend on the
boundary conditions. βn is a constant associated with the stiffness and mass of the nth
segment of the member. βn in Equation (8) can be expressed as below.

β2
n =

ρH2

SnGA0
ω2 =

S1β2
1

Sn
(8)

The boundary conditions of each segment of the shear-dominated cantilever member
should be considered. As presented in Equation (9), the displacement of the lower end of
the nth segment should be consistent with that of the upper end of the (n−1)th segment
(the displacement of the base should be zero, φ1(0) = 0), as illustrated in Figure 2.
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Moreover, the shear between the two contacted faces in the adjacent segments should
be consistent, as Equation (10) (the shear force at the top should be zero, Snφ′n(1) = 0).

φn−1(xn−1) = φn(xn−1) (9)

Sn−1φ′n−1(xn−1) = Snφ′n(xn−1) (10)

By substituting Equation (8) into Equations (9) and (10), for each segment, the equation
matrix for boundary conditions can be established as Equation (11).

P(β1) ·



A1,1
A2,1
A1,2
A2,2
. . .

A1,n
A2,n


= 0 (11)
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where P(β1) is the coefficient matrix. To derive a nontrivial solution for A1,n and A2,n,
the determinant of P(β1) should be zero as Equation (12). Additionally, β1,i for the ith
mode can be solved using it. Note that the solution for Equation (12) is not unique. The
minimum solution β1,1 is for the first mode, while the greater β1,i is the solution for the
higher ith mode.

det(P(β1)) = 0 (12)

Given the β1,i for the ith mode, the circular frequency ωi and βn,i can be obtained from
Equation (8). Finally, the mode shape ϕn,i for the ith mode can be obtained.

2.2. Validation of the Approach

To validate the equations derived in Section 2.1 for the periods and the mode shapes,
a demonstration shear beam (DSB) in FEM software is established. The DSB is discretized
into 1000 elements which only possess shear stiffness. The mass is evenly assigned at
two end nodes of each element. The distribution of the shear stiffness of the DSB and the
continuous shear beam (CSB) are illustrated in Figure 3a. The lateral stiffness of upper part
is 20% base shear stiffness less than that of lower part. Additionally, the mass is evenly
distributed along the height of the system. Figure 3b presents the comparisons for the
first three modal shapes for the two systems. Note that the three modal shapes are all
normalized, and the maximum displacement for each modal shape of each system is 1.0. It
could be clearly noticed that the results from CSB match these from DSB, validating the
accuracy of the derived equations.
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Figure 3. Validation of CSB model. (a) Stiffness distribution. (b) Comparisons for the first three
modal shapes.

Though, the consistency between CSB and FEM is significant in Figure 3b, and the
discrepancy between CSB and the discretized model still exists, especially when there are
not that many degrees of freedom. Note that the building frames are actually discretized
systems. Thus, to validate the applicability of CSB, the FEM analyses with different numbers
of element were performed. Figure 4 presents the comparison of modal parameters between
CSB and FEM. Three FEMs possessing five, ten, one hundred numerical elements are
analyzed. It should be noted that the discrepancy does increase with the decrease in
degrees of freedom. However, Figure 4 presents satisfactory discrepancies in the modal
parameters between CSB and FEM, and even the degree of freedom is five.
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3. Modified SRSS Method for Improved Response Spectrum Analysis

As mentioned before, prior research has reported that adopting the conventional
SRSS (CSRSS) method in the RSA may lead to inadequate results [1]. Additionally, as
recommended in ASCE/SEI 7–16 [2], the RSA should include a minimum number of
modes to obtain a combined modal mass participation of at least 90% of the actual mass.
Not all of the modes have to be considered, which will also lead to the reduction of the
shear demands. To mitigate the limitation of the CSRSS, the MSRSS method was developed
for use in the RSA in this research. The following first briefly presents the RSA procedure
with CSRSS. Then, MSRSS is proposed based on adjusting the weighting factors for each
modal contribution.

