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Abstract: Different sets of drivers underlie different safety behaviors, and uncovering such complex
patterns helps formulate targeted measures to cultivate safety behaviors. Machine learning can ex-
plore such complex patterns among safety behavioral data. This paper aims to develop a classification
framework for construction personnel’s safety behaviors with machine learning algorithms, including
logistics regression (LR), support vector machine (SVM), random forest (RF), and categorical boosting
(CatBoost). The classification framework has three steps, i.e., data collection and preprocessing,
modeling and algorithm implementation, and optimal model acquisition. For illustrative purposes,
five common safety behaviors of a random sample of Hong Kong-based construction personnel
are used to validate the classification framework. To achieve high classification performance, this
paper employed a combinative strategy, consisting of feature selection, synthetic minority over-
sampling technique (SMOTE), one-hot encoding, standard scaler and classifiers to classify safety
behaviors, and multi-objective slime mould algorithm (MOSMA) to optimize parameters in the
classifiers. Results suggest that the combinative strategy of CatBoost–MOSMA achieves the highest
classification performance with the maximum average scores, including area under the curve of
receiver characteristic operator (AUC) ranging from 0.84 to 0.92, accuracy ranging from 0.80 to 0.86,
and F1-score ranging from 0.79 to 0.86. From the optimal model, a unique set of important features
was identified for each safety behavior, and ten out of the 46 input indicators were found important
for all five safety behaviors. Based on the findings, this study advocates using the machine learning
strategy of CatBoost–MOSMA in future construction safety behavior research and makes concrete
and targeted suggestions to cultivate different construction safety behaviors.

Keywords: classification; safety behavior; construction personnel; machine learning; MOSMA

1. Introduction

Unsafe behaviors are the primary direct cause of construction accidents. Different
types of accidents can be attributed to different sets of unsafe behaviors [1]. For example,
to avoid falls from height the management should take care of unprotected holes/borders
and correct workers’ inappropriate use of personal protective equipment (PPE). Safety
behavior is traditionally categorized as either safety compliance or safety participation.
The former is an in-role task-related behavior, while the latter involves extra-role behaviors,
which are voluntary and initiated by employees [2]. Griffin and Curcuruto further identify
two categories of safety participation behavior: affiliative and proactive [3]. Helping and
stewardship behaviors, civic virtue, and caring for safety are typical of affiliative safety
participation behavior, whereas proactive safety participation behavior includes safety voice
behaviors and initiating safety-related changes. Affiliative safety participation behavior is
related to minor incidents, such as property damage and microinjuries, while proactive
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safety participation behavior is positively associated with near-miss reporting. Therefore, it
can be hypothesized that different sets of drivers are accountable for different (un)safety
behaviors. This paper attempts to validate this hypothesis with a machine-learning-enabled
classification framework.

Besides the theoretical significance, this paper also has both a practical and a method-
ological significance as well. On the practical front, if different patterns of drivers for
different safety behaviors are ascertained, targeted interventions can be proposed accord-
ingly. Specifically, this paper selects five typical safety behaviors, i.e., the use of all necessary
safety equipment to do the job (hereafter coded as SB1); following safety procedures in
doing the job (hereafter coded as SB2); promoting safety programs willingly (hereafter
coded as SB3); put in extra effort to improve workplace safety (hereafter coded as SB4);
and help colleagues out when they are under risky conditions (hereafter coded as SB5). On
the methodological front, as a subset of artificial intelligence, machine learning enables a
system to learn from example data or past experience without explicit programming. Like
traditional statistical modelling, it is also intended to seek solutions from data. Unlike tradi-
tional methods that are based on assumptions and ignore the nonlinear relationship among
independent variables, machine learning methods are more flexible, have fundamental and
simple assumptions, and take into consideration the complex relationship among indepen-
dent variables. Machine learning has seen an increasing use by safety researchers in recent
years. Construction workers’ risk perceptions have a direct impact on their safety behavior.
The traditional measurement of risk perceptions primarily relies on a post hoc survey-based
assessment, which has limitations such as lack of objectivity and continuous monitoring
ability. Given this, Lee et al. developed an automatic system to measure workers’ risk
perception using physiological signals obtained by wristband-type wearable biosensors in
combination with a supervised learning algorithm [4]. Overexertion-induced work-related
musculoskeletal disorders (WMSDs) are a primary cause of the nonfatal injuries for con-
struction workers. To reduce overexertion, appropriate levels of physical loads need to be
identified. In this regard, Yang et al. propose to employ a bidirectional long short-term
memory algorithm to classify physical load levels, and investigate the feasibility of such an
approach with a laboratory experiment [5]. In view of machine learning’s advantage in
predictive accuracy, Goh et al. use six supervised learning algorithms (i.e., support vector
machine, random forest, K-nearest neighbor, naïve Bayes, artificial neural network, and
decision tree) to assess the relative importance of different cognitive factors derived from
the theory of reasoned action in affecting safety behavior [6].

Given the theoretical, practical, and methodological significance, a machine-learning-
enabled safety behavior classification framework should be developed in order to improve
construction safety performance in an efficient and effective way. In particular, this paper
has two objectives, namely: (a) To identify drivers of different safety behaviors; (b) To
propose new machine learning methods in predicting safety behaviors. The former intends
to make targeted interventions for different safety behaviors based on the findings and
the latter to explore new algorithms which are more suitable for analyzing safety-related
behavioral data.

This paper is organized as follows. First, a safety behavior factor analysis and classifi-
cation system is developed based on the literature review. Second, the sample, measures,
machine learning models, and classification outputs are described. Third, results are
presented, with an emphasis on model performance and factor importance analysis. Fi-
nally, both the contribution and limitations of the findings are discussed along with future
research directions.

2. Safety Behavior Factor Analysis and Classification System

Safety behavior is an emergent property of a more complex system. Choi and Lee find
that construction workers’ safety behavior is a function of their socio-cognitive process
and their interaction with the environment [7]. Based on bibliometric and content analyses
of 101 empirical studies, Xia et al. propose a safety behavior antecedent analysis and
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classification system [8], which organizes the antecedents of safety behavior into five levels:
(a) Self; (b) Work; (c) Home; (d) Work–home interface; (e) Industry/society. In addition,
they put forward a resource flow model to explain how safety behavior emerges from such
a complex system. Using Xia et al. ’s framework [8], this study organizes influencing factors
of construction safety behavior at four levels, i.e., client, project, group, and individual, and
hence, develops a safety behavior factor analysis and classification system as well. The
next section deliberates on the impact of these factors on safety behavior before presenting
the system.

