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Abstract: This work presents analytical solutions for thermoelastic behaviors of multilayer arches
with temperature-dependent (TD) thermomechanical properties under thermomechanical loadings.
The temperature is varied across the thickness of the arch. Firstly, an arched-slice model is developed,
which divides every layer of the arch into numerous hypothetical arched slices with uniform ther-
momechanical properties. Based on the model, the nonlinear heat conduction equations across the
thickness of the arch are solved using the iteration approach, and then the thermoelastic equations
obtained from the two-dimensional thermoelasticity theory are solved using the state-space approach
and transfer-matrix approach. The present solutions are compared with those obtained using the
finite element method and the Euler–Bernoulli theory (EBT). It is found that the error of the EBT
increases when the angle of the arch increases or the length-to-thickness ratio decreases. Finally,
numerical examples are conducted to analyze the effects of surface temperature and TD thermo-
mechanical properties on the temperature, displacement, and stress distributions of a sandwich
arch. The results show that the temperature dependency of thermomechanical properties is a key
parameter in predicting the thermoelastic behaviors of the arch in a high-temperature environment.

Keywords: multilayer arch; temperature-dependent thermomechanical properties; arched-slice
model; heat conduction; thermoelasticity

1. Introduction

Multilayer arches have been widely applied in various engineering structures, such
as bridges [1–3] and storage tanks [4,5]. The thermomechanical analysis of the multilayer
arches has attracted considerable interest, given that the structures may work in severe
environments. For example, the multilayer thermal protection system of space vehicles will
suffer aerodynamic heating during hypersonic flying, which makes the thermomechanical
analysis important for the design [6]. In addition to inducing thermal stresses, the tempera-
ture change in the arches also changes the thermomechanical properties [7,8]. These effects
could weaken the load-carrying capacity of the arches, and even cause structural failure.
Such a problem needs a thorough study.

Several theories [9,10] for the mechanical analysis of arches have been reported, which
are commonly based on the straight beam theories [11–14]. Among these theories, the
most basic and popular one is the Euler–Bernoulli theory (EBT), with many successful
applications [15–18]. Based on the EBT and state-space approach, the thermal vibration
of cross-ply laminated arches was studied by Khdeir [19]. According to the EBT and
using Green’s function method, Rezaiee-Pajand et al. [20] studied the deformations of
arches under thermomechanical loadings. The results showed that the in-plane and out-of-
plane displacements can be induced through the lateral temperature distribution. Vargas
et al. [21] proposed a method for the static analysis of cross-ply laminated arches under
thermomechanical loadings. The EBT was applied to obtain the in-plane stress distributions,
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while the Airy stress function was applied to obtain the out-of-plane ones. According to the
EBT and von Kármán hypothesis, Keibolahi et al. [16] studied the nonlinear vibration of a
shallow arch under rapid heating. The Ritz method was applied to discretize the motion
equation, and the Newton–Raphson method was applied to obtain the solution.

As a result of the neglect of shear deformation effects, the EBT is only suitable for
the analysis of thin arches, but has considerable errors for the analysis of thick arches.
Thus, diverse refined theories have been proposed, such as the first-order theory [22–24]
and higher-order theories [25–28]. Additionally, the exact thermoelasticity theory [29,30]
can also be used to solve the arch problems. Using the thermoelasticity theory, Qian
et al. [31] studied the static behavior of laminated arches under thermal loading. The exact
thermoelastic solutions were presented by using the Fourier series expansion method.

The above studies were carried out based on the hypothesis of temperature-independent
(TI) thermomechanical properties. The hypothesis may be tenable when the arch is under
a limited temperature range. However, temperature dependency of thermomechanical
properties must be included for a wide temperature range, otherwise considerable errors
will arise [32–35]. Based on the EBT, the thermal bending, buckling, and vibration behaviors
of temperature-dependent (TD) functionally graded (FG) arches were studied [36–40].
According to the first-order theory, Javani et al. [41] studied the thermally induced vibration
of FG shallow arches considering the TD thermomechanical properties. The generalized
differential quadrature method was applied to solve the transient heat conduction equation
and the motion equation. Using the third-order arch theory and two-step perturbation
technique, Babaei et al. [42,43] performed the thermal bending and vibration analysis for TD
FG shallow arches. The results indicated that the mechanical performance of the arch was
greatly affected by the temperature dependency of thermomechanical properties. Based on
a refined tube theory proposed by Zhang and Fu [44], the nonlinear bending behavior of
TD shallow curved tubes was studied using the two-step perturbation technique [45,46].