3.1. Response Spectrum Analysis with CSRSS

For an elastic building frame, the displacement can be expressed as Equation (13) in
the RSA, where N is the number of considered modes; Γn is the participation factors of the
nth mode given by Equation (14); ι can be calculated according to Equation (15); Dn(t) is
the displacement response history of the SDOF system, representing the nth mode.

u(t) =
N

∑
n=1

ΓnφnDn(t) (13)

Γn =
φT

n mι

φT
n mφn

(14)

ι =
N

∑
n=1

Γnφn (15)

The maximum effective seismic force on each floor can be given as follows:

fn = Γnmφn An (16)

where An is the design spectrum acceleration associated with the nth mode. The design
shear force demand associated with the ith story and nth mode Fi,n can be then obtained
by accumulating the effective seismic force along the building height. The design shear
force for the ith story Fi can be obtained by combining Fi,n using the SRSS method as
Equation (17).

Fi =

(
N

∑
n=1

F2
i,n

)0.5

(17)

3.2. The MSRSS Method

Since the CSRSS method was proposed and applied in structural engineering [3], it has
been widely accepted by engineers. From the structural point of view, the CSRSS method
indicates that each modal vibration of the system is a stationary stochastic process, and it
provides an alternative approach to include the high mode effect of the considered system.
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Nevertheless, some researchers pointed out that using the CSRSS method may lead to
inadequate results, especially in upper story of a multi-story system, as described above [2].

To quantitatively address the limitation of the CSRSS method, a 20-story steel moment-
resisting frame (benchmark structure) designed for the Los Angeles, California region,
which has been considered in past investigations for different research purposes [13], is
revisited in this research. Figure 5 shows the floor plan of the benchmark building and
the elevation of the selected lateral force resisting frame. As shown, the structural system
is 30.50 m (5 bays) by 36.60 m (6 bays) in plan. Each bay is 6.10 m in length in both of
the directions. The lateral force resisting frames are arranged as exterior bays, while the
interior bays are steel frames with simple connections. The floor-to-floor height for a typical
story is 3.96 m, and for the ground level and basement levels, they are 5.49 and 3.65 m,
respectively. More detailed information can be found in prior research [13]. The selected
frame is numerically modelled as a frame model in Opensees [14] to perform the eigenvalue
analysis and the RHA. Note that this research focuses on the mode superposition of the
elastic modes, and the nonlinearity of the material is not considered in this research. Thus,
the columns and beams are modelled using elastic Timoshenko beam elements. The lumped
mass at each floor for the considered frame is 276 ton. Additionally, the rigid diaphragm
assumption is adopted in this FE model. This model is established to obtain the modal
properties and quantify the shear demands using the RHA under each earthquake ground
motion. This is followed by obtaining shear demands using the equivalent lateral force
(ELF) procedure and the RSA [2].
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Figure 5. Floor and elevation of the demonstration frame.

The first three mode shapes of the considered system from FE model are presented in
Figure 6, and the corresponding mode periods are also presented in the figure.
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Figure 6. The modal information of the considered benchmark frame.
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As recommended in ASCE/SEI 7–16 [2], the RSA should include a minimum number
of modes to obtain a combined modal mass participation of at least 90% of the actual
mass. Therefore, the first three modes of the benchmark frame are used in the CSRSS mode
superposition. Twenty typical earthquake ground motions, named LA01-LA20, in Los
Angeles from the SAC steel project [15] are employed for the comparison. The shear force
demands of the considered frame from the varied calculation methods under the 20 ground
motions (LA1-20) are summarized in Figure 7. Note that the CSRSS curve in each subfigure
represents the shear demands from the RSA with the CSRSS superposition. The MSRSS
mode superposition will be discussed in depth later.
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Figure 7. Shear force demands of the considered benchmark frame from the ELF, RSA, and RHA.

