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Abstract: A common strategy for studying the nonlinear vibrations of beams is to discretize the
nonlinear partial differential equation into a nonlinear ordinary differential equation or equations
through the Galerkin method. Then, the oscillations of beams are explored by solving the ordinary
differential equation or equations. However, recent studies have shown that this strategy may lead to
erroneous results in some cases. The present paper carried out the following three research studies:
(1) We performed Galerkin first-order and second-order truncations to discrete the nonlinear partial
differential integral equation that describes the vibrations of a Bernoulli-Euler beam with initial
curvatures. (2) The approximate analytical solutions of the discretized ordinary differential equations
were obtained through the multiple scales method for the primary resonance. (3) We compared the
analytical solutions with those of the finite element method. Based on the results obtained by the
two methods, we found that the Galerkin method can accurately estimate the dynamic behaviors of
beams without initial curvatures. On the contrary, the Galerkin method underestimates the softening
effect of the quadratic nonlinear term that is induced by the initial curvature. This may cause
erroneous results when the Galerkin method is used to study the dynamic behaviors of beams with
the initial curvatures.

Keywords: primary resonance; multiple scales method; finite element method; Galerkin method;
initial curvature

1. Introduction

Beams with initial curvatures are widely used in engineering practice. These initial
curvatures may complicate the mechanical behaviors of beams [1-5]. Moreover, the ge-
ometric nonlinearity may impact vibrations of the beams because they usually undergo
significant deformations. Hence, it is necessary that the mathematical models consider both
the initial curvatures and the finite deformations when the nonlinear mechanical behaviors
of beams are studied.

The motion equation of beams with finite deformations is a nonlinear partial differ-
ential integral equation. It is not easy to obtain an accurate analytical solution for the
nonlinear equation of beams [6-9]. Therefore, most researchers have used the Galerkin
method to discretize the partial differential integral equation into ordinary differential
equations [10-13]. Then, perturbation methods are used to obtain the approximate analyti-
cal solution of the beams [14,15]. Since the precision of the solution critically depends on
the truncation terms, researchers have systematically studied the influence of the number
of truncation terms with the Galerkin method. For example, Reference [13] employed
third-order truncations to study the nonlinear free and forced vibrations of beams on a
viscoelastic foundation. References [16-18] carried out the convergence analyses of the
Galerkin truncation. Theoretically, adding terms in the Galerkin method can improve
accuracy, but it also increases the difficulty of theoretical analysis. In the 1990s, Nayfeh
and his collaborators developed a direct method for solving partial differential equations
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based on the multiple scales perturbation method [19-21]. This method skillfully solves the
problem of low accuracy for the single-modal vibrations using the Galerkin method. At the
same time, the authors also proved that this direct method can obtain results consistent with
those of the Galerkin model with infinite terms [19,20]. Subsequently, many researchers
have conducted comparative studies between these two methods [21-25]. These researchers
displayed a crucial insight: The Galerkin model with one or two truncated terms may yield
obvious deviation if it is used to solve the nonlinear equations with quadratic nonlinear
terms. These equations are the mathematical models that describe the vibrations of buckled
beams, sagged cables, and suspension bridges [26,27]. Therefore, how to select the number
of truncation terms of the Galerkin method is the primary problem.

Recently, the Galerkin method and the direct perturbation method have been widely
applied to quantitative analysis of nonlinear vibrations of structures with initial curvatures.
Using the direct perturbation method, Qiao et al. [5] investigated the nonlinear dynamics
of a shallow arch. Ding et al. [28] obtained the nonlinear responses of a curved beam
with nonlinear boundaries using the Galerkin method. Guo et al. [29] focused on the
differences between the Galerkin method and the direct perturbation method. However, it
is very complicated for the finite-terms Galerkin discrete model or the direct perturbation
method to obtain the solutions for the nonlinear equations. In fact, the most convenient
and effective method of solving the mechanical problems of continuous structures is
the finite element method [30-36]. This method is widely used in static and dynamic
problems of structures [33-36]. For example, the ANSYS 19.2 finite element software
provides the Transient Dynamics Module, which can be used to analyze the dynamic
response of structures under time—varying loads. This full method in the ANSYS Transient
Dynamics Module uses the direct integration method (Newmark—f method) to solve
the transient dynamic equilibrium equations of structures [37,38]. During the calculation
process, nonlinear characteristics, such as elastoplasticity, large deformation, and large
strain, can be considered. The finite element method does not need to consider the number
of truncation terms. When the complex internal resonance of structures is analyzed, this
method should be fully utilized. Moreover, the finite element method is not only an
effective means to study the nonlinear vibrations of continuous structures but can also
provide a basis for analyzing the accuracy of analytical models.

