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Abstract: The public’s support for emergency infrastructure projects, which will affect the govern-
ment’s credibility, social stability, and development, is very important. However, there are few
systematic research findings on public support for emergency infrastructure projects. In order to
explore the factors influencing the public’s support and the degree of influence of each factor on
the public’s support, this paper employs K-Nearest Neighbors (KNN), a learning curve with m-
fold cross-validation, grid search, and random forest to study the public’s support for emergency
infrastructure projects and its influencing factors. In this paper, a prediction model of the public’s
support for emergency infrastructure projects is developed based on KNN from data drawn from a
questionnaire survey of 445 local residents concerning Wuhan Leishenshan Hospital, China. Two op-
timization algorithms, the learning curve with m-fold cross-validation and the grid search algorithm,
are proposed to optimize the key parameters of the KNN predictive model. Additionally, quantitative
analysis is conducted by using the random forest algorithm to assess the importance of various factors
influencing public support. The results show that the prediction accuracy and model stability of the
KNN prediction model based on the grid search algorithm are better than those using a learning
curve with m-fold cross-validation. Furthermore, the random forest algorithm quantitative analysis
shows that the most important factor influencing the public’s support is government attention. The
conclusions drawn from this paper provide a theoretical reference and practical guidance for decision
making and the sustainable development of emergency infrastructure projects in China.

Keywords: emergency infrastructure project; public’s support; K-Nearest Neighbors; random forest;
machine learning

1. Introduction

The World Bank defines emergency infrastructure projects as urgent and unforeseen
infrastructure initiatives aimed at addressing emergencies. For instance, in response to
COVID-19, the establishment of emergency hospitals such as Huoshenshan Hospital,
Leishenshan Hospital, and Xiaotangshan Hospital enabled timely treatment of the rising
number of patients. These projects play a crucial role in responding to emergencies, ensur-
ing the quality of public life, and maintaining the smooth functioning of socioeconomic
activities [1]. Consequently, emergency infrastructure projects have drawn intense public
attention, and the evaluation criteria for public projects have shifted from ’hard indicators’
such as the construction period and resource allocation to ’soft indicators’ like public satis-
faction [2]. However, the short decision making time for emergency infrastructure projects
makes it challenging to fully consider all public demand and willingness [3], leading the pub-
lic’s support to be low. This can generate significant public attention and opinion fluctuation
and erode public trust in the government, which may lead to social unrest [4]. For example,
residents worried about the potential pollution of drinking water because of the proximity of
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Leishenshan Hospital to the water source, which led to conflict between the public and the
government. This highlights the critical importance of the public’s support for emergency
infrastructure projects to enhance the projects’ capacity for sustainable development.

So far, there have been some effective evaluations of public support in the literature.
For instance, Liu et al. [5] clarified the core influencing factors and mechanisms by analyzing
the public’s support for the banning gasoline vehicles sales policy (BGVSP). Yao et al. [6]
confirmed that the deficit model and the response model could be used to study the public’s
support towards environmentally friendly initiatives. The existing research on emergency
infrastructure projects has focused more on achieving rapid delivery from the perspective
of technology and management rather than enhancing the public’s support [7], including
evaluating emergency capabilities, optimal site selection, resource allocation decisions
for emergency infrastructure, and infrastructure digitization. For instance, Zhu et al. [8]
proposed an approach to assess emergency capabilities by constructing a scenario-based
method for urban critical infrastructure disasters. Yu et al. [9] and Yuan et al. [10] developed
optimal site selection and resource allocation schemes using the grey wolf optimization
algorithm and the maximum preparedness coverage model, respectively. Jin et al. [11]
carried out infrastructure digitization to promote the digital transformation of China’s
social governance.

Research on public support for emergency infrastructure projects currently remains
far from sufficient in two aspects: (1) limited research of factors influencing public support
for emergency infrastructure projects and (2) insufficient quantitative description of the
relationships between these factors and public support.