The results comparison in Figure 7 indicates that the RSA method with the CSRSS
superposition generally underestimates the shear demands compared with that of the RHA.
Moreover, the shear demands of the upper stories are underestimated in many cases when
the CSRSS method is used in the RSA, suggesting that the high-mode effect may not be
precisely captured by the CSRSS mode superposition, which may lead to inadequate design
parameters. These observations indicate the need of an improved method for combining the
modal shear demands. As for the ELF procedure, the deviation between the ELF and RHA
is much more significant along the building’s height, which also indicated the limitation of
the lateral force distribution used in the ELF.

As mentioned before, the CSRSS method combines the responses of different modes in
an equal manner, as Equation (17) suggests. However, the results discussed above indicate
that the CSRSS method fails to adequately capture the contributions of the high modes.
Thus, the MSRSS method that equips the shear demand from the ith mode with a weighting
coefficient An is proposed below:

Fi =

(
N

∑
n=1

(AnFi,n)
2

)0.5

(18)
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To clarify the improvement of the MSRSS method and choose the applicable weighting
coefficients, an Error indicator is defined as Equation (19) to represent the deviation between
the story shear demands from the RHA and the RSA with MSRSS. It can be noticed that
Error can also represent the deviation between the shear demands from the RHA and the
RSA with CSRSS by setting An to be equal to 1.0.

Error =

 1
mGM

mGM

∑
m=1

 1
iFL

iFL

∑
i=1

∣∣∣∣∣∣∣∣∣
Fi,m,RHA −

(
N
∑

n=1
(AnFi,m,n,RSA)

2
)0.5

Fi,m,RHA

∣∣∣∣∣∣∣∣∣


2

0.5

(19)

Fi,m,RHA is the calculated shear demand of the ith story of the considered frame under
the mth ground motion from the RHA of the frame model; Fi,m,n,RSA is the corresponding
shear force demand of nth mode under the mth ground motion from the RSA of the
simplified model of the benchmark building (i.e., the cantilever member model); N is the
number of modes considered in the RSA method; iFL is the total story number of the frame;
mGM is the number of ground motion records in this research. Note that the factor Error
is the average deviation in terms of the different ground motions and stories. Thus, Error
could reflect the shear demand discrepancy between the RSA method and the RHA method.

To clarify the participation of the high-mode effect on the inter-story shear force de-
mands in the representative benchmark frame, the weighting coefficients An in Equation (19)
are adjusted to achieve the minimum Error. Note that searching for a group of An values
to achieve the minimum Error is a project with many iterations. Therefore, a genetic al-
gorithm (GA) is adopted in this study to find the minimum Error and the corresponding
weighting coefficients. The genetic algorithm (GA) is a search-based optimization tech-
nique based on the principles of genetics and natural selection. This method has been
widely in optimization design to decrease the number of iterations. Note that Fi,m,RHA in
Equation (19) is obtained by OpenSees using the RHA method, Fi,m,n,RSA is obtained using
the RSA as mentioned before. The undecided variables in Equation (19) are only weighting
coefficients An.

Figure 7 shows the results from the RSA method with the MSRSS and RHA methods,
respectively. The figure clearly indicates that modifying the weight factor for the higher
modes significantly increases the adequacy of the shear force demand estimation in the
RSA. Compared with the results associated with the CSRSS method, the results from the
MSRSS agree more with the results from the RHA.

Note that three modes are used to conduct the optimal process of the weight coeffi-
cients in the RSA-MSRSS. The number of modes in this optimal process is also deemed
as a variable. The authors also present the resulting Error of the CSRSS and MSRSS with
different considered mode numbers in Figure 8. The figure indicates that the Error of
MSRSS is lower than that of CSRSS by considering the weighting coefficients for each mode.
Additionally, it can be clearly noticed that the Error would decrease when we increased the
number of considered modes N, which is in accordance with our cognition. Nevertheless,
the indicator will not decrease remarkably with the increase in N when N is higher than
three. Moreover, the first three modes in the RSA for the benchmark building achieved a
combined modal mass participation of more than 90% of the system reactive mass, which
is required in ASCE/SEI 7–16 [2].