In this study, we used the full method of the ANSYS Transient Dynamics Module to
solve the nonlinear response of hinged-hinged beams with or without initial curvatures.
Furthermore, we used the Galerkin method to obtain the single-mode truncation of the
partial differential equation of the beams. We obtained the approximate analytical solutions
of the truncated equations without the internal resonance using the multiple scales method.
By comparing the amplitude-frequency response and the load—amplitude response curves
obtained by these two methods, we quantitatively explored the validity of the Galerkin
method for solving nonlinear beam models.

2. Mathematical Model
2.1. Equations of Motion

In this study, we considered a Bernoulli-Euler beam model with hinged-hinged ends.
The beam is subjected to a distributed harmonic excitation, as shown in Figure 1. The
motion equation of a Bernoulli-Euler beam with initial curvature is a partial differential
equation as follows [20,39]:

! 1
2w ow *w EA [(*w  d*wy ow ' 2 Jdw dwy

Here, wg = dsinmx/l is the initial curvature of the beam; d is the initial sag in the
mid-span of the beam; m is the beam’s mass per unit length; w(x, t) is the displacement
at time f at x; ¢ is the viscous damping coefficient; I, i, and b are the span, the height, and
the width of the beam, respectively; A is the cross-sectional area of the beam; E is Young’s
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modulus; I is the moment of inertia of the beam; F(x) describes the spatial distribution of
the harmonic load; and () is the load’s frequency. When the beam has no initial curvature,
Equation (1) degenerates to

1
o%w ow o*w EA [d*w ow\ 2
matz+§at+“ax4‘zz(axz)o/<ax> dx = F(x) cos(Q0t). @

For hinged-hinged beams, the displacement boundary conditions of Equations (1) and (2)
e ?w(0,t)  *w(l,t)
oxz  oxZ
Equations (1) and (2) are the nonlinear partial differential integral equations. One
can solve these equations using the direct perturbation method [19,20], but its process
is complex. In the following sections, we use the Galerkin method [4,20,39] to discretize
Equations (1) and (2).

w(0,t) = w(l,t) = =0. ©)]

WL e

=

Figure 1. Schematic diagram of a hinged-hinged beam.

2.2. Galerkin Discretization

Generally, to obtain analytical solutions with different accuracies, one can truncate
Equations (1) and (2) by the Galerkin method with finite-mode functions. However, more
truncated modes are more difficult to solve. Therefore, how to reduce the number of trun-
cations with the appropriate accuracy is the primary problem when the Galerkin method is
used to solve nonlinear partial differential equations. Researchers often only study the first
two-order truncations. To simplify the discussion, this paper only considers the case where
the load only excites the vibration of the first or the second modal, respectively. Thus, the
solutions of Equations (1) and (2) can be written as follows:

w(x, t) = 1,(t) sin ?, n=1or2. 4)
where 77, (t) is the function in time, and sin(n7x /1) is the nth-order linear mode corre-
sponding to the hinge-hinge beam. We substituted Equation (4) into Equation (1), mul-
tiplied both sides by sin(n7x /1), and then integrated into the interval [0, /] (the Galerkin
method) [4,20,39] to obtain two nonlinear ordinary differential equations. The equations de-
scribe the vibrations of the first— or second-order modes of a beam with initial curvature. To
simplify the discussion, we assumed that there is no internal resonance between the modes.
In this case, the two equations are independent nonlinear ordinary differential equations:

1, +2cut, + k%lﬂn + knznnz + kn317n3 =kycosQt, n=1,2. (5)
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: D311u3 + k2111u3 = —2DoD11jy2 — 2Dy Dty — D211 — 24 Dot

Here k, is the n-order natural frequency of the beam with initial curvature. The
parameters in Equation (5) are as follows:

4 274 EI(2m)*
c1 = Ckq1, ¢ = Cko1, k2, — Eln 4 EAd m k%1 _ EI@2n) ,

11— mA 2ml4 . ml4
__ 3EAdnt _ _ EAq _ EA(2n)
kip =2 0=, koo =0, kig = 0, kos = =, 6)

1
k, = %OfF(x) sin M dx, n = 1,2,

where ( is the structural damping ratio.