2.1. Client Level Factors

Among stakeholders in the construction supply chain, clients have the economic power
to encourage other stakeholders to implement safety measures. Therefore, clients play
a pivotal role in improving safety performance across construction projects. Specifically,
client type and the extent of client involvement in safety management have implications
for safety performance [9,10].

2.1.1. Client Type

Construction project clients can be categorized as either public or private according to
their source of funding. Ma observes that safety records for the projects with public sector
clients are better than those projects with private sector clients in Hong Kong [11], and
believes that the reason is that most safety initiatives are mandatorily executed in public
works’ contracts, whereas they are voluntarily adopted in the private sector. In Nigeria,
Umeokafor also notes that public clients’ safety commitment and attitudes are better than
their counterparts [12]. So, it is hypothesized that there are more safety behaviors in public
projects than in private projects.

2.1.2. Client Involvement

Clients’ direct involvement in safety management contributes to safety performance.
In Australia, given the important contribution that clients can make to the safety perfor-
mance of the construction projects, Lingard et al. develop a model client framework [13].
The framework establishes clients’ safety roles throughout the life-cycle of the project. Using
safety climate as a leading indicator of safety performance of small- and medium-sized con-
struction projects, Votano and Sunindijo found that six of the clients’ safety roles depicted
by Lingard et al. are related to safety performance, and they are participation in the safety
program, review and analysis of safety data, appointment of safety team, selection of safe
contractors, safety specifications in tenders, and regular checks on plant/equipment [13,14].
Hence, this research postulates that client safety involvement is positively associated with
workers’ safety behaviors.

2.2. Project Level Factors

Safety management system at the project level has implications for workers’ safety
behavior. In order to curb unsafe acts, Shin et al. suggest that project management
should offer a safety incentive as early as possible and facilitate effective communication
about accidents in as much detail as possible [15]. Fang et al. propose a leadership–
culture–behavior (LCB) approach, which maintains that leadership creates a safety culture,
and hence, promotes safety behavior [16]. The LCB approach has been implemented in
railway and residential projects in mainland China and Hong Kong, and has seen success.
Among others, this paper focuses on the following project level factors: stage of project,
contract sum, goal congruency, participative decision-making, professional development,
organizational support, standardized safety rules and procedures, and safety climate.

2.2.1. Project Information

At least two project characteristics, namely, stage of project and contract sum, have
bearing on construction project employees’ safety behavior. Based on the percentage of
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construction works that has been completed, a project can be categorized into three stages,
namely, start-up, advanced, and near close-out. At the start-up stage, the construction work
has been completed by less than 30%. At the advanced stage, the construction work has
been completed by 30–70%. At the near close-out stage, the construction work that has
been completed is more than 70%. Employees usually exhibit more safety behaviors at the
start-up and near close-out stages than at the advanced stage. This is because at the start-up
stage, employees are new to the site, and act scrupulously. As time passes and production
pressure increases, employees are more likely to take shortcuts and more unsafe behaviors
ensue. When the project is being completed, as employees are more familiar with the
site and some of their unsafe behaviors have been rectified, their safety behavior increase.
Awolusi and Marks develop a safety activity analysis framework and tool, and validate
the framework and tool using a case study project that is in the construction stage [17].
Over an eight-month period of the case study project, the occurrence rate of safety behavior
experiences a U-shaped curve, initially decreasing from 45.7% to 37.0% and then increasing
to 62.8%.

Contract sum is also related to employees’ safety performance. Generally, in jurisdic-
tions where mandatory safety incentive scheme is applied, projects with large a contract
sum usually set aside more money on safety measures, and therefore, more safety behaviors
result. Take Hong Kong as an example, due to the introduction of safety initiatives, such as
the Pay for Safety Scheme (PFSS), the Safety Management System (SMS),the Independent
Safety Auditing Scheme (ISAS), and the Site Supervision Plan System (SSPS), the construc-
tion industry has seen a dramatic decrease in accidents [18]. Hence, this paper hypothesizes
that a large contract sum contributes to more safety behaviors.

2.2.2. Goal Congruency

Goal congruency has an impact on organizational behavior. Goal congruency is
a scenario where employees at different levels of an organization share the same goal.
When employees’ personal goals are consistent with organizational goals, they feel more
positive about the organization and expend more personal efforts to achieve those goals.
Ukraine-based IT professionals De Clercq et al. found that goal congruence between
employees and their supervisor negatively affects employees’ organizational deviance, and
the indirect effect of goal congruence on organizational deviance through work engagement
is moderated by employees’ emotional intelligence [19]. With 171 employees under the
leadership of 24 supervisors, Bouckenooghe et al. found that supervisors’ ethical leadership
has a positive effect on followers’ in-role job performance through the sequential mediation
of goal congruence and psychological capital [20]. Hence, when project personnel, both the
management and workers, take safety as the first priority, their safety behavior ensues.

2.2.3. Participative Decision-Making

Participative decision-making is positively associated with safety behavior. Participa-
tive decision-making refers to the extent to which employers allow or encourage employees
to take part in organizational decision-making. Through participation in decision-making,
employees bring different perspectives and frames of references to safety discussions and
activities, and hence, can reduce all members’ ignorance to hazards and signals of dan-
ger [21]. As employees are aware that their suggestions have been incorporated in safety
decisions, they are more likely to take ownership of those decisions and act on them more
proactively. As a leadership behavior, participative decision-making is associated with
safety participation [22]. In the medical industry, Lee et al. found that empowering leaders
who empower employees to participate in decision-making enhance employees’ safety
compliance [23].

2.2.4. Professional Development

Employees are the most valuable resource in construction projects. Despite the time
and resource pressures preventing project managers from investing in employees’ pro-
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fessional development, it pays off. Design for safety has been advocated for quite a long
time, and designers need to receive safety training as part of their professional develop-
ment. Toole elaborates on the opportunities and barriers in increasing designers’ role in
construction safety [24]. In another scenario, if a semi-skilled bar bender is sponsored to
receive more professional training, s/he may bring more best safety practices to the crew
and promote more safety behaviors.