In terms of research methodologies, the relevant literature has seen the application of
various technologies to investigate the public’s support. For instance, Mao and Wen [12]
employed the Theory of Planned Behavior (TPB) model to assess scholars’ support for
academic entrepreneurship. Ren et al. [13] proposed an opinion evolution analysis model
based on Gradient Boosting Regression Trees (GBRT), which accurately predicts the public’s
support. Wazirali [14] adopted an innovative approach that combined hyperparameter tun-
ing with five-fold cross-validation to enhance the algorithm accuracy of the KNN intrusion
detection system. Similarly, Li et al. [15] introduced a hyperparameter optimization algo-
rithm called MARSAOP. Moreover, Kim and Park [16] employed grid search for parameter
optimization in the gradient-boosting machine learning algorithm. Their study achieved
highly efficient predictions of the public’s support for lifelong learning. The research results
show that employing machine learning techniques has a more comprehensive analysis
of public support than the TPB model. The data volume and dimensions of this study
are relatively small, and there is a certain relationship between the influencing factors
and the public’s support. Therefore, KNN is faster than GBRT and can save time. The
KNN model has a single key parameter, k (the number of nearest neighbors), and using
m-fold cross-validation and grid search saved computational memory resources compared
to MARSAOP, making it more efficient.

To make up for the research gap, the current study aims to (1) explore the factors
influencing the public’s support for emergency infrastructure projects and (2) analyze the
quantitative influence of each factor on the public’s support. The research findings will help
the government and relevant departments to gain a full understanding of public demand
and willingness while identifying their own issues. This facilitates them in making better-
informed decisions, which provides a reference basis for the sustainable development of
emergency infrastructure projects.

The subsequent sections of this paper are organized as follows: Section 2 details
the data collection process and research methodology. Section 3 presents the research
results and an in-depth discussion, offering well-founded policy recommendations. Finally,
conclusions and research limitations are provided.
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2. Methods
2.1. Framework

In this section, the research process was first divided into various stages. Subsequently,
data collection and processing were conducted using literature analysis and a questionnaire
survey, and then an optimized KNN model was constructed based on the KNN algorithm,
learning curve with m-fold cross-validation, and grid search. Finally, quantitative analysis
was performed using the random forest.

2.2. Divide the Research Stage

This study employed a systematic process to review the public’s support for emergency
infrastructure projects and its influencing factors. Figure 1 divides the research framework
into a three-stage process. Data collection and processing were conducted in Stage 1. In
Stage 2, an optimized KNN prediction model was constructed to make predictions of new
sample data. Stage 3 is the quantitative analysis of the influencing factors of public support.
The flow of the research framework of the current study comprised the following nine steps.
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2.3. Stage 1: Data Collection and Processing

Step 1 This study identifies the factors influencing public support through a compreh
ensive literature analysis. This involves refining and finalizing the questionnaire items by
drawing from well-established measurement items used in relevant domestic and international
studies while also considering the unique characteristics of our research subject.

Step 2 This study carefully selected a specific public sample residing in the vicinity of a
particular emergency infrastructure project, and we conducted a thorough questionnaire survey.

Step 3 The data collected from the survey underwent rigorous screening and process-
ing to ensure quality and reliability. For instance, incomplete, insincere, or inconsistent
questionnaires were excluded from the analysis. Meanwhile, SPSS 25.0 was used to test the
questionnaire data.

2.4. Stage 2: Construct an Optimized KNN Prediction Model

Step 4 This study employed the KNN algorithm to construct a predictive model of
public support for emergency infrastructure projects using the processed questionnaire
data. The KNN algorithm is a classification method that selects the k-nearest neighbors to
an unknown sample based on their distances. It then assigns a class label to the unknown
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sample based on the majority class of its k-nearest neighbors. Let the number of samples
be N. K-nearest neighbors are k1, k2, . . ., kc. Then, the discriminant function can be defined
as follows:

gi(x) = max(ki) i = 1, 2, . . . c, x ∈ N (1)

Here, c indicates the class number.
Step 5 In this study, to tackle imbalanced datasets (where the distribution of samples

across different categories is uneven), accuracy, recall, precision, and an F-measure were
employed as performance evaluation metrics for the model. Their respective mathematical
expressions are shown in the Equations (2)–(5). In order to achieve the optimal performance
evaluation metrics for the model, the most important thing is the choice of parameter k.
This study applied two-parameter optimization techniques: learning curve with m-fold
cross-validation and grid search to determine the optimal value for the parameter k.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Recall = TP/(TP + FN) (3)

Precision = TP/(TP + FP) (4)

F−measure =
(

α2 + 1
)

Recall × Precision/
(

α2Recall + Precision
)

α = 1 (5)

To further understand the above evaluation metrics, the concept of a confusion ma-
trix [17] was introduced. The confusion matrix is shown in Table 1 differentiating between
the positive class (the minority) and the negative class (the majority).