When the beam has no initial curvature, we also used the Galerkin method to discretize
Equation (2). We substituted Equation (4) into Equation (2), multiplied both sides by
sin(n7tx /1), and then integrated into the interval [0, I], resulting in

i, 200" 17, + K200 + knatn® = kncosQt, n=1,2. 7)

Here ¢} = Ky, cb = (kb k},% = EIn*/ml*, and k% = k3,. From Equations (5) and (7),
it can be seen that the initial curvature causes the square nonlinearity.

3. Methods Obtained Solutions
3.1. Multiple Scales Method

In this section, we approximately solved the ordinary differential Equations (5) and (7)
using the multiple scales method [4,20,39,40]. To ensure the damping effect, nonlinearity,
and excitation appear in the same-order perturbation equation, we rescaled Equation (5)
using ¢, = €2¢, and k,, = €3k,, so

7, + ZszEn;'yn + kn%n + knznnz + kn3;7n3 =k, cosOt, n=1,2. (8)
It is assumed that the solutions of Equation (8) were as follows:

171’1 = 877711 (TO/ Tl/ TZ) + 8217112(T0/ Tl/ TZ) + 8317113(T0/ Tl/ TZ) + O(£3>/ n= 1/ 2. (9)

We substituted Equation (9) into Equation (8) and then equated the coefficients of ¢, €2
and &> on both sides as follows:

el D3y + K2yt =0, 1 =1,2, (10)

€ : D§tinz + ki na = —2DoD11ju1 — knotpay, n = 1,2, (11)
—2k — k313 +k ko T, T =1,2 (12)
n2Mn1n2 n3f + nCOS( nido +0 2) , n=1,2

where D; = d/ de, T, = elt, j =0,1,2. According to the theory of differential equations, the
solution of Equation (10) was as follows:

1 = A(Ty, Tp) exp(ik1 To) + A(Ty, To) exp(—iku To), n = 1,2, (13)

Substituting Equation (13) into Equation (11), one obtains

Dgiynz + kfﬂiynz = —2ik, D1 A exp(iky1To) — ki {Az exp(2ik,1Ty) + AZ} +c,n=1,2. (14)

Here, A denotes the complex conjugate of A, and cc represents the complex conjugate
of the preceding terms. We eliminated the secular term of Equation (14) [40], which has
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D1A = 0or A = A(T,). From the theory of ordinary differential equations, the special
solution of Equation (14) was

k 1 1
fnp = kzﬂ {—2AA + gA2 exp(2ik;1 Tp) +§A2 exp(—2ikn1TO)}, n=1,2. (15)
nl

Substituting Equations (13) and (15) into Equation (12), we obtained

2 _
Dita + Kot = = 2 (D24 +24) + (3,3 — 52 ) 472
nl

(16)
— Tk, exp(iaTz)} exp(iky1To) +cc+ NST, n = 1,2.
Here, NST denotes the non-secular terms. When the load’s frequency () approaches
the beam’s modal frequency k;,; (the primary resonance), the beam will appear to have a
relatively large amplitude response. Under this condition, let Q = k1 + €20, and ¢ = 0.1,
where ¢ is a small parameter and ¢ is the detuning parameter. Thus, the solvable condition
of Equation (16) is as follows:

10K2,
3k,

2iky1 (DA +TA) + <3kn3 — )AZA — %En exp(icT,) =0, n =1,2. (17)

We assumed A = 1/2aexp(if) in Equation (17) and then separated the real and
imaginary parts, to obtain
I_ _= Ky o
a = —ca-+ 2y SIY,

9k,3k2, — 10k % (18)

2
A n2 43
ay =oa 24]{?11 a’ + 2% COos 7y,

where v = 0T, — B. The steady-state motion has @’ = 9’ = 0. So, the steady-state solutions
can be determined using Equation (18) as follows:

2 —

9%k,3k?, — 10k> 2

A w‘# a2 = k"z L n=1,2 (19)
24k3 42,

Only stable steady-state solutions occur in the vibrations. The eigenvalues of the
variational equations of Equation (18) can identify the stability of the solutions, and the
details can be found in the literature [40]. Equation (19) shows the relationship between the
vibration amplitudes, structural parameters, and load amplitudes. From Equations (9), (13)
and (15), the second-order approximate solutions are as follows:

n = el + 1 = eacos(Qt — )
3%k, 22| 1+ } cos(20t — 29)] +O(), n =1,2. (20)
Equation (19) can determine the frequency response curve corresponding to the beam
with initial curvature. In this case, the characteristic of the frequency response curve is
determined as k3 — 10k2,k, 2 /9. When k3 — 10k%,k, 2/9 < 0, the frequency response
curve exhibits softening characteristics. When k3 — 1Ok%2k;12 /9 = 0, the effects of square
nonlinearity and cubic nonlinearity may offset each other, and nonlinearity has no effect on
the response. When k;;3 — 10k%,2k;12 /9 > 0, the frequency response curve exhibits hardening
characteristics [40]. Therefore, the hardening or softening characteristics of beams with
initial curvature depend on the influence of quadratic or cubic nonlinear terms dramatically.
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When a beam has no initial curvature, k,» = 0, and k,; = k/,; in Equations (19) and (20).
Therefore, we obtained the frequency response equation of the beam without the initial
curvature as follows:

3k 2 ka2

= 2 n3 2 2 n

Cn —0—((7—11) a = ,n=1,2. (21)
8 k;l 1 4k;2l

Correspondingly, the first-order approximation of the beam without the initial curva-
ture can be written as follows:

Ny = ey = eacos(Qt — ) + O(sz), n=12. (22)

Equation (21) imply that the frequency response curve exhibits softening characteristics
with k,3 < 0. The frequency response curve exhibits hardening characteristics with
k,3 > 0[40]. This implies that the hardening or softening characteristics of a straight beam
are only determined by the cubic nonlinear term.

3.2. Finite Element Method

In this section, we used the nonlinear finite element method to perform full-scale
accurate calculations for hinged-hinged beams with or without the initial curvatures. For
geometric nonlinear problems, the finite element method usually uses an incremental
analysis method to ensure the accuracy and stability of the solution [41]. In the time step
At, the structural incremental equilibrium equation is as follows:

Miig p; + Citypr + (K + Kb + KLy Auy = AQ,. (23)

Here, M is the mass matrix; C is the element damping matrix; KtLO is the element
stiffness matrix in the case of the small displacement; K/ , is the initial displacement matrix
caused by the initial displacement; K/ ,; is the matrix of the initial stresses due to the
initial strain; #; 5y = 4y + Auy is the element-node acceleration vector at time f + At;
U A+ = U + Ay is the element-node velocity vector at time ¢ + At; Au; is the displacement
increment vector of element nodes in the ¢+ ~ t + At time domain; and AQ; is the load
increment vector of element nodes in the ¢+ ~ t + At time domain. At this time, the
stiffness matrix of the structure is a nonlinear function of the load amplitude and the
displacement vector.

In the t ~ t + At time domain, the direct integration method (Newmark— 3 method)
has the following assumptions:

Auy = Atuy + AAEAw;,

2 24
Aup = Mg + B3, + B(AL? Ay, @)
By Equation (24), we can obtain
. . 1 1 . 1 .
Aut — WAut - Wut - ﬁut, (25)

Ay = ﬁAut — %ut — (ﬁ — 1)Atﬁt.

Here, B = 1/4 and A = 1/2; Au; is the acceleration increment vector of element nodes
in the t ~ t 4 At time domain; Aw; is the velocity increment vector of element nodes in
the t ~ t 4 At time domain; u; is the element-node velocity vector at t time; and u; is the
element-node acceleration vector at f time.