The literature report indicates the lack of analytical solutions for multilayer arches
considering TD thermomechanical properties. Motivated by this fact, we propose an
arched-slice model to study the thermoelastic behaviors of TD multilayer arches under
thermomechanical loadings. Asymptotic analytical solutions of temperature, displace-
ments, and stresses are obtained, and the effects of material and load parameters on the
thermoelastic behaviors are discussed.

2. Problem Statement and Arched-Slice Model

A simply supported multilayer circular arch is shown in Figure 1. In the initial stress-
free state, the arch is under a uniform temperature. We consider the arch is heated from the
inside and outside surfaces and subjected to a radial load Q(ϕ) on the outside surface. The
thermomechanical properties of every layer are TD.
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Figure 1. A simply supported multilayer circular arch under thermomechanical loadings.
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2.1. Basic Assumptions

The study on the multilayer arch is based on the following assumptions:

i. The inside and outside surface temperatures are uniformly distributed on the surfaces
and the two lateral surfaces are adiabatic;

ii. Each layer is made of a homogenous isotropic material with uniform thickness;
iii. Each layer is perfectly bonded with the adjacent layer;
iv. The analysis is within the framework of linear elasticity and small strains.

2.2. Arched-Slice Model

Based on the first assumption, the temperature only varies across the thickness of the
arch, hence the thermomechanical properties are also r-dependent. For such a problem, it is
impractical to exactly solve the heat conduction equations and thermoelasticity equations
due to their r-dependent coefficients. To facilitate asymptotic solutions, we propose an
arched-slice model as shown in Figure 2. In this model, every layer is divided into several
hypothetical arched slices. When every slice is sufficiently thin, the r-dependent coefficients
can be approximated as constant ones by letting r = ri (see Figure 3).
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Figure 2. Hypothetical arched slices in a layer.
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Figure 3. Approximation of the r-dependent coefficients.
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3. Temperature Solution

Based on the arched-slice model, an iteration approach will be applied to solve the
nonlinear heat conduction equations for the TD case (i.e., the thermomechanical properties
of the arch are TD). Before introducing the iteration procedure, we first give an exact
solution of the heat conduction equations for the TI case (i.e., the thermomechanical
properties are assumed to be TI).

3.1. Temperature Solution for the TI Case

The temperature field in the TI case is governed by the following.
(i) Heat conduction of the ith (i = 1, 2, . . ., q) slice across the r-direction,

dTi
dr

+ r
d2Ti
dr2 = 0 (1)

(ii) Temperature and flux at the interface between the ith (i = 1, 2, . . ., q − 1) and
(i + 1)th slices, {

Ti

ki
dTi
dr

}
r = ri

=

{
Ti+1

ki+1
dTi+1

dr

}
r = ri

(2)

(iii) Inside and outside surface temperatures,{
T1(r0)
Tq(rq)

}
=

{
Tin
Tout

}
(3)

Using Equations (1)–(3) yields the following temperature solution:

Ti =
Ai +

k1
ki

ln r

Aq +
k1
kq

ln rq

(Tout − Tin) + Tin (4)

where

Aξ = k1

ξ

∑
j = 2

(
ln rj−1

kj−1
−

ln rj−1

kj

)
− ln r0, ξ = i, q (5)

3.2. Temperature Solution for the TD Case

According to the exact solution Equation (4), we further use the iteration approach to
solve the heat conduction problem for the TD case. To implement the iteration approach,
an initial solution should be assumed. Here, we assume that the temperature is initially a
linear function of r. The iteration procedure is shown in Figure 4.
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4. Displacement and Stress Solutions

In Section 3, we obtained the temperature solution, which can be used for the displace-
ment and stress analyses in this section.

4.1. Basic Equations

Based on the two-dimensional thermoelasticity theory, the deformed state of the arch
is governed by the following [47].