Table 1. Confusion matrix.

Prediction
Positive Description Prediction

Negative Description

Reference
Positive True Positive (TP) Predicted as positive class.

Correctly predicted. False Positive (FN) Predicted as negative class.
Incorrectly predicted.

Reference
Negative False Positive (FP) Predicted as positive class.

Incorrectly predicted. True Negative (TN) Predicted as negative class.
Correctly predicted.

Accuracy, as shown in Equation (2), refers to the ratio of instances correctly classified by
the classifier to the total number of samples in the given dataset. According to Equation (3),
recall measures how many positive instances were correctly classified among all true
positive instances, with a greater focus on the minority class. In Equation (4), precision
measures how many actually true positive instances are among all predicted positive
instances, with a greater focus on the majority class. It is challenging to simultaneously
achieve high recall and high precision. The F-measure combines precision and recall to
strike a balance between the two and find the optimal combination.

Step 6 The above two-parameter optimization algorithms help determine the optimal
value for the parameter k. Retraining the KNN model using the optimal value of k ultimately
obtains an optimal KNN prediction model.

Step 7 The optimal KNN predictive model was utilized to make accurate predictions
regarding the public’s support for emergency infrastructure projects.

2.5. Stage 3: Quantitative Analysis

Step 8 This study leverages the random forest algorithm to assess and rank the impor-
tance of the various factors influencing public support.

Step 9 This quantitative analysis allows us to propose targeted policy recommenda-
tions based on solid empirical evidence.
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3. Research Designs
3.1. Questionnaire Design

This study aims to gather questionnaire data to establish a predictive model for the
public’s support of emergency infrastructure projects based on the KNN algorithm. Ad-
ditionally, this study seeks to analyze the factors influencing public support. Based on
the literature review method, a three-part self-administered questionnaire was designed.
(1) Introduction: In this part, the purpose of the questionnaire was clearly explained to the
participants. They were assured that their participation was strictly for academic research
and that their privacy would be protected. The aim was to alleviate any concerns partici-
pants had and ensure the authenticity and validity of the questionnaire. (2) Background
Information: This part comprised seven categories of items, such as gender, age, educa-
tional level, distance from Leishenshan Hospital, etc. The specific details of background
information are shown in Table 2. (3) Measurement Items: This part was developed based
on a thorough literature analysis. It incorporated well-established measurement items from
relevant studies while considering the unique characteristics of the research subject. By
doing so, it ensured the rationality and scientific nature of the questionnaire. The section
covered eight major categories, namely government attention, public concern, social com-
parison, emotional response, prior experience, interaction level, psychological distance,
and public support. It includes 10 specific measurement items. The detailed descriptions
and sources of the measurement items are shown in Table 3.

Table 2. Background information description.

Features Items Option Coding Features Items Option Coding

Gen Gender
Male 1

Occ Occupation Type

Agricultural
laborer 1

Female 2 Self-employed
worker 2

Age Age

<30 1 Company
employee 3

30–44 2 Student 4

45–59 3 Government
employee 5

>60 4 Other
occupation 6

Edu Educational Level

≤Junior high
school 1

Dis
Distance from

Leishenshan Hospital

<1 km 1

Senior high
school 2 1–3 km 2

Junior college 3 3–6 km 3
Undergraduate 4 6–12 km 4
≥Graduate 5 >12 km 5

Tre
Someone you know was
admitted to Leishenshan

Hospital for treatment

Yes 1
Dia

Someone you know
has confirmed

COVID-19

Yes 1

No 2 No 2

Table 3. Measurement item descriptions.

Categories Features Items Option Coding Numbers References

Government
attention

G-attention Government concern about
public concerns.

Insufficient attention 0 156
[18–20]

Extremely concerned 1 289

Public
concern

P-concern-t Concern about the
COVID-19 situation.

Insufficient attention 0 202

[21]
Extremely concerned 1 243

P-concern-e Concern about
Leishenshan Hospital.