2.2.5. Organizational Support

Organizational support is critical in creating a safety climate and, hence, safety behav-
ior. Organizational support refers to employees’ global beliefs about the extent to which
their organization satisfies their needs and cherishes their contributions. It can be general
or specific. Mearns and Reader found that general perceived organizational support has an
impact on the UK’s offshore workers’ safety performance [25]. With Ghanaian industrial
workers, Gyekye and Salminen found that general perceived organizational support is
positively associated with compliance with safety procedures [26]. Guo et al. discovered
that perceived supervisory and coworker support for safety reduces the negative impact
of job insecurity on Chinese high-railway drivers’ safety performance [27]. Tucker et al.
found that urban bus drivers’ perceived organizational support for safety exerts influence
on their safety voice behavior through the mediation of their perceived coworkers’ support
for safety [28], highlighting the role played by coworkers.

2.2.6. Standardized Safety Rules and Procedures

Standardization in construction projects is difficult to achieve. Other high-risk in-
dustries, such as aviation and nuclear, usually have well-defined work procedures. Since
the construction process is characterized by high variety and loose coupling, most of the
construction work, to a significant extent, depends on employees’ discretion and experience.
Standardized safety rules and procedures make those rules and procedures easy to follow,
and hence, contribute to an increase in safety behavior. However, the secondary effect of
too much standardization should be restrained [29].

2.2.7. Safety Climate

Safety climate is a perceptual, collective, and multidimensional phenomenon, referring
to individuals’ shared perceptions of how safety is valued in the workplace [3]. The impact
of a safety climate on safety behavior has been well-documented. Safety climates can exert a
direct influence on safety behavior, and also can impact safety behavior through mediators,
such as the psychological contract [30], safety knowledge and motivation [31], etc.

2.3. Group Level Factors

Construction workers usually move from project to project and may work with dif-
ferent main contractors, but they often work in a workgroups for a relatively long period.
Therefore, compared with supervisors from the main contractor, workgroup supervisors
usually have a bigger influence on construction workers [32]. This paper focuses on four
phenomena at the workgroup level, i.e., supervisors’ transformational leadership and
contingent reward behavior (one aspect of their transactional leadership), leader–member
exchange, and team–member exchange.

2.3.1. Transformational Leadership

Leadership refers to a process of motivating others to act toward shared goals. It
involves setting goals, devising achievement methods, persuading others to accept these
goals and achievement methods, and solving problems decisively and quickly. James M.
Burns proposes two leadership styles: transactional and transformational. The transactional
leader identifies the needs of employees and the organization, and then informs employees
what to do to meet these needs. Beyond these needs, transformational leaders arouse and
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satisfy higher needs within each individual. A transactional–transformational leadership
paradigm is broad enough to capture the leadership construct.

Transformational leadership is positively associated with safety behavior. Shen et al.
propose and validate a sequential mediation model to explain the impact of supervisory
transformational leadership on construction personnel’s safety behavior [10]. Hoffmeis-
ter et al. found that different facets of transformational leadership have a different impact
on different sample’s safety behavior [33]. In particular, idealized influence has an impact
on safety compliance behavior in both the apprentice and journeyman samples, but it has
an impact on safety participation behavior only in the apprentice sample.

2.3.2. Contingent Reward

Contingent reward is a facet of transactional leadership, and refers to the leader clar-
ifying which employee behaviors are desired, what the rewards for such behaviors will
be, and rewarding the followers depending on task fulfilment and outcome. Behaviorism
maintains that behavior is a function of its consequences. Leaders engage in contingent
reward with regard to safety when they help employees appreciate safety-related goals,
keep them focused on meeting these goals, and reward them for engaging in safety behav-
iors required by those goals [33]. Therefore, contingent reward should be associated with
increased employee safety behaviors.

2.3.3. Leader–Member Exchange

Leader–follower relationships are an essential part of leadership effectiveness, and
leader–member exchange refers to the follower’s perceptions of the quality of the exchange
between leader and followers [34]. Leader–member exchange is positively associated with
safety behavior [35–37].

2.3.4. Team–Member Exchange

Similar to leader–member exchange, team–member exchange refers to an individual’s
perception of the quality of the exchange relationships within the team. It is positively
associated with safety behavior [38,39].

2.4. Individual Level Factors

Safety behavior is complex, and an individual may work safely in some occasions
and unsafely in others [40]. Hence, some individual differences may contribute to an
individual’s safety behavior. This study focuses on construction personnel’s personal
demographics, habit, affiliation, and safety motivation.

2.4.1. Personal Demographics

Personal demographics, including age, gender, marital status, educational level, num-
ber of dependents to support, and industrial experience, may have an influence on safety
behavior [41]. Meng and Chan found that female poorly educated workers exhibit less
safety citizenship behavior [42]. The level of safety citizenship behavior has seen an initial
downtrend followed by an uptrend as industrial experience increases.

2.4.2. Habit

Alcohol and tobacco use are more prevalent in blue collar workers than in white collar
workers. There is a strong association between unsafe behavior (e.g., infrequently using
sunscreen) and smoking and risky drinking [43].

2.4.3. Affiliation

At least two affiliation-related factors, namely, affiliation type and hierarchical position
in affiliation, are related to construction personnel’s safety behavior. Personnel affiliated
with clients exhibit more safety behaviors than those with contractors and consultants.
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Personnel in managerial positions exhibit more safety behaviors than supervisory staff,
who in turn exhibit more safety behavior than workers.

2.4.4. Safety Motivation

Safety motivation refers to an individual’s readiness to expend effort to engage in
safety behaviors and the valence associated with these behaviors. It directs, energizes and
sustains safety behavior [3]. Griffin and Curcuruto view safety motivation as an outcome
of safety climate and a determinant of safety behavior based on theories and empirical
evidence [3].

Based on the arguments made earlier, the safety behavior factor analysis and classifi-
cation system is proposed and shown in Figure 1.
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3. Materials and Methods

This study proposes a safety behavior classification framework that combines sta-
tistical analysis methods and machine learning algorithms. As shown in Figure 2, the
framework has three steps, i.e., data collection and preprocessing, modeling and algorithm
implementation, and optimal model acquisition. The data is processed automatically by the
proposed combinative strategies. The proposed methods are described in detail as follows.
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their codes. Last, the performance of the 64 models is output, and the model with maximum scores
stands out as the optimal model. Meanwhile, users can also observe the results of feature selection to
guide the analysis of the important factors of one risk behavior or the average important factors of
certain risk behaviors.