(i) Equilibrium equation of the ith (i = 1, 2, . . ., q) slice,

∂σi
r

∂r
+

1
r

∂τi
ϕr

∂ϕ
+

σi
r − σi

ϕ

r
= 0,

1
r

∂σi
ϕ

∂ϕ
+

∂τi
ϕr

∂r
+

2τi
ϕr

r
= 0 (6)

(ii) Strain–displacement relation,

εi
ϕ =

ui
r

r
+

1
r

∂ui
ϕ

∂ϕ
, εi

r =
∂ui

r
∂r

, γi
ϕr =

1
r

∂ui
r

∂ϕ
+

∂ui
ϕ

∂r
−

ui
ϕ

r
(7)
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(iii) Stress–strain relation in the plane-stress condition,


σi

ϕ

σi
r

τi
ϕr

 =


Ei

1−µ2
i

Eiµi
1−µ2

i
0

Eiµi
1−µ2

i

Ei
1−µ2

i
0

0 0 Ei
2(1+µi)




εi
ϕ

εi
r

γi
ϕr

−


ti

ti

0

 (8)

where ti = Eiαi(Ti − T0)/(1− µi).
(iv) Displacements and stresses at the interface between the ith (i = 1, 2, . . ., q − 1) and

(i + 1)th slices, 
ui

ϕ

ui
r

τi
ϕr

σi
r


r = ri

=


ui+1

ϕ

ui+1
r

τi+1
ϕr

σi+1
r


r = ri

(9)

(v) Inside and outside surface stresses,{
σ1

r

τ1
ϕr

}
r = r0

= 0,

{
σ

q
r

τ
q
ϕr

}
r = rq

=

{
−Q(ϕ)

0

}
(10)

(vi) Simply supported boundary conditions,{
ui

r

σi
ϕ

}
ϕ = 0,θ

= 0 (11)

Applying the state-space approach [48] to Equations (6)–(8) yields

∂

∂r


ui

ϕ

σi
r

τi
ϕr

ui
r

 =



1
r 0 2(1+µi)

Ei
− 1

r
∂

∂ϕ

Ei
r2

∂
∂ϕ

µi−1
r − 1

r
∂

∂ϕ
Ei
r2

− Ei
r2

∂2

∂ϕ2 − µi
r

∂
∂ϕ − 2

r − Ei
r2

∂
∂ϕ

− µi
r

∂
∂ϕ

1−µi
2

Ei
0 − µi

r




ui

ϕ

σi
r

τi
ϕr

ui
r

+



0
µi−1

r ti

− µi−1
r

∂ti
∂ϕ

1−µi
2

Ei
ti


(12)

The induced stress σi
ϕ can be obtained as

σi
ϕ = µi

(
σi

r + ti

)
+

Ei
r

ui
r +

Ei
r

∂ui
ϕ

∂ϕ
− ti (13)

4.2. General Solution to the Thermoelasticity Equations

Given that the coefficient matrix of Equation (12) has the variable r, it is impractical
to exactly solve the equation. Here, we can replace the variable coefficient matrix with
a constant one by setting r = ri. It should be mentioned that the error induced by the
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replacement is negligible due to the thinness of every slice. Under this circumstance,
Equations (12) and (13) can be approximated as

∂

∂r


ui

ϕ

σi
r

τi
ϕr

ui
r

 =



1
ri

0 2(1+µi)

Ei
− 1

ri
∂

∂ϕ

Ei
ri

2
∂

∂ϕ
µi−1

ri
− 1

ri
∂

∂ϕ
Ei
ri

2

− Ei
ri

2
∂2

∂ϕ2 − µi
ri

∂
∂ϕ − 2

ri
− Ei

ri
2

∂
∂ϕ

− µi
ri

∂
∂ϕ

1−µ2
i

Ei
0 − µi

ri




ui

ϕ

σi
r

τi
ϕr

ui
r

+



0
µi−1

ri
ti

− µi−1
ri

∂ti
∂ϕ

1−µi
2

Ei
ti


(14)

σi
ϕ = µi

(
σi

r + ti

)
+

Ei
ri

ui
r +

Ei
ri

∂ui
ϕ

∂ϕ
− ti (15)

To satisfy the simply supported conditions in Equation (11), we assume the solutions
of Equation (14) as 

ui
ϕ

ui
r

τi
ϕr

σi
r

 =
∞

∑
m = 1


Ui

m(r) cos(βm ϕ)

Wi
m(r) sin(βm ϕ)

Γi
m(r) cos(βm ϕ)

Ri
m(r) sin(βm ϕ)

 (16)

where βm = mπ
θ and Ui

m(r), Wi
m(r), Γi

m(r), and Ri
m(r) are unknowns.

The stress ti in Equation (14) can be expanded as

ti(ϕ) =
∞

∑
r = 1

ti
m sin(βm ϕ) (17)

where ti
m = 2

θ

∫ θ
0 ti sin(βm ϕ)dϕ.