The weighting coefficients An for the first three modes are given in Table 1. The group
of coefficients exhibit some meaningful laws. The coefficient for the first mode is 1.000, and
for the second and third modes, they are 1.276 and 1.663, respectively.
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Table 1. Weighting coefficients An for the first three modes.

Weighting Coefficients Value

A1 1.000
A2 1.276
A3 1.663

4. Validation of the IRSA Method

The improved response spectrum analysis with the modified SRSS mode superposition
includes the contents described in Sections 2 and 3. The method is used to obtain the elastic
story shear demand for the design of shear-dominated building frames.

4.1. Design Procedure of IRSA

Compared with the conventional RSA method, the IRSA uses a continuous shear
beam mode to provide dynamic parameters without conducting an eigenvalue analysis
using numerical software. Moreover, adopting the MSRSS mode superposition in IRSA
may achieve more adequate shear demand distributions along the building’s height. The
step-by-step design procedure is presented in Figure 9.

Firstly, the engineers are supposed to make a rough estimation on the stiffness and
mass distribution. Then, the method proposes that they use the continuous shear beam
with stepped stiffness to provide the dynamic features of the considered system. The
dynamic parameters will be then used for conducting the RSA to obtain the shear force
demands along the building’s height for each mode. This is followed by the mode su-
perposition by MSRSS to obtain the final shear force demand for each story. Note that
the method is proposed for linearly elastic structures with shear deformation, and so the
systems exhibiting nonlinear behavior and flexural-type deformation are not included in
this research.

Two demonstration building frames are revisited to assess the improvement of the
IRSA method that is presented above. The two frames possess different story numbers
and elevations. The ELF procedure, the RSA method with different mode superposi-
tions, and the RHA method are performed, respectively, using multiple ground motions
to conduct the validations. The following section presents the basic information of the
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demonstration buildings, a detailed procedure based on the proposed approach, and the
comparison results.
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Figure 9. Design procedure of IRSA.

4.2. Demonstration Buildings

The two demonstration steel moment-resisting frames initially produced in the Cali-
fornia Strong Motion Instrumentation Program (CSMIP) are reconsidered in this research.
One frame is a six-story frame (denoted as 6F) that was designed in 1976 based on the 1973
UBC requirements [16]. The other frame is a 13-story frame (denoted as 13F) that was built
in 1975, which was also designed in accordance with the 1973 UBC requirements. Figure 10
shows the floor plans of the demonstration buildings. The six-story frame is 36.60 m by
36.60 m in plan. The selected frame possesses six bays (6 m × 6.10 m) in one direction.
The thirteen-story frame is 48.80 m by 48.80 m in plan. The selected frame possesses five
bays (5 m × 9.76 m) in one direction. As shown, two exterior lateral moment resisting
frames are symmetrically arranged along each horizontal direction. The interior frames
were designed as gravity frames, which consist of simple shear connections only. The
elevations of the demonstration buildings are presented in Figure 11. The height of each
story and the sectional information of each column and beam are presented in the figure.
The tributary seismic reactive masses of each floor for 6F and 13F are 235.6 ton and 270.3 ton,
respectively. More detailed information about the demonstration buildings can be found in
prior research [17]. Note that the two building frames are revisited to demonstrate that the
RSA which adopts the MSRSS method could provide relatively adequate results for the
shear demands of the building stories.
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Figure 10. Floor plan of the 6F and 13F buildings.
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4.3. Computer Modeling and Seismic Excitations

The systems shown in Figure 11 are numerically modelled in OpenSees to conduct the
RHA [14]. Further, in order to validate the application scope of the method, one special
case based on 13F is established as 13F-W, in which the bending stiffness of the beams and
columns below the eighth floor are reduced by 50%. This case is supplemented to validate
the application of the method in the structures with an irregular stiffness distribution along
the building’s height.