Substituting Equation (25) into Equation (23), we obtain

KAu; = AP;. (26)
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Here,
K:K30+K;1+K;N+ﬁ+%, -
APy = AQ, + M| gy + S| + €[ + (g5 — 1) At

The initial displacement vector #;, the initial velocity vector #;, and the initial acceler-
ation vector 1; are given at time f. We can obtain the displacement increment vector Au;
using Equation (26). According to the displacement increment vector Au;, the displacement
vector u; A+ = Uy + Auy, the velocity vector 1y, oy = 1 + Auty, and the acceleration vector
Uy A+ = U + Auy are obtained at time # 4+ At. Through cyclic iterations, we can obtain the
displacement and velocity of the structure at any time.

In this study, we used the ANSYS parametric language, APDL, to program commands
that run the ANSYS Transient Dynamics Module [37] and used the commands to solve
the nonlinear response of a hinge-hinge beam. Firstly, we established a finite element
beam model and discretized the beam into 100 elements, as shown in Figure 2. The beam
adopts the BEAM4 element, and we defined the element’s real constant to determine the
material properties of the beam, where the Poisson ratio is 0. The two ends of the beam
are constrained by hinges, and the beam damping is Rayleigh damping. Then, we defined
the initial displacement u; and the initial velocity #; of the element nodes using the IC
command. The load was divided using the integral step, and the divided load data were
stored in TABLE using the DIM command and then equivalently loaded onto the element
nodes. Finally, we used the SOLVE command to run the full method in the Transient
Dynamics Module to solve the nonlinear response of the beam [37]. In addition, we only
considered the nonlinear characteristics caused by large deformation in the calculation
process, and the beam geometry was designed to avoid the occurrence of internal resonance
between the first and second modes.

Figure 2. Finite element model of the hinged-hinged beam.

4. Results and Discussion

In this section, the time—-dependent displacements of a hinged-hinged beam under
harmonic load were computed using the two methods mentioned above, where the beam
was subjected to harmonic excitation —F cos Ot at intervals [0,1/2]. The physical and
geometric parameters of the beam are given in Table 1.

Table 1. Physical and geometrical parameters of the beam.

m(kg/m) I(m) b(m) h(m) E(GPa) e
78 10 0.1 0.1 200 0.05

4.1. The First— and Second—Order Modal Primary Resonances without Initial Curvatures

If a beam has no the initial curvature, the ordinary differential equation obtained using
the Galerkin discrete method is Equation (7). There are no square nonlinear terms, and
only a cubic nonlinear term exists in Equation (7). In this situation, the characteristic of the
amplitude—frequency response curve is only determined by cubic nonlinearity. We used the
multiple scales method and the finite element method to solve the nonlinear response of
the hinged-hinged beams. We obtained the amplitude—frequency response curves and the
load—amplitude response curves of the first— and second —order primary resonance of the
beam, as shown in Figures 3 and 4. Figures 3a and 4a represent the steady-state amplitude
at the mid-span of the beam. Figures 3b and 4b represent the steady-state amplitude at 1/4
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of beam length. In the figures, “+” is obtained by solving Equation (7) by the Runge-Kutta

method.
0.12 . . T . . : 0.06
Multi-scales method y Multi-scales method
O Finite element method O Finite element method -
0.10} + Runge-Kutta F=300 N/m s 1 0.05F 4 Runge-Kutta F=2000 N/m 1
0.08t 0.04 ]
\E 0.06 £ 0.03 ]
S
0.04r1 0.02 ]
0.02 0.01F ]
0.00 : ' : : . ; - - : - y
-10 -5 0 5 10 15 20 25 0 0(-)10 -5 0 5 10 15 20 25
o/(x10%rad/s) o/(x10%rad/s)
(a) (b)
Figure 3. Amplitude—frequency response curves: (a) primary resonance of the first-order modal and
(b) primary resonance of the second-order modal.
0.10 T T . . . 0.06
Multi-scales method Multi-scales method
O Finite element method O Finite element method
0.0k + Runge-Kutta o & 0.05F + Runge-Kutta
& & o
0.041 (
0.06F ~o  6=1000 rad/s
S N ~ g N
E ~.  0=500rad/s S 0.03f N
0.04} R
0.02
0.02r
¢ 0.01¢
0.00 : . : : ; 0.00 . : ; y y y y y
0 2 4 6 8 10 12 0 5 10 15 20 25 30 35 40 45
F/(x10°N/m) F/(x 10°N/m)
(a) (b)

Figure 4. Load—amplitude response curves: (a) primary resonance of the first-order modal and
(b) primary resonance of the second-order modal.