Using Equations (16) and (17), the partial differential equation shown in Equation (14)
can be reduced to an ordinary differential one as follows:

dδi(r)
dr

= Miδi(r) + Ni (18)

where

δi(r) =


Ui

m(r)

Ri
m(r)

Γi
m(r)

Wi
m(r)

, Mi =



1
ri

0 2(1+µi)

Ei
− 1

ri
βm

− Ei
r2

i
βm

µi−1
ri

1
ri

βm
Ei
r2

i

Ei
r2

i
β2

m − µi
ri

βm − 2
ri

− Ei
r2

i
βm

µi
ri

βm
1−µi

2

Ei
0 − µi

ri


, Ni =



0
µi−1

ri
ti
m

1−µi
ri

βmti
m

1−µi
2

Ei
ti
m


(19)

Similarly, substituting Equations (16) and (17) into Equation (15) gives

σi
ϕ =

∞

∑
m = 1

[
µiR

i
m(r) + (µi − 1)ti

m +
Ei
ri

Wi
m(r)−

Ei
ri

βmUi
m(r)

]
sin(βm ϕ) (20)

Based on the matrix theory, the general solution to Equation (18) is [48]

δi(r) = Ai(r− ri−1)δi(ri−1) + Bi(r− ri−1), r ∈ [ri−1, ri] (21)

where

Ai(r− ri−1) = exp[Mi(r− ri−1)], Bi(r− ri−1) = exp[Mi(r− ri−1)]M
−1
i Ni −M−1

i Ni (22)
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4.3. Transfer-Matrix Approach

The radial load Q(ϕ) can be expanded as

Q(ϕ) =
∞

∑
m = 1

Qm sin(βm ϕ) (23)

where Qm = 2
θ

∫ θ
0 Q(ϕ) sin(βm ϕ)dϕ.

Substituting Equations (16) and (23) into the boundary conditions in Equations (9) and (10)
yields

δi+1(ri) = δi(ri) (24)

δ1(r0) =
{

U1
m(r0) 0 0 W1

m(r0)
}T , δq(rq) =

{
Uq

m(rq) −Qm 0 Wq
m(rq)

}T (25)

Substituting r = ri into Equation (21) yields

δi(ri) = Ai(hi)δi(ri−1) + Bi(hi) (26)

Based on the continuity condition Equation (24) at all the interfaces and using the
transfer-matrix approach, the following relations can be obtained:

δi(ri) =
1

∏
s = i

[As(hs)]δ1(r0) +
i−1

∑
s = 1

{
s+1

∏
j = i

[
Aj(hj)

]
Bs(hs)

}
+ Bi(hi), i = 1, 2, . . . , q (27)

Incorporating the boundary condition Equation (25) into Equation (27) yields{
Uq

m(rq) −Qm 0 Wq
m(rq)

}T
= S

{
U1

m(r0) 0 0 W1
m(r0)

}T
+ S (28)

where

S =

S11 · · · S14
...

. . .
...

S41 · · · S44

 =
1

∏
i = q

Ai(hi), S =
{

S1 · · · S4
}T

=
q−1

∑
i = 1

{
i+1

∏
j = q

[
Aj(hj)

]
Bi(hi)

}
+ Bq(hq) (29)

Decomposing Equation (28) gives the solution of U1
m(r0) and W1

m(r0) as follows:{
U1

m(r0)

W1
m(r0)

}
= −

[
S21 S24

S31 S34

]−1{Qm + S2

S3

}
(30)

Substituting Equation (30) into Equation (25) yields δ1(r0). Incorporating δ1(r0) into
Equation (27) and using the continuity condition Equation (24) yields δi(ri−1). Incorporat-
ing δi(ri−1) into Equation (21) gives δi(r) for every slice. Finally, the displacements ui

ϕ and
ui

r and stresses σi
ϕ, σi

r and τi
ϕr are obtained from Equations (16) and (20).

The present method focuses on arches with simply supported ends. The method can
also be developed to deal with other support conditions. For example, the clamped end can
be transformed into a simply supported one by adding the unknown longitudinal surface
forces, which can be finally determined by the zero displacement condition at the end [49].