Insufficient attention 0 245

Extremely concerned 1 200

Social
comparison

S-comparison Concern about comparisons
with foreign countries.

Insufficient attention 0 292
[22,23]

Extremely concerned 1 153
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Table 3. Cont.

Categories Features Items Option Coding Numbers References

Emotional
response

E-response Emotional responses lead to
support for all decisions.

Insufficient attention 0 164
[24–26]

Extremely concerned 1 281

Prior
experience

P-experience Experienced other
similar emergencies.

Heard or never
experienced 0 224

[27,28]
Personal experience 1 221

Interaction
level I-level

Frequent participation in
topical discussions

and interactions.

Low participation 0 184
[25,29]Frequently

participate 1 261

Psychological
distance

P-environment
Will not pollute the

surrounding environment.

Some pollution to
varying degrees 0 142

[30–32]

Will not pollute 1 175

Potential pollution
hazards 2 128

N-impact Has not had negative
impacts on life.

Some impact to
varying degrees 0 95

No impact 1 206

Negligible impact 2 144

Public’s
support

support Public support for emergency
infrastructure projects.

Dissatisfied 0 173
[33]

Strongly supportive 1 272

3.2. Sample and Data Collection

This study employed a stratified random sampling method for sample selection.
Firstly, considering its significant role in combating the COVID-19 pandemic, Wuhan’s
Leishenshan Hospital was chosen as the subject for the emergency infrastructure project
research. Secondly, Jiangxia District, where Leishenshan Hospital is located, was selected
as the survey area. Finally, the survey area was divided into residential communities or
villages based on their distance from Leishenshan Hospital, and residents within a range of
0 to 12 km from the hospital were randomly selected as respondents.

The questionnaire survey was conducted face-to-face with respondents in an anony-
mous manner from 15 April 2021 to 5 August 2022. On average, it took approximately
25 min for each respondent to complete the questionnaire. The research issued 750 question-
naires and recovered 631, with a recovery rate of 84.13%. There were two exclusion criteria:
(1) a questionnaire with incomplete answers and (2) answers with obvious inconsistencies
or insincerity caused by the respondents’ incomprehension, even after the explanation in
the face-to-face survey. As a result, 445 valid questionnaires were selected; the efficiency
was 70.52%. To build the predictive model, 285 questionnaires were randomly chosen as
the training set for model training, 71 questionnaires were allocated to the validation set
for model calibration, and 89 questionnaires were used as the testing set to evaluate the
predictive performance of the model.

4. Results and Discussion
4.1. Initial Validation of Data

Table 4 provides details of the respondents’ demographic characteristics, indicating
that the sample distribution is considered to be generally relevant and representative. The
largest proportion of respondents by education level were high school or above (82.5%),
which shows that the sample can generally understand the content of the questionnaire
very well. Most respondents chose “other occupation” (47.9%), with the remaining 52.1%
comprising agricultural laborers, self-employed people, company employees, students,
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and government employees. Respondents from all occupations participated, which is a
good indication of the diversity of the subjects. We noted that 15.5% of respondents lived
within three kilometers of Leishenshan Hospital, and the remaining 85.5% lived further
away, which is in line with the distribution of the local population. Respondents chose
either “Yes” or “No” in answer to the question of whether they knew someone who had
been diagnosed with COVID-19 and whether they knew someone who had been treated at
Leishenshan Hospital.

Table 4. Respondents’ demographic information.

Features Option Number Percentage

Gen
Male 205 46.1%

Female 240 53.9%

Age

<30 168 37.8%
30–44 117 26.3%
45–59 86 19.3%
>60 74 16.6%

Edu

≤Junior high school 78 17.5%
Senior high school 146 32.8%

Junior college 110 24.7%
Undergraduate 104 23.4%
≥Graduate 7 1.6%

Occ

Agricultural laborer 37 8.3%
Self-employed worker 37 8.3%
Company employee 64 14.4%