3.1. Data Collection and Preprocessing
3.1.1. Data Collection

A questionnaire is used to collect data. The questionnaire has two parts. The first part
is input variables, which have been shown in Figure 1. The second part is output variables,
i.e., the five common safety behaviors. The sources of those indicators measuring these
variables and the measures to ensure the questionnaire is self-contained and self-sufficient
are recorded in Shen’s work [41]. The sources of the indicators for each construct are also
recorded in Shen’s work [41]. The details of those input and output indicators are shown in
Table A1 (Appendix A) and Table A2 (Appendix A), respectively.
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The target population is Hong Kong construction personnel who are generally in
three categories, i.e., contractor, consultant, and client. The contractor category includes
management staff and direct laborers from main contractors and subcontractors. The
consultant category covers engineers, architects, and quantity surveyors. The client category
comprises both the public and private sectors. The target population size is unknown.
The research team sets the confidence level at 90%, the margin of error at ±5%, and the
population proportion at 50%. Using Cochran’s formula, the required sample size should
be no less than 273. In order to secure sufficient, valid, and representative responses, the
research team constructs a sampling frame consisting of construction personnel from local
construction trade associations, professional bodies, governmental agencies, and property
developers. Then, the research team sends hard-copy questionnaires to a random sample of
2996 construction personnel from the sampling frame. After two rounds of administration,
the research team secures 292 valid responses. Non-response bias is not an issue [10].

3.1.2. Test on Reliability, Validity and Multicollinearity

For the purpose of highly reasonable and effective model training, data pre-processing
is crucial in machine learning. As each record is collected by questionnaires, data need to
pass both reliability and Bartlett’s tests. In particular, the reliability of input second-level
indicators (Cronbach’s Alpha) is 0.82 above the threshold value of 0.7 [44]. Bartlett’s test of
those input second-level indicators is 0.81, indicating that feature selection can be done.

Additionally, one common issue in machine learning is that the large regression coeffi-
cients cannot be estimated precisely when the features are multicollinear. In accordance
to Hair et al., variance inflation factor (VIF) is calculated to determine whether there is
multicollinearity among independent variables [44]. In general, when the VIF values are
lower than the common cutoff threshold of 10, multicollinearity is not a significant issue.
The results of the multicollinearity test for all input second-level indicators are shown in
Table 1, and it can be concluded that there is no multicollinearity among them.

Table 1. VIF values of input second-level indicators.

Variable * VIF Variable VIF Variable VIF Variable VIF Variable VIF

NatClit 1.25 IndExpr 3.53 OS2 1.75 LMX2 2.21 CR1 2.37
StgProj 1.14 SmoHab 1.60 CI1 1.90 LMX3 2.47 CR2 2.47

ConSum 1.23 DriHab 1.34 CI2 2.00 LMX4 1.57 SC1 1.83
AffRes 1.41 GC1 1.61 CI3 1.90 TMX1 1.93 SC2 1.77

RespHier 1.73 GC2 1.83 CI4 2.07 TMX2 1.99 SC3 1.58
Gender 1.44 GC3 1.88 SSRP1 1.80 TMX3 1.92 SC4 1.64

Age 3.17 PDM1 2.00 SSRP2 1.80 TMX4 2.06 SM1 2.52
MarSts 1.53 PDM2 1.52 SSRP3 1.86 TL1 2.62 SM2 2.98

DeptRsp 1.32 PD 1.56 SSRP4 1.78 TL2 2.73 SM3 3.48
EduRsp 1.89 OS1 1.87 LMX1 2.21 TL3 1.75 SM4 2.81

* These codes refer to input second-level indicators, which are shown in Table A1 in Appendix A. For example,
the code of ‘GC1′ refers to the first second-level indicator measuring the variable of goal congruency.

3.2. Modeling and Algorithm Implementation
3.2.1. Combinative Strategy Encoding and Data Improvement

In order to reach an optimal model, a combinative strategy, which contains five
subprocesses, is proposed. The five subprocesses are feature selection, synthetic minority
over-sampling technique (SMOTE), one-hot encoding, standard scaler, and classifiers.
Feature selection is a process used to reduce the number of input variables in developing a
classification model. This study simply divides the behaviors into Yes (high risk) and No
(low risk), and this approach may result in an imbalanced distribution of each behavior.
SMOTE is a proper method to address the imbalanced distribution issue [45]. The dataset
contained nominal-categorical and ordinal-categorical features. One-hot encoding is used
to create new binary features for each element in a categorical [46]. Moreover, all features
are scaled at different intervals in the obtained dataset. By means of standard scaler, all
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features are converted, leading to a distribution with a mean value of 0 and a standard
deviation of 1. Standard scaler helps limit the sample differences [46]. As a supervised
learning concept, classification is a process of categorizing a set of data points into classes.
In machine learning, a classifier is basically an algorithm that categorizes data into classes.
This study used four classifiers, i.e., logistic regression (LR), support vector machines
(SVM), random forest (RF), and categorical boosting (CatBoost).

This study tried 64 models, which are coded by the rules shown in Figure 3. The value
of the first four bits is represented by the binary numbers 1 and 0, with 1 indicating used
and 0 unused. The first part refers to feature selection, the second to SMOTE, the third
to one-hot encoding, the fourth to standard scaler, and the last part is the first letter of
the classifier’s name. For example, a model code of “0101R” means that the model uses
SMOTE, standard scaler and RF, and does not use feature selection and one-hot encoding.
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3.2.2. Classification by Four Classifiers of Machine Learning

In terms of classification, there are many classic machine-learning algorithms, such
as LR, SVM, etc. Recently, emerging algorithms are increasingly used, such as RF and
CatBoost. In order to select a more suitable classifier, this study uses four classifiers, i.e.,
LR, SVM, RF and CatBoost.