5. Numerical Results and Discussion

Numerical examples were conducted to study the thermoelastic behaviors of a steel-
concrete-steel sandwich arch. Table 1 lists the Young’s moduli of steel and concrete at
different temperatures [50,51]. Table 2 shows the thermal conductivities, thermal expansion
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coefficients, and Poisson’s ratios, which are all expressed by quadratic polynomials as
P(T) = P2T2 + P1T + P0. Unless otherwise stated, some of the geometry and load
parameters are fixed at H1 = H3 = 0.1H, Q(ϕ) = 5000 N/m, Tin = T0 = 20◦C, while the
outside surface temperature Tout, thickness H, angle θ, mean radius rm (rm = 0.5(r0 + rq)),
and mean length L (L = θrm) are the variables. Given that the present method is based
on the arched-slice model, we assumed that the arch was divided into q arched slices with
equal thickness.

Table 1. Young’s moduli of steel and concrete at different temperatures [50,51].

T (◦C) 20 100 150 200 300 400 500 600 700

Es (GPa) 210 210 - 189 168 147 126 65.1 27.3
Ec (GPa) 30 30 30 - - - - - 0

Note: Linear interpolation is applied to obtain Young’s moduli at other temperatures.

Table 2. Temperature-dependent coefficients for steel and concrete [50,51].

P(T) P2 P1 P0

ks (W/m◦C) −3.33 × 10−2 0 54
kc (W/m◦C) 5.7 × 10−7 −3.36 × 10−3 1.36

αs (◦C−1) 0 4 × 10−9 1.208 × 10−5

αc (◦C−1) 1.4 × 10−11 2.8 × 10−10 6.0056 × 10−6

µs 0 0 0.3
µc 0 0 0.2

5.1. Validation of the Solutions

The convergence and accuracy of the present method were studied. Firstly, we con-
sidered the sandwich arch (θ = 0.5π rad, rm = 1.1 m, H = 0.2 m) heated at Tout = 200 ◦C.
Tables 3 and 4 show the convergence results for the temperature, displacement, and stress
solutions, as well as the comparison with the finite element (FE) solutions. In Table 4, ur

ϕ

denotes uϕ at ϕ = 0, r = rm; um
r denotes ur at ϕ = 0.5θ, r = rm; and σm

ϕ denotes σϕ at
ϕ = 0.5θ, r = rm. The FE analysis was conducted using the commercial package ABAQUS.
The four-node heat element, DC2D4, and the four-node plane stress element, CPS4R, were
applied to model the arch. Given the symmetry, we only modelled half of the arch, as
shown in Figure 5. The FE solutions were obtained by dividing the face and core layers with
4 and 16 elements along the r-direction, respectively, and 50 elements along the ϕ-direction.
It can be seen from Tables 3 and 4 that the present solutions converge quickly with the
increase of the slice number q, iterative step s, and half wave number m. The FE solutions
match well with the present ones.

Table 3. Convergence and comparison study of the temperature solutions (unit: ◦C).

Positions
FE

Solutions

Present Solutions

s = 1 s = 2 s = 3 s = 4

r = 1.05 m 53.660 q = 10 54.184 53.714 53.723 53.723
q = 20 54.133 53.652 53.661 53.661
q = 50 54.135 53.654 53.663 53.664
q = 100 54.133 53.652 53.661 53.661
q = 200 54.133 53.652 53.661 53.661
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Table 3. Cont.

Positions
FE

Solutions

Present Solutions

s = 1 s = 2 s = 3 s = 4

r = 1.1 m 109.212 q = 10 110.006 109.214 109.214 109.214
q = 20 110.006 109.214 109.214 109.214
q = 50 110.006 109.214 109.214 109.214
q = 100 110.006 109.214 109.214 109.214
q = 200 110.006 109.214 109.214 109.214

r = 1.15 m 165.390 q = 10 165.940 165.465 165.456 165.456
q = 20 165.888 165.400 165.391 165.391
q = 50 165.890 165.403 165.394 165.394
q = 100 165.888 165.400 165.391 165.391
q = 200 165.888 165.400 165.391 165.391

Table 4. Convergence and comparison study of the displacement and stress solutions.