Student 62 13.9%
Government employee 32 7.2%

Other occupation 213 47.9%

Dis

<1000 m 10 2.2%
1000–3000 m 59 13.3%
3000–6000 m 60 13.4%

6000–12,000 m 253 56.9%
>12,000 m 63 14.2%

Dia
True 69 15.5%
False 376 84.5%

Tre
True 32 7.2%
False 413 92.8%

The statistical results for all measurement items are shown in Table 5. The average val-
ues for government attention, emotional response, and the public’s support were between
0.61 and 0.65, all greater than 0.6 and close to 1, indicating that the public gave relatively
positive responses. Conversely, the average values for public concern, social comparison,
prior experience, and interaction level were all between 0.34 and 0.59, implying that the pub-
lic perceived that there was room for improvement in these areas. Additionally, the average
value for psychological distance was between 0.97 and 1.11, less than 1.2 and far from 2,
indicating relatively low satisfaction. In addition, the kurtosis coefficient and skewness
coefficient of all measurement items met the data, presenting a normal distribution.

In this study, the Cronbach’s alpha coefficient was employed as an indicator to assess
the questionnaire’s reliability. Generally, Cronbach’s alpha coefficient above 0.7 indicates
a high level of questionnaire reliability; values between 0.6 and 0.7 are considered ac-
ceptable, and values below 0.6 are not acceptable. In this study, SPSS 25.0 was used to
calculate the Cronbach’s alpha coefficient of the questionnaire as 0.705, which shows that
the questionnaire used in this study has high reliability.
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Table 5. Statistical results of the measurement items.

Categories Features N Mean Standard Deviation Skewness Kurtosis

Government attention G-attention 445 0.65 0.478 −0.629 −1.612

Public concern
P-concern-t 445 0.55 0.498 −0.186 −1.974
P-concern-e 445 0.45 0.498 0.204 −1.967

Social comparison S-comparison 445 0.34 0.476 0.660 −1.572
Emotional response E-response 445 0.63 0.483 −0.547 −1.709

Prior experience P-experience 445 0.50 0.501 0.014 −2.009
Interaction level I-level 445 0.59 0.493 −0.353 −1.884

Psychological distance P-environment 445 0.97 0.779 0.055 −1.349
N-impact 445 1.11 0.725 −0.171 −1.086

Public’s support support 445 0.61 0.488 −0.458 −1.798

This study employed the Pearson correlation coefficient to analyze the correlation
between public background information and the measurement item “emotional response”.
Table 6 shows the correlations between these two factors. The correlational analyses show
that the public emotional response to emergency infrastructure projects is not influenced
by Gen, Age, Edu, Dis, and Tre and does not vary significantly based on their differences.
However, public emotional response was found to be positively correlated with occ (0.105,
p < 0.05) and negatively with Dia (−0.121, p < 0.05).

Table 6. Pearson correlation coefficients.

Gen Age Edu Occ Dis Dia Tre

ER1 0.014 0.069 0.014 0.105 * 0.065 –0.121 * –0.055
Notes: N = 445, * p < 0.05.

4.2. Predictive Model for Public’s Support for Emergency Infrastructure Projects Based on KNN

In this study, 16 items were defined as features for the classification predictive algo-
rithm. Among these items were seven background information items and nine measure-
ment items (excluding the ‘support’ variable). These features served as sample inputs to
establish a predictive model of the public’s support for emergency infrastructure projects.
The specific steps for constructing the predictive model were as follows:

(1) Firstly, the historical data from the questionnaire survey were carefully preprocessed,
and incomplete, insincere, or inconsistent responses were excluded from the dataset,
ensuring that the final dataset contained only reliable and valid information.

(2) Next, the relationship between the factors influencing the public’s support and the
corresponding public support was established as a set called W within the entire
dataset. Set W contained i samples, where each sample comprised p influencing
factors of public support and one public’s support denoted as Q. In this study, the
value of p was 16, which included the seven background information items mentioned
in Table 2 and the nine measurement items listed in Table 3 (excluding ‘support’).
The value of Q was either 0 or 1, representing the two different categories of public
support in the questionnaire. This relationship can be mathematically represented as
shown in Equation (6):

W =


[
X11, X12, . . . , X1p, Q1

][
X21, X22, . . . , X2p, Q2

]
. . .[

Xi1, Xi2, . . . , Xip, Qi
]
 (6)