All of the frame members are modelled using the displacement-based beam-column
elements. The sectional parameters are consistent with those of prior research to achieve the
same dynamic features. Since the method is proposed for linearly elastic shear structures,
the material nonlinearity of the systems is not considered in the OpenSees model. Thus, all
of the elements are modelled with an elastic material. It should be noted that the elastic
modulus of steel in the 6F model is increased by 18% to achieve the same periods, as
recommended in prior research [17]. As proposed in prior research, the Raleigh damping
model of 3% is used for the two models. A leaning column pinned to the ground is included
in the model to capture the P-∆ effect of the system. The leaning columns are modeled using
the truss element with tremendous axial stiffness. The tributary gravity loads are applied
to the leaning column on the floor levels. Additionally, a rigid diaphragm is adopted in
this model.

The computer model of each frame is analyzed using 100 earthquake records, as rec-
ommended in the ATC 63 project [18]. One hundred ground motions contain multifarious
spectral contents. Forty-four far-field and fifty-six near-fault ground motions are included.
Note that the selected records may not closely match the design spectrum. Abundant
spectral contents in these ground motions are especially adopted to eliminate the influence
of the earthquake records.

4.4. Discussions of Analysis Results

The IRSA is conducted following the procedure that is described above. Firstly, the
continuous shear beams are established to make an estimation on the dynamic features of
the three building frames. The mode frequencies and mode shapes of first three modes
from the CSB method and the eigenvalue analysis in OpenSees are presented in Figure 12. It
can be clearly indicated that the CSB method can provide a satisfactory estimation of the
modal parameters. The theoretical analysis results agree strongly with the results from the
eigenvalue analysis of the refined numerical model, especially for the first mode. It seems
that the results of 6F for higher modes are not very precise. The difference mainly derived
from the assumption in the CSB method that the considered system could be simplified
into a continuous shear member. The discreteness of a building structure will certainly lead
to deviation between the results from two methods, as mentioned before. Additionally, the
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normalization of the mode shape makes it much more remarkable in the figure. However,
the higher the system is, the more precise estimation on modal features could be achieved.
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Figure 12. Comparison of dynamic features. (a) Comparison of dynamic features for 6F. (b) Compari-
son of dynamic features for 13F. (c) Comparison of dynamic features for 13F-W.

Then, the dynamic parameters of the three demonstration building frames are adopted
to conduct the spectral analysis. The story shear demand of each mode of the considered
systems under each ground motion can be easily obtained. The MSRSS methods is then
performed to estimate the shear demands of the building stories along the height of the
building. It should be noted that the weighting coefficients An in the MSRSS method are
the same as those described in Section 3.2. For comparison purposes, the RSA that consider
the CSRSS method are also conducted to obtain the shear demands of the building stories.
Note that the modal parameters used in the CSRSS are in accordance with the parameters
used in the MSRSS. The shear force demands of the three demonstration buildings under
typical ground motion are presented in Figure 13. It can be clear noted that the MSRSS
provides a relatively more adequate prediction of the shear force demands.

Additionally, the results from the two methods are substituted into Equation (19), and
thus, the deviation of the results from the two RSA methods and the RHA method can
be obtained, as presented in Table 2. The results clearly indicate that, the MSRSS mode
superposition could achieve an improved estimation of the shear force demands on the
steel building frames compared with that of the CSRSS mode superposition. The Error
values from the MSRSS for 6F, 13F, and 13F-W are 8.38%, 11.49%, and 11.93%, which from
the CSRSS are 9.68%, 13.86%, and 15.05%, respectively.
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Figure 13. Shear force demands of the two demonstration buildings under typical ground motion.

Table 2. Deviation of the results between RSA and RHA.