Based on the natural logarithm, LR follows a logistic S-curve. Classification is de-
termined by the probability of an outcome. SVM includes a set of related supervised
learning methods to make prediction and regression. The statistical learning theory and
structural risk minimization underlie the learning algorithms of SVM. According to Antwi-
Afari et al. [47], SVM shows comparable or even better results than other machine-learning
methods. RF is an ensemble of decision trees. It employs a bagging method to achieve
classification. Each node is split using the best predictor from a subset of predictors chosen
randomly at that node. As it is more robust in terms of generalizability than the decision
trees, RF plays an important role in machine learning, such as the works of Niu et al. and
Poh et al. [45,48]. Recently, decision trees have been extended to the family of gradient
boosting algorithms, such as eXtreme Gradient Boosting (XGBoost), Light Gradient Boost-
ing Machine (LightGBM), and Categorical Boosting (CatBoost). In particular, CatBoost is a
framework based on oblivious trees. It has few parameters, supports categorical variables,
and deals with categorical features in an efficient and reasonable manner. Furthermore,
it modifies gradient computation to avoid a prediction shift in order to improve model
accuracy. The results of a three-algorithm comparison show that CatBoost achieves the best
results [49] despite the small differences among them.
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3.2.3. Model Tuning and Hyperparameter Optimization by MOSMA and LOO

In some cases, over-fitting the data is an issue during the machine-learning process,
resulting in poor generalizability. One of the most acceptable resolutions is to tune models
and optimize parameters. This study uses an algorithm named slime mould algorithm
(SMA) to tune the classifiers automatically. SMA is inspired by the behavior of slime mould,
and has been applied in graph theory and path networks [50,51]. Since five behaviors are
modeled in this study, a multi-objective SMA (MOSMA) is used to search the maximum
average scores for these five behaviors. According to Houssein et al. [52], the MOSMA
consumes significantly less training time than traditional optimization algorithms such as
grid-search. Moreover, leave one out (LOO) cross-validation is fitting for those cases with a
small sample size. For n samples, the number of training samples is n-1, while only one
sample is left out for validation. This train-validation process is repeated for n times, and
fully utilizes the dataset of the training dataset. Since there is no random sampling, bias is
eliminated by LOO cross-validation [45]. Therefore, it is reasonable to combine LOO and
MOSMA to find optimal settings in order to maximize the generalizability of the model.

3.2.4. Three Methods for Feature Selection

This study employs a combination of three traditional feature selection methods, i.e.,
feature importance (FI), Chi-square test (CT) and Boruta selection (BS).

When the variables in the dataset have varying degrees of influence on the five
(un)safety behaviors, focusing on the most important features is critical for gaining a better
understanding of them, respectively. To some extent, FI represents the diverse effects
of various features. However, it does not entirely capture the association between the
features and the safety behaviors, nor does it determine whether the feature has a positive
or negative impact. In this regard, CT and odds ratio (OR) can make up for this deficiency,
as they can not only calculate the correlation between features and safety behaviors, but
also can reveal the nature of the impact (i.e., positive or negative). BS is a novel feature-
selection algorithm for finding all relevant variables [53]. According to Poh et al. [45], BS
has a critical advantage over ordinary feature-selection techniques in that it may pick the
input variable in a robust and unbiased manner by using bagging schemes and including
statistical confidence tests into its selection process.

Features are preserved in each iteration if more than half of the votes are in favor of
passing. On the contrary, they are returned to the prediction part of modeling until the
maximum score is achieved. For instance, Table 2 explains how to make selection decisions
regarding three input indicators, i.e., NatClit, DeptRsp, and TMX1.

Table 2. Feature-selection method.

Variables Methods SB1 SB2 SB3 SB4 SB5 Votes Result

NatClit FI
√

*
√ √ √ √

9 Retain
BS

√ √

CT
√ √

DeptRsp FI
√ √ √ √ √

10 Retain
BS

√ √ √ √

CT
√

TMX1 FI
√

2 Cut
BS
CT

√

* The variable obtains one vote if it is shown as an important feature for one behavior.

3.3. Optimal Model Acquisition

There are many indicators to evaluate the final training model’s performance. For
simplicity and efficiency, this study employs common indicators, including area under the
curve of receiver characteristic operator (AUC), accuracy, precision, recall, and F1-score [48].
Accuracy, precision, recall, and F1-score are partial performance indicators, whereas AUC
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is a comprehensive indicator. They are defined by the following functions, which are based
on the confusion matrix.

AUC =
∑ I
(

Ppositive, Pnegative
)

M× N
(1)

where I
(

Ppositive, Pnegative
)
=


1, Ppositive > Pnegative

0.5, Ppositive = Pnegative
0, Ppositive < Pnegative

, M and N are the numbers of

positive and negative samples in the dataset, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1− score =
2× Precision× Recall

Precision + Recall
(5)

4. Results
4.1. Necessity of Tuning Models and Optimizing Parameters by MOSMA

Since the sample was randomly divided into training and test sets, it is necessary to
limit the error of the model by tuning models and optimizing parameters. This study used
the MOSMA method, which is rarely employed in the construction safety domain. Using
the average of the outcomes of 10 random divisions as the final performance score, this
study compared the performance of the MOSMA and the traditional grid-search method.
Figure 4 shows the average AUC scores of the four classifiers for the five behaviors, and
Figure 5 shows the average accuracy and F1-scores. From these two figures, it can be
concluded that CatBoost–MOSMA has the maximum classification performance, and hence,
is used for feature importance analysis later on.
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4.2. Performance of Different Models

As mentioned above, this study has tried 64 models. Figure 6 depicts their performance
in terms of AUC, accuracy, and F1-score. As can be seen from Figure 6, the models coded
as “1111C” (No. 64) and “1010C” (No. 40) have satisfactory performance. In the former
model, four methods (i.e., feature selection, SMOTE, one-hot encoding, and standard scaler)
and the classifier of CatBoost are employed. In the latter model, two methods (i.e., feature
selection and one-hot encoding) and CatBoost are used. The former model yields the
maximum AUC of 0.9175, accuracy of 0.8075, and F1-score of 0.6497. Although the F1-score
of 0.6497 is not the highest, it ranks the upper-middle among all models. The latter model
yields the AUC of 0.8970, accuracy of 0.8583, and the maximum F1-score of 0.7725. Since No.
64 model garners the maximum AUC, which is a comprehensive performance indicator,
the following sections report results from it.
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4.3. Feature Selection

After feature selection, different numbers of input indicators are supposed to account
for different safety behaviors. As shown in Figure 7, SB1 needs to consider the fewest
input indicators (i.e., 25), while SB5 needs to consider the most input indicators (i.e., 35).
Despite that, there are ten input indicators that account for all of the five safety behaviors
in common. The ten input indicators are affiliation (coded as AffRes), contract value (coded
as ConSum), clients setting safety goals (coded as CI2), very clear safety rules, policies,
and procedures (coded as SSRP2), safety rules not allowed to be violated (coded as SSRP3),
colleagues understanding my job needs (coded as TMX4), project managers seeking safety
suggestions (coded as SC2), timely accident reporting (coded as SC4), safety ownership
(coded as SM2), and risk reduction at workplace (coded as SM4).
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4.3.1. Feature Importance

The importance of all input indicators for all the five safety behaviors is shown in
Table 3. The top three important indicators for the five safety behaviors are highlighted.
For example, regarding SB5, the top three important indicators are contract value (coded
as ConSum), project managers seeking safety suggestions (coded as SC2), and affiliation
(coded as AffRes). This indicates that construction personnel on projects with larger
contract value, construction personnel on projects where project managers seek more safety
suggestions, and those personnel from the client are more likely to use all necessary safety
equipment on site.
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Table 3. Feature importance of the five safety behaviors.