Variables FE Solutions
Present Solutions

m = 5 m = 25 m = 45 m = 65 m = 85

ur
ϕ(mm) 2.15 q = 10 2.17 2.15 2.14 2.14 2.14

q = 50 2.18 2.15 2.15 2.15 2.15
q = 100 2.18 2.15 2.15 2.15 2.15
q = 200 2.18 2.15 2.15 2.15 2.15
q = 400 2.18 2.15 2.15 2.15 2.15
q = 600 2.18 2.15 2.15 2.15 2.15

um
r (mm) 5.68 q = 10 5.68 5.67 5.67 5.67 5.67

q = 50 5.69 5.68 5.68 5.68 5.68
q = 100 5.69 5.68 5.68 5.68 5.68
q = 200 5.69 5.68 5.68 5.68 5.68
q = 400 5.69 5.68 5.68 5.68 5.68
q = 600 5.69 5.68 5.68 5.68 5.68

σm
ϕ (MPa) 12.7 q = 10 10.3 10.2 10.2 10.2 10.2

q = 50 12.5 12.2 12.3 12.3 12.3
q = 100 12.8 12.5 12.5 12.5 12.5
q = 200 12.9 12.6 12.6 12.6 12.6
q = 400 13.0 12.7 12.7 12.7 12.7
q = 600 13.0 12.7 12.7 12.7 12.7
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Figure 5. FE model of the sandwich arch.

The sandwich arch can also be studied using the EBT [19]. Here, the deflections um
r

of the arch (Q(ϕ) = 0, Tout = 400 ◦C) obtained using EBT and thermoelasticity theory
are compared. Figure 6a shows the effects of the length-to-thickness ratio L/H on the
comparison results when the angle and mean radius are fixed at θ = 0.3π rad and rm = 10 m,
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respectively; Figure 6b displays the effects of the angle θ on the comparative results when
L/H = 10 and rm = 10 m; and Figure 6c displays the effects of the curvature 1/rm on the
comparative results when L/H = 10 and θ = 0.3π rad. We can see that the EBT solutions
match well with the present ones for thin and shallow arches, but the error of the EBT
increases when L/H decreases or θ increases; the curvature 1/rm almost does not affect the
accuracy of the EBT solutions.
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Figure 6. Effects of (a) length-to-thickness ratio L/H, (b) angle θ, and (c) curvature 1/rm on the
deflections obtained using EBT and thermoelasticity theory.

5.2. Parametric Study

We considered the sandwich arch (θ = 0.75π, rm = 1.1 m, H = 0.2 m) heated with
Tout = 100 ◦C, 200 ◦C, and 300 ◦C. The temperature, displacement, and stress distributions
of the arch in the TD and TI cases are both considered for comparison. Note that the
reference temperature, T0 = 20 ◦C, was used to determine the thermomechanical properties
for the TI case.

5.2.1. Temperature Distribution

Figure 7 shows the temperature distributions across the thickness for the TD and TI
cases. We found that T changes rapidly in the concrete layer, but is almost invariable in the
steel layer, given that kc is much smaller than ks. By increasing Tout, the difference of T in
the concrete layer between the TD and TI cases increases. To further illustrate the effects
of Tout and temperature dependency of thermomechanical properties on the temperature
field of the arch, we show the relation between Tout and T at r = rm, considering both the
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TD and TI cases, in Figure 8. We can see that T nonlinearly changes with Tout in the TD
case, but linearly changes with Tout in the TI case. When Tout = 300 ◦C, the difference in T
between the two cases is 6.38%.
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Figure 8. Temperature at r = rm vs. the outside surface temperature Tout.

5.2.2. Displacement and Stress Distributions

Given that the arch considered in this work is under combined thermal and mechanical
loadings, here we separately study the mechanical responses induced by the two kinds
of loadings. Note that whether the arch is under thermal loading or mechanical loading,
the TD and TI cases are considered to show the effects of temperature dependency of
thermomechanical properties on the induced mechanical responses.

Firstly, the displacements and stresses induced by thermal loading were studied.
Figure 9 shows the distributions of uT

ϕ at ϕ = 0 and uT
r and σT

ϕ at ϕ = 0.5θ for the TD and TI
cases, where the superscript T indicates the thermal loading. It is seen that, by increasing
Tout, the difference of displacement and stress distributions between the two cases increases.
Figure 9a,b show that, for any fixed Tout, the TD case has a larger deformation compared
with the TI case, because the high-temperature environment can degrade the stiffness of
the arch when considering the temperature dependency of thermomechanical properties.
Figure 9c shows that, because of the mismatch of thermomechanical properties between
the face and core layers, σT

ϕ is discontinuous at the interfaces.
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Figure 9. Distributions of displacements and stresses induced by thermal loading: (a) uT
ϕ at ϕ = 0;

(b) uT
r at ϕ = 0.5θ; and (c) σT

ϕ at ϕ = 0.5θ.