(3) Finally, the factors (X) influencing public support were defined as the target sample
for prediction. In the KNN classification predictive algorithm in this study, the
process begins with traversing the entire sample set W and computing the distances
between the target sample and each sample in set W. These distances were then
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sorted in ascending order to identify the top k-nearest neighbors. Subsequently, the
corresponding public support set, Q = [Q1, Q2, . . ., Qk], of these k-nearest neighbors
was obtained. Ultimately, voting was performed on set Q. In this step, each public
support in set Q equaled one vote. The public’s support Qk with the highest number
of votes was then assigned as the public’s support for the target sample. In this
study, the Euclidean distance metric was used for this purpose. Euclidean distance is
mathematically represented as shown in Equation (7):

L2
(
xi, xj

)
=

(
n

∑
i=1

∣∣xi − xj
∣∣2) 1

2

(7)

In this study, achieving an optimal predictive model required careful selection of the
nearest neighbor parameter k. The value of k played a crucial role in the KNN algorithm’s
performance. If k is too small, the model may become overly sensitive to noise in the data,
leading to overfitting. This means that the model will perform well on the training set,
but its performance will be significantly worse for new, unseen data (test and validation
sets), indicating low generalization ability. On the other hand, if k is too large, the model
may oversimplify the underlying patterns in the data, leading to underfitting. In this case,
the model will have increased approximation errors during the learning process and may
not accurately capture the intricacies of the relationships between the influencing factors
and the public’s support. To overcome these challenges and find the optimal value of k,
this study adopted two methods: learning curves with m-fold cross-validation and grid
search. These methods help in selecting the most appropriate value of k that will maximize
the model’s predictive performance. The choice of k in the KNN predictive model has a
significant impact on its performance, resulting in variations in various evaluation metrics.

4.2.1. Learning Curve with m-Fold Cross-Validation Results

In the first step, the program was executed multiple times with all possible k values
ranging from 0 to 20 to construct learning curves for the established KNN predictive
model. The best value of k was then determined based on the point where the model
exhibited the best performance on the learning curve. However, in practical research, the
learning curves vary each time the program is executed. This suggests that the established
predictive model’s generalization ability is not optimal. To address this issue and enhance
the model’s generalization ability, this study employed learning curves with m-fold cross-
validation due to the limited size of the dataset [34]. This process helps to mitigate the
impact of variations in the learning curves and ultimately results in an optimized KNN
predictive model with improved generalization ability and better suitability for real-world
applications. The principle of m-fold cross-validation is shown in Figure 2.
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Using the above methods, we retrained the existing KNN predictive model. Finally,
the average classification accuracy of the m models was computed as the model’s final
classification accuracy. The value of m can be set to either 5 or 10 [35]. Different values of
m result in different means and variances, which correspond to different average effects
and stability of classifiers, consequently affecting various metrics of the KNN model. Such
dataset partitioning allows all samples in the dataset to serve in both the training set and
the validation set, which significantly enhances the model’s generalization ability, resulting
in an optimized KNN predictive model. Meanwhile, the best value of the nearest neighbor
parameter k was determined by selecting the parameter value that corresponded to the
optimized performance point on the learning curve. The results of the learning curves with
m-fold cross-validation are shown in Figure 3. The horizontal axis represents the nearest
neighbor parameter k with values ranging from 0 to 20, while the vertical axis represents
the mean, reflecting the average effect of the KNN model. According to Figure 3a, the KNN
model performs best when k is set to 12, achieving an average effect of 92.76%. According to
Figure 3b, the KNN model performs best when k is set to 14, with an average effect of 93.25%.
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4.2.2. Grid Search Results

This study employed the grid search algorithm to determine the optimal value of k,
with the parameter search range set from 0 to 20. The grid search algorithm utilized an
exhaustive search approach, where the program explored all possible values within the
specified parameter range. Through iterative traversal, it attempted every possibility and
selected the parameter value that exhibited the best performance. Simultaneously, this
study employed the m-fold cross-validation method to calculate the algorithm’s accuracy.
Ultimately, the k-value demonstrating the best overall performance was chosen, leading to
the selection of an optimized KNN predictive model for our specific dataset.

In the program implementation, this study defined a function named ‘grid_search’ that
utilized the GridSearchCV method from the Sklearn machine learning library for automated
parameter tuning. The parameter options are shown in Table 7. This efficiently searched for
the best value of k and evaluated its overall performance using the m-fold cross-validation
method. In this study, the value of m was set to 5 or 10. Finally, the program outputs the
optimal value of k and the accuracy achieved by the grid search algorithm. The results of
the grid search are shown in Table 8.
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Table 7. The parameter options of the GridSearchCV method.