Mode Superposition
Error (%)

6F 13F 13F-W

MSRSS 8.38 11.49 11.93
CSRSS 9.68 13.86 15.05

Rate of improvement 13.4 17.1 20.7

To make the improvement of the IRSA clear, the factor logarithmic Error ratio (LER) is
defined as Equation (20). This factor represents the accuracy of using a certain method to
estimate the elastic shear demands compared using IRSA with an MSRSS superposition.
As defined, the LER value of 0 suggests that the Error from a certain method is equal to
the Error from the IRSA with MSRSS superposition. A higher LER value corresponds to a
larger Error compared with that from the MSRSS superposition.

LER = log(Error/ErrorMSRSS) (20)

Figure 14 presents the LER of the ELF and CSRSS for 6F, 13F, and 13F-W under each
earthquake ground motion. The results reveal that the Errors of the MSRSS are smaller than
those of the ELF and CSRSS in most of the cases.

Based on the data shown in Figure 14, a normal distribution is considered to be
appropriate for LER (H0). The parameters and the K-S test results for the normal distribution
of all four datasets are presented in Table 3. The goodness-of-fit tests are conducted at
different significance levels (shown in Figure 15). If D ≤ Dlimit, the null hypothesis (H0) is
accepted. As presented in Table 3 and Figure 15, the distributions pass the K-S goodness-
of-fit tests in all of the cases. The mean values for the four cases presented in Table 3
clearly indicate that the Errors from the MSRSS are much smaller than those from the ELF
and CSRSS.

Table 3. Distribution parameters and K-S test results for normal distribution.

6F 13F 13F-W

ELF CSRSS ELF CSRSS ELF CSRSS

Mean 0.464 0.066 0.447 0.083 0.403 0.094
SD 0.300 0.200 0.307 0.243 0.292 0.254

Dlimit-0.01 0.163
Dlimit-0.15 0.114

D 0.084 0.092 0.107 0.113 0.084 0.112
H0 A A A A A A
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5. Concluding Remarks

This paper proposes that the conventional response spectrum analysis method may
lead to inadequately designed shear forces for steel building frames, and it develops an
alternative response spectrum analysis method for the elastic shear force demand estimation
of shear-dominated steel building frames in the preliminary design stage. Following the
proposed procedure, the shear force demands along the building’s height can be captured
more precisely. RHA are performed for comparing the improvements of the proposed
design approaches. Based on the analyses conducted in this research, the following major
conclusions can be made:

• The continuous shear beam model with a stepped stiffness could achieve a precise
estimation of the dynamic parameters. Following the proposed procedure, the modal
periods and modal shapes can be easily and accurately captured without conducting
an eigenvalue analysis using numerical software.

• The conventional response spectrum analysis method, which uses limited modes in
the SRSS method will underestimate the shear demands of a steel building frame.
Moreover, the underestimation of the shear demands on the top of the considered
system is more significant.

• It was found that adjusting the weighting coefficient for each modal shear demand
could improve the adequacy of the RSA method in determining the elastic shear
force in the steel building frames. The optimal weighting coefficient set derived from
the genetic algorithm validates the fact that adding a weighting coefficient that is
greater than 1.0 to high modal shear items could result in the better estimation of
shear force demands. Moreover, using the first three modal shear demands to conduct
mode superposition can achieve a satisfactory estimation, and so, more modes are
not necessary.

• The proposed IRSA are performed on two demonstration building frames. Results
validate the superiority of the proposed method and the adequacy of the proposed
weighting coefficients.

• This study is conducted mainly on a regular building frame model in two dimensions.
The cross-correlation between the modal responses is minor and negligible in this
study. Thus, the application scope is limited. Much more irregular scenarios should
be included to explore the method to improve the adequacy of conventional RSA.
Moreover, since the cross-correlation between the modal responses of a structure in
three dimensions is significant, the relevant research based on CQC is also promising.
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