Figure 10 shows uT
r and σT

ϕ at ϕ = 0.5θ and r = rq vs. Tout, considering both the TD and
TI cases. We can see that uT

r and σT
ϕ nonlinearly change with Tout in the TD case, but linearly

change with Tout in the TI case. The phenomenon is similar to that of temperature, as shown
in Figure 8. It was also found that uT

r in the TD case is always larger than that in the TI case
for any fixed Tout. However, σT

ϕ in the TD case is not always larger than that in the TI case
with the increase of Tout. When Tout = 300 ◦C, the differences between the two cases are
7.96% and 4.20% for uT

r and σT
ϕ , respectively. By combining Figures 8 and 10, it is concluded

that the temperature dependency of thermomechanical properties is a key parameter in
predicting the thermoelastic behaviors of the arch in high-temperature environments.

Secondly, the displacements and stresses induced by mechanical loading were studied.
Figure 11 shows the distributions of uM

r and σM
ϕ at ϕ = 0.5θ and τM

ϕr at ϕ = 0 for the TD and
TI cases, where the superscript M indicates the mechanical loading. It is shown that when
Tout = 100 ◦C, the TD and TI cases have the same displacement and stress distributions,
given that the thermomechanical properties (Young’s modulus and Poisson’s ratio) of the
constituents remain constant when T ≤ 100◦C (see Tables 1 and 2). It is also noticed that
in the TD case, uM

r increases with Tout, because the stiffness of the arch is degraded with
Tout; however, the distributions of σM

ϕ and τM
ϕr are almost unchanged with the increase

of Tout. Furthermore, Figures 9 and 11 show that the deformations and stresses induced
by thermal loading are much bigger than those induced by mechanical loading. Hence,
thermal loading has a major influence on the mechanical behaviors of the arch in this study.
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6. Conclusions

An arched-slice model is proposed to study the thermoelastic behaviors of TD mul-
tilayer arches under thermomechanical loadings. Based on the model, the temperature
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solution is obtained by applying the iteration approach to the nonlinear heat conduction
equations, and then the displacement and stress solutions are obtained by applying the
state-space approach and transfer-matrix approach to the two-dimensional thermoelasticity
equations. The convergence and accuracy of the present solutions were studied. The effects
of surface temperature and TD thermomechanical properties on the temperature, displace-
ment, and stress distributions of a sandwich arch are studied. The following findings
were obtained.

i. The present solutions converge quickly with high accuracy. By comparing the present
solutions with those predicted by the EBT, it was found that for thin and shallow
arches, the deflection predicted by the EBT agrees well with that predicted by the
present thermoelasticity theory. However, the error of the EBT increases when the
angle θ increases or the length-to-thickness ratio L/H decreases.

ii. The temperature, displacement, and stress distributions nonlinearly change with the
surface temperature in the TD case, but linearly change in the TI case.

iii. By separately studying the mechanical responses of the arch induced by thermal
loading and mechanical loading, two main effects of temperature can be revealed,
directly inducing thermal stresses and deformations and affecting the responses
induced by mechanical loading.

iv. When the arch is subjected to thermal loading, the temperature dependence of ther-
momechanical properties has a much greater impact on the stress solution than on
the temperature and displacement solutions.

v. Regardless of whether the arch is subjected to thermal loading or mechanical loading,
the induced deformations in the TD case are always greater than those in the TI case.
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Nomenclature

Hj thickness of the jth layer
kc, αc, Ec, µc temperature-dependent thermomechanical properties of concrete
ks, αs, Es, µs temperature-dependent thermomechanical properties of steel

ki, αi, Ei, µi
assumed uniform thermal conductivity, thermal expansion coefficient,
Young’s modulus, and Poisson’s ratio of the ith slice

m number of half-waves along the ϕ direction
p, q layer number and slice number
Q(ϕ) radial load

r0, rm, rq, H, L, θ
inside radius, mean radius, outside radius, thickness, mean length, and
angle of arch

ri, ri, hi outer radius, mean radius, and thickness of the ith slice
s iterative step
T temperature
T0, Tin, Tout reference temperature, inside surface temperature, and outside surface temperature
Ti assumed uniform temperature of the ith slice
ur, uϕ displacement components
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εr, εϕ, γϕr strain components
σr, σϕ, τϕr stress components
ϕ, r polar coordinates
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