SB1 SB2 SB3 SB4 SB5

NatClit 0.06 0.05 0.03 0.09 (3rd) 0.08
CI1 0.00 0.04 0.00 0.03 0.03
CI2 0.10 (2nd) 0.10 (3rd) 0.01 0.03 0.01
CI3 0.05 0.02 0.04 0.07 0.04
CI4 0.00 0.00 0.01 0.00 0.02

ConSum 0.04 0.02 0.13 (2nd) 0.09 (3rd) 0.17 (1st)
GC3 0.00 0.00 0.01 0.00 0.00

PDM1 0.00 0.00 0.00 0.00 0.00
PDM2 0.02 0.01 0.02 0.00 0.00

PD 0.02 0.00 0.01 0.10 (2nd) 0.02
OS1 0.00 0.00 0.01 0.00 0.00
OS2 0.01 0.01 0.02 0.00 0.00

SSRP1 0.01 0.03 0.01 0.00 0.01
SSRP2 0.08 (3rd) 0.01 0.01 0.02 0.05
SSRP3 0.02 0.01 0.00 0.00 0.01
SSRP4 0.05 0.03 0.00 0.02 0.00

SC1 0.00 0.00 0.03 0.01 0.00
SC2 0.02 0.00 0.01 0.00 0.16 (2nd)
SC3 0.00 0.00 0.01 0.00 0.00
SC4 0.02 0.02 0.21 (1st) 0.02 0.00
TL1 0.04 0.01 0.00 0.00 0.00
TL2 0.00 0.00 0.00 0.00 0.00
TL3 0.05 0.04 0.01 0.06 0.00

LMX1 0.00 0.00 0.00 0.00 0.00
LMX2 0.00 0.01 0.00 0.00 0.00
LMX3 0.00 0.01 0.01 0.01 0.00
LMX4 0.00 0.03 0.01 0.03 0.01
TMX2 0.00 0.01 0.02 0.00 0.01
TMX3 0.00 0.02 0.00 0.00 0.01
TMX4 0.03 0.01 0.04 0.04 0.04
Age 0.05 0.10 (3rd) 0.05 0.08 0.06

DeptRsp 0.02 0.04 0.05 0.05 0.04
AffRes 0.14 (1st) 0.13 (2nd) 0.12 (3rd) 0.18 (1st) 0.13 (3rd)

SM1 0.02 0.03 0.09 0.01 0.00
SM2 0.08 (3rd) 0.00 0.00 0.01 0.04
SM3 0.02 0.04 0.01 0.01 0.00
SM4 0.05 0.16 (1st) 0.03 0.04 0.04

SUM 1.00 1.00 1.00 1.00 1.00

4.3.2. Correlation and OR Values

As mentioned earlier, FI reflects the relative importance of different input indicators
for each safety behavior but it does not show whether they exert positive influence or
negative influence. In order to make up for this deficiency, correlation analysis based on
CTs with OR values is carried out. Table 4 shows the results of correlation analysis for SB1
(i.e., use all necessary safety equipment to do the job). If the p-value is significant and the
OR is above 1.0 along with the confidence interval, then with feature SB1 is more likely to
take place. If the p-value is significant and the OR is below 1.0 along with the confidence
interval, then feature SB1 is less likely to happen. From Table 5, it can be concluded that the
drivers of SB1 are GC1, SSRP3, CI3, LMX1, TMX4, SC2, and SM2, among others. OR values
between the five safety behaviors and all of the input indicators are shown in Figure 8. At
least two points deserve mentioning. First, different sets of drivers are behind different
safety behaviors. For example, ConSum has more impacts on SB3 and SB4 than on SB1.
Second, some indicators can be omitted in establishing the classification framework, such
as StgProj, Gender, Age, EduRsp, and DriHab, because they have no bearing on any of the
five safety behaviors.
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Table 4. Chi-square test and OR values.

Features Chi-Square Test OR 95% CI

χ2 p Lower Limit Upper Limit

Age 0.81 0.368 0
GC1 4.66 0.031 1.68 1.05 2.71

SSRP3 26.10 0.000 5.39 2.70 10.78
CI3 20.07 0.000 3.04 1.86 4.99

LMX1 7.34 0.007 2.65 1.28 5.45
TMX1 1.71 0.191 0
TMX4 8.60 0.003 2.12 1.28 3.53
SC2 21.25 0.000 4.10 2.19 7.68
SM2 32.56 0.000 4.19 2.53 6.94

Table 5. Comparison with previous studies.

Reference Method of Tuning
and Optimization Label Classifier Cross-

Validation Accuracy F1-Score

Poh et al. [45]

Fixed parameters Trichotomy RF LOO 0.78 /
Fixed parameters Trichotomy LR LOO 0.59 /
Fixed parameters Trichotomy SVM LOO 0.44 /
Fixed parameters Trichotomy DT * LOO 0.71 /
Fixed parameters Trichotomy KNN * LOO 0.73 /

Niu et al. [48]
Grid search Binary GBDT * 10 folds 0.80 0.61
Grid search Binary RF 10 folds 0.77 0.67

Lee et al. [4]
BPSO * Binary GSVM * 10 folds 0.81 0.81
BPSO Binary KNN 10 folds 0.79 /
BPSO Binary DT 10 folds 0.71 /

Koc and Gurgun [46] Trial error Quartering XGBoost / / 0.61

Proposed

MOSMA Binary CatBoost LOO 0.86 0.86
MOSMA Binary RF LOO 0.85 0.85
MOSMA Binary SVM LOO 0.80 0.81
MOSMA Binary LR LOO 0.69 0.73

* BPSO, binary particle swarm optimization; DT decision tree; KNN, k-nearest neighbor; GBDT, gradient boosting
decision tree; GSVM, Gaussian support vector machine; Bi-LSTM, bidirectional long short-term memory.
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5. Discussion
5.1. Findings

This study has achieved the two objectives mentioned earlier, and has theoretical,
practical, and methodological implications.