Parameter of
GridSearchCV Method Options Parameter of

GridSearchCV Method Options

estimator KNeighborsClassifier n_jobs 1

param_grid n_neighbors: range
[0,20] verbose 0

cv 5 or 10 refit True
scoring accuracy iid True

Table 8. Grid search results.

m-Fold Cross-Validation Value of Nearest Neighbor
Parameter k Grid Search Accuracy

Five-fold cross-Validation 12 92.25%
Ten-fold cross-Validation 8 93.66%

4.2.3. KNN Model Performance with Different k Values

After employing two different methods to determine the optimal nearest neighbor
parameter k for the KNN model, the model’s performance metrics were as shown in Table 9
for different values of k. The selected values of k were 8, 12, and 14, and it was observed
that the model’s performance metrics were relatively better when k was set to 8 or 14.

Table 9. KNN model performance with different k values.

Evaluation Metrics
Learning Curve with m-Fold Cross-Validation Grid Search

Five-Fold (k = 12) Ten-Fold (k = 14) Five-Fold (k = 12) Ten-Fold (k = 8)

Accuracy 94.44% 95.83% 94.44% 95.83%

Recall
0 93.00% 96.00% 93.00% 96.00%
1 96.00% 96.00% 96.00% 96.00%

Precision
0 93.00% 93.00% 93.00% 93.00%
1 96.00% 98.00% 96.00% 98.00%

F1-score
0 93.00% 95.00% 93.00% 95.00%
1 96.00% 97.00% 96.00% 97.00%

4.2.4. Validation of Model Prediction Performance

In this study, the test set comprised 89 valid questionnaire responses, as described in
Section 2.2. It was utilized to evaluate the prediction performance of the KNN models using
different k values. For validation purposes, a random sample of 20 valid questionnaire responses
was chosen. The prediction results are shown in Table 10. Overall, the KNN models demon-
strated good prediction performance, achieving an average accuracy of over 90%. Notably,
the KNN model with a k-value of 8 exhibited more stable prediction results and displayed a
superior ability to predict the public’s support for emergency infrastructure projects.

Table 10. Prediction of public’s support.

Actual Public Support Intention 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1
Model Prediction Result (k = 8) 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1
Model Prediction Result (k = 14) 1 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1

4.3. Feature Importance Assessment and Ranking Results

This study utilized the random forest algorithm, which consists of multiple decision
trees, to calculate the contribution of each of the 16 features to the w decision trees in the
random forest [36]. This allows this study to conduct a feature importance assessment.
The assessment was carried out using the Out-Of-Bag (OOB) error rate. In the program
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implementation, this study leveraged the Sklearn machine learning library to investigate
how each feature contributed to reducing the impurity of the w decision trees within the
random forest, thereby quantifying the importance of each feature. The model was trained
by executing the program, automatically computing the importance of each feature, and
generating the feature importance ranking. Notably, the sum of the importance values for
all features equaled 1. During model training, this paper employed the Bootstrap sampling
technique to create training subsets and construct the random forest. This technique
involves randomly selecting n samples with replacements from the sample set to form a
training subset and repeating this process w times, generating w training subsets. The
feature importance assessment and ranking results are shown in Figure 4.
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In Figure 4, the horizontal axis represents the 16 features influencing the public’s
support, while the vertical axis represents the importance of each feature, arranged in
descending order of importance. From Figure 4, it can be seen that government attention,
public concern, and emotional response have the most substantial impact on public support,
with their importance all exceeding 10%. In particular, government attention was the
most significant influence, with an importance of 23.27%. Following closely behind were
psychological distance and social comparison, both with importance values exceeding 5%.
Finally, the impact of features like interaction level, background information, and prior
experience on public support was relatively minor, with their importance all being less
than 5%. Among the factors, knowing someone diagnosed with COVID-19 and knowing
someone receiving treatment at Leishenshan Hospital had the least impact, with their
importance being less than 0.3% (specifically 0.29% and 0.09%, respectively).

4.4. Discussion

Based on the results from the KNN prediction model and the random forest feature
importance assessment, it becomes evident that government attention, public concern, and
emotional response have the most significant impact on public support.