First, in theory, safety behavior as an emergent property of a complex socio-technical
system has different drivers. Using machine learning, this study supports the proposition.
In particular, this study found that in order to encourage personnel to use all necessary
safety equipment on the job (i.e., SB1), clients should set examples for contractors and
consultants, safety motivation should be enhanced, and clients, private clients in particular,
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are encouraged to be involve in safety management as early as possible. In projects with
a large contract sum, older personnel with more dependents to support is more likely
to follow safety procedures on the job (i.e., SB2). In projects with a large contract sum,
construction personnel are more likely to promote safety programs willingly (i.e., SB3) with
clients actively engaging in safety management. In public projects with a large contract
sum, personnel is encouraged to pursue professional development, and hence, more likely
to put in extra effort to improve workplace safety (i.e., SB4). In projects with a sound safety
climate and more client involvement, personnel is more likely to help colleagues who are
in risky conditions (i.e., SB5). Based on the findings, practicable and targeted measures are
proposed to promote the five safety behaviors, respectively.

Second, machine learning has advantage over traditional statistical methods in ad-
dressing more complex interrelations among independent variables [6]. To garner this
advantage, this study first evaluates the performance of four common machine-learning
methods. Although these four methods achieve the comparatively satisfactory perfor-
mance, this study develops a combinative method, CatBoost–MOSMA, to train and test the
data again. This is because MOSMA has achieved superior performance in hyperparameter
tuning, and this study attempts to introduce it into the safety research domain. Through 64
trials, the combinative method has achieved the maximum classification performance, and
therefore, is used to establish factor importance. Furthermore, as noted by Poh et al. [45],
the imbalanced distribution of the classes is usually an issue in previous research. This
combinative method adopts the SMOTE technique to address this issue and obtains more
robust results. This is shown in Table 5, which compares the classification performance
between the proposed combinative method and other classification methods. Compared
with other methods of tuning and optimization, MOSMA achieves a higher accuracy score
when using the same classifiers. When the performance of classifiers is not significantly
different, MOSMA achieves a higher F1-score. Hence, it can be concluded that the proposed
combinative strategy of MOSMA-CatBoost is effective and efficient in classifying binary
construction safety behavioral data.

5.2. Limitations and Future Research Directions

Although the study has achieved its objectives, it has limitations. First, the sample size
can be further enlarged. Although a new machine-learning strategy is developed specifi-
cally to tackle the small sample size issue and some seminal studies have used a smaller
sample set, it is highly recommended that future researches collect more data. Second,
the study uses a sample from Hong Kong, and whether the findings can be extrapolated
to other countries/regions needs more research efforts. Third, the factors affecting safety
behaviors mentioned in the study are not exhaustive, and their interrelationship is not
clearcut. Hence, more in-depth research needs to be undertaken in this regard. Fourth,
similar to the third one, this study attempts to propose a generic classification framework,
and different construction sites are encouraged to tailor the framework to cater for their
own needs. Fifth, this study employs a combination of three feature-selection methods, in-
cluding FI, CT and BS. Only those input indicators that obtain over half votes were retained.
In other word, this approach may omit some input indicators that are strongly correlated
with some safety behavior. For instance, the input indicator SmoHab is strongly negatively
correlated with SB5, but does not correlate with other safety behaviors. Therefore, it has
been deleted. It can be seen in the experiment results that this method generally benefits
all of the safety behaviors as a whole since the classification performance improves after
deleting those input indicators that were only correlated with certain safety behaviors.

Despite these limitations, the classification framework is highly recommended for
future research efforts, given its satisfactory performance.

5.3. Practical Use of the Research

The proposed methods can be used in safety management practice on construction sites,
as shown in Figure 9. A survey is conducted with a representative sample of construction
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personnel on the site, and the data are stored into a safety behavioral database. After
training, safety staff is charged with modeling and algorithm implementation and deriving
model results, which suggest different safety behavioral orientation associated with different
feature patterns. Using a combination of their experience and this data-driven clue, safety
staff shall be able to predict a newcomer’s safety behavioral orientation, and then propose
and implement targeted interventions. When the prediction performance turns out to be
unsatisfactory, a new round of survey begins, and more data are stored in the database.
Complemented with their gut feeling, this data-driven decision support system is supposed
to help deter unsafe behaviors on construction sites in an efficient and effective way.
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6. Conclusions

Different sets of drivers underlie different safety behaviors, and uncovering such
complex patterns, help formulate targeted measures to cultivate safety behaviors. Machine
learning can explore such complex patterns among safety behavioral data. Given the
theoretical, methodological and practical significance, this paper attempts to develop a clas-
sification framework for construction personnel’s safety behaviors with machine-learning
algorithms, including LR, SVM, RF, and CatBoost. The classification framework has three
steps, i.e., data collection and preprocessing, modeling and algorithm implementation,
and optimal model acquisition. For illustrative purposes, five common safety behaviors
of a random and representative sample of Hong Kong-based construction personnel are
used to validate the classification framework. To achieve a high classification performance,
this paper employs a combinative strategy of CatBoost–MOSMA. Results support this
combinative strategy in dealing with construction safety behavioral data. From the derived
optimal model, a unique set of important features can be identified for each safety behavior,
and ten out of the 46 input indicators are found important for all the five safety behaviors.
Based on the findings, safety staff is supposed to make concrete and targeted interventions
to individual construction personnel on site, and improve safety performance in a more
efficient and effective way.
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Appendix A

Table A1. Input indicators.