Government attention, which pertains to the government’s acknowledgment of public
concerns, emerges as the most critical factor influencing public support. This finding aligns
with previous studies that emphasize the importance of establishing a positive government
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image [37]. A positive government image fosters a strong sense of happiness among the
public, thereby fostering strong public support [37].

Similarly, public concern, which reflects the level of attention the public pays to the
COVID-19 pandemic and the establishment of Leishenshan Hospital, also stands out as a
primary factor influencing public support. This research finding validates the discoveries
of Xu et al. [38]. Public concern reflects increased awareness among the public regarding
emergency infrastructure projects, leading to strong public support [38].

Additionally, emotional response, denoting that the public’s emotional reaction prompts
them to support decisions, is identified as another key factor influencing the public’s sup-
port. This conclusion aligns with the findings of Oliver [39]. Emotional responses reflect
the public’s concerns in unfamiliar situations [40], influencing their behavioral judgments.
Positive emotional responses empower the public to proactively adapt and have confi-
dence in the government’s measures in response to emergencies, leading to strong public
support [41].

4.5. Practical Implications

Based on the research conclusions above, the following policy recommendations are
proposed to promote the public’s support:

(1) For the government, it is crucial to value and respect the expression of public opinions.
This will help government departments identify issues and make corrections, thus
enhancing public satisfaction with the government. Additionally, the government
should pay close attention to public concerns. This can contribute to establishing a
positive government image and foster trust and support from the public. Further-
more, regular education and guidance should be provided to enhance the public’s
psychological coping ability and response capabilities during emergencies. This can
help eliminate negative emotional responses.

(2) Online media should prioritize timely and accurate reporting of social hot topics
through official channels. Avoiding the dissemination of false information that could
lead to social panic is crucial. Providing reliable and factual information fosters a
positive social atmosphere and satisfaction with the government.

(3) It is essential for the public to approach emergencies with a scientific and proactive
mindset. Analyzing and resolving problems in a rational manner helps avoid ex-
cessive panic and suspicion. This strengthens individual feelings of security and
contributes to preventing negative emotional responses.

5. Conclusions

Given the low public support for emergency infrastructure projects, this study con-
structed an optimized KNN predictive model of public support for emergency infrastruc-
ture projects based on KNN, a learning curve with m-fold cross-validation, and a grid
search. Additionally, the factors influencing public support were comprehensively evalu-
ated and quantitatively analyzed using random forest. The main results of this study are as
follows: (1) Background information, government attention, public concern, social compar-
ison, emotional response, prior experience, interactive level, and psychological distance all
influence, to varying degrees, the public’s support for emergency infrastructure projects.
Notably, government attention, public concern, and emotional response have the greatest
impact, all exceeding 10%. Psychological distance and social comparison have a secondary
influence, both exceeding 5%. The interactive level, background information, and prior
experience have the least impact, all less than 5%. (2) The proposed KNN prediction
model effectively predicts the public’s support for emergency infrastructure projects during
public health crises, achieving an average accuracy rate exceeding 90% and demonstrating
good stability. (3) Using grid search with ten-fold cross-validation improved the predic-
tive ability and generalization more than the learning curve with m-fold cross-validation.
(4) Model predictions and random forest feature importance evaluation show that among
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the various influencing factors, government attention has the greatest impact on public
support, exceeding 20%.

The findings provide several theoretical insights and practical implications for the
management of emergency infrastructure projects. This study examines emergency infras-
tructure projects from the novel perspective of the public. It expands the scope of traditional
project management performance evaluation and broadens the research perspective on
public support and infrastructure. This study employed machine learning techniques to
study the public’s support for emergency infrastructure projects and its influencing factors.
It showed the novelty of research technology.

However, this study also had a few limitations. Firstly, the dataset used to train
the predictive model was relatively small. In future research, it is essential to combine
face-to-face and online questionnaire surveys to gather more data, thereby enhancing
the generalizability of the predictive model. Secondly, the study’s primary emphasis on
emergency hospitals neglected consideration of emergency infrastructure projects of other
types, leading to limitations in the results’ applicability. It is hoped that, in future studies,
the research scope can be broadened to include diverse projects, such as emergency shelter
projects, to further corroborate the study’s findings.
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