First-Level
Dimensions Second-Level Indicators Label Value Frequency Percent

(%) Code

Nature of client Client type Public 1 205 70.2
NatClit

Private 2 87 29.8

Client
involvement

Require all project staff to have safety
training

Yes 1 132 45.2
CI1

No 0 160 54.8

Set safety performance goals
Yes 1 96 32.9

CI2
No 0 196 67.1

Require immediate accident report
Yes 1 152 52.1

CI3
No 0 140 47.9

Prioritize safety in meeting
contractors

Yes 1 130 44.5
CI4

No 0 162 55.5

Project
information

Stage of the project

Start-up (less than
30%) 1 77 26.4

StgProj
Advanced
(30–70%) 2 117 40.1

Near close-out
(greater than 70%) 3 98 33.6

Contract sum

≤99 millions 1 67 22.9

ConSum
100–499 millions 2 98 33.6

500–999 millions 3 40 13.7

≥1000 millions 4 87 29.8

Goal congruency

Prompt feedback on work
performance

Yes 1 146 50
GC1

No 0 146 50

Agreement with the work philosophy
of this project

Yes 1 134 45.9
GC2

No 0 158 54.1

Commitment to the project’s goal
Yes 1 34 11.6

GC3
No 0 258 88.4
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Table A1. Cont.

First-Level
Dimensions Second-Level Indicators Label Value Frequency Percent

(%) Code

Participative
decision-making

Satisfaction with the decision-making
process

Yes 1 26 8.9
PDM1

No 0 266 91.1

Have opportunity to participate in
decision making

Yes 1 132 45.2
PDM2

No 0 160 54.8

Professional
development

Encouraged to seek further
professional development

Yes 1 118 40.4
PD

No 0 174 59.6

Organizational
support

Support from colleagues
Yes 1 43 14.7

OS1
No 0 249 85.3

Support from the leadership
Yes 1 49 16.8

OS2
No 0 243 83.2

Standardized
safety rules and

procedures

Performance standards are very clear.
Yes 1 37 12.7

SSRP1
No 0 255 87.3

Rules, policies, and procedures are
very clear.

Yes 1 144 49.3
SSRP2

No 0 148 50.7

Rules cannot be violated.
Yes 1 47 16.1

SSRP3
No 0 245 83.9

Rules are enforced strictly.
Yes 1 130 44.5

SSRP4
No 0 162 55.5

Safety climate

Accidents and incidents are always
reported.

Yes 1 106 36.3
SC1

No 0 186 63.7

The project manager encourages staff
to make suggestions to improve safety.

Yes 1 54 18.5
SC2

No 0 238 81.5

The project manager genuinely cares
about the staff’s safety.

Yes 1 53 18.2
SC3

No 0 239 81.8

All the project staff are fully
committed to safety.

Yes 1 46 15.8
SC4

No 0 246 84.2

Transformational
leadership

My supervisor suggests new ways.
Yes 1 29 9.9

TL1
No 0 263 90.1

My supervisor suggests different
angles.

Yes 1 33 11.3
TL2

No 0 259 88.7

My supervisor teaches and coaches.
Yes 1 113 38.7

TL3
No 0 179 61.3

Contingent
reward

My supervisor rewards my
achievement.

Yes 1 115 39.4
CR1

No 0 177 60.6

My supervisor recognizes my
achievement.

Yes 1 145 49.7
CR2

No 0 147 50.3
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Table A1. Cont.

First-Level
Dimensions Second-Level Indicators Label Value Frequency Percent

(%) Code

Leader–member
exchange

Supervisor understands my job
problems and needs.

Yes 1 35 12.0
LMX1

No 0 257 88.0

Supervisor recognizes my potential.
Yes 1 44 15.1

LMX2
No 0 248 84.9

Supervisor helps me out with all his
might.

Yes 1 43 14.7
LMX3

No 0 249 85.3

My working relationship with
supervisor is very good.

Yes 1 129 44.2
LMX4

No 0 163 55.8

Team–member
exchange

My colleagues are willing to help me
with my assignment.

Yes 1 97 33.2
TMX1

No 0 195 66.8

My colleagues recognize my potential.
Yes 1 129 44.2

TMX2
No 0 163 55.8

My colleagues let me know if I
interfere with their work.

Yes 1 115 39.4
TMX3

No 0 177 60.6

My colleagues understand my job
problems and needs.

Yes 1 89 30.5
TMX4

No 0 203 69.5

Demographic
information

Gender
Male 1 269 92.1

Gender
Female 2 23 7.9

Age

<20 1 0 0

Age

20–30 2 20 6.8

31–40 3 51 17.5

41–50 4 99 33.9

>50 5 122 41.8

Marital status
Married 1 246 84.2

MarSts
Single 2 46 15.8

Number of dependents

0 1 21 7.2

DeptRsp

1–2 2 132 45.2

3–4 3 123 42.1

5–6 4 12 4.1

>6 5 4 1.4

Educational level

Below primary 1 1 0.3

EduRsp

Primary 2 5 1.7

Secondary 3 22 7.5

Certificate/diploma 4 17 5.8

College or higher 5 247 84.6

Industrial experience

<3 1 10 3.4

IndExpr

3–10 2 29 9.9

11–15 3 36 12.3

16–20 4 37 12.7

>20 5 180 61.6
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Table A1. Cont.

First-Level
Dimensions Second-Level Indicators Label Value Frequency Percent

(%) Code

Habit

Smoking habit

Smoke even at
work 1 9 3.1

SmoHab
Smoke, but not at

work 2 24 8.2

Do not smoke 3 259 88.7

Drinking habit

Drink even at work 1 0 0

DriHab
Drink, but not at

work 2 104 35.6

Do not drink 3 188 64.4

Affiliation

Type of affiliation

Contractor 1 119 40.8

AffResConsultant 2 89 30.5

Client 3 84 28.8

Hierarchical position

Worker 1 18 6.2

RespHierSupervisory staff 2 115 39.4

Management 3 159 54.5

Safety motivation

Workplace health and safety is
important.

Yes 1 147 50.3
SM1

No 0 145 49.7

It is beneficial to me to maintain or
improve my personal safety.

Yes 1 144 49.3
SM2

No 0 148 50.7

Maintaining safety at all times is
important.

Yes 1 170 58.2
SM3

No 0 122 41.8

To reduce the risk of workplace
accidents and incidents is very

important.

Yes 1 173 59.2
SM4

No 0 119 40.8

Table A2. Output indicators.

Safety behavior

Use all necessary safety equipment to do the job
Yes 1 114 39.0

SB1
No 0 178 61.0

Follow safety procedures in doing the job
Yes 1 105 36.0

SB2
No 0 187 64.0

Promote safety program willingly
Yes 1 76 26.0

SB3
No 0 216 74.0

Put in extra effort to improve workplace safety
Yes 1 66 22.6

SB4
No 0 226 77.4

Help colleagues out when they are under risky conditions.
Yes 1 90 30.8

SB5
No 0 202 69.2
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