Figure 3 shows that the amplitude—frequency response curves exhibit hardening
characteristics that are revealed by the Galerkin method and the nonlinear finite element
method. The hardening characteristics with the two methods are consistent. For example,
in Figure 3a, the steady—state amplitude obtained by the Galerkin method or the finite ele-
ment method is 0.064 m at ¢ = 500 rad /s. Meanwhile, the numerical results obtained using
the Runge-Kutta method prove the accuracy of the multiple scales method. Figure 4 shows
that the load—amplitude response curves obtained by the two methods are consistent. Non-
linearity makes the load—amplitude response curve bend and appear to a multiple-value
region. This leads to the amplitude jump phenomenon. Figure 5 shows the displacements
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of the first modal and second modal of the beam with time. Figure 6 shows the beam’s
time history of the first-order and second-order primary resonance. When the beam has
no initial curvature, the displacements obtained by the two methods are consistent. For
example, in Figure 6a, the most displacements obtained by the Galerkin method or the
finite element method is 0.05 m at F = 300 N/m, ¢ = 250 rad/s. The above examples show
that nonlinear vibrations of the first-order and second-order primary resonances can be
accurately solved using the Galerkin method when a beam has no initial curvature.

0.10 0.08
-e- Finite element method - _ —e— Finite element method o _
— Galerkin method F=300 N/m, =250 rad/s Galerkin method F=2000 N/m, 5-=500 rad/s
0.05 0.04 -
g 8
S0.00 . 3 0.00
h-¢ =
-0.05 + -0.04 -
-0.10 r T r T r T r -0.08 T T T T
0 2 4 +/m © 8 10 0 2 4 x/m 6 8 10
(@) (b)
Figure 5. Displacements at different instants: (a) primary resonance of the first-order modal and
(b) primary resonance of the second-order modal.
0.08 0.06
—e— Finite element method F=300 N/m. =250 rad/s —e— Finite element method F=2000 N/m. o=500 rad/s
Galerkin method 0Qm e ’ Galerkin method ?
0.041 CHARANARARALARRAD
E £ ]
b 3
oo, mldaiaananan
-0.06 . .
-0.08 . T . T . T T
(b)

(a)

Figure 6. Time history diagrams during steady-state motion: (a) primary resonance of the first-order

modal and (b) primary resonance of the second-order modal.

4.2. The First—and Second—Order Modal Primary Resonances of Beams with the Initial Curvature

When a beam has an initial curvature, the ordinary differential equation obtained
using the Galerkin discrete method is Equation (5). There are square and cubic nonlinear
terms in Equation (5). In this situation, the characteristics of the amplitude—frequency
response curve need to consider the influence of square and cubic nonlinearities.

Firstly, we studied the case where the first-order modal primary resonance is excited.
We used the multiple scales method and the finite element method to solve the nonlin-
ear response of hinged-hinged beams with the initial curvatures wy = 1/100sin 7rx/I,
wo = 1/80sintx /I, and wy = I/60sin rx/I. We obtained the amplitude-frequency re-
sponse curves and the load-amplitude response curves of the first-order primary resonance,
as shown in Figures 7, 8 and 9a,b respectively. These figures represent the steady—state am-
plitude at the mid—span of the beam. In the figure, “4-” is obtained by solving Equation (5)

using the Runge—Kutta method.
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0.12 " : : : : : : 0.07 T T . . . .
Multi-scales method Multi-scales method
O Finite element method 0.06 O Finite element method
0.10 F=1800 N/m + Runge-Kutta 1 -JOT 4+ Runge-Kutta 1
0.05¢ .
0.08F \
\
g . 0.04r \\ o=-500 rad/s ]
<5 0.06F S
0.03r :
0.04r
0.021 :
002 B 001 L i
0.00 : : ! ’ ! . ; 0.00 : y ' ; : :
25 20 -15 -10 -5 0 5 10 15 0 3 6 9 12 15 18 21
o/(x10%rad/s) F/(x10°N/m)
(a) (b)
Figure 7. First-mode primary resonance for wy = [/100sin 7rx /I (a) amplitude—frequency response
curve and (b) load-amplitude response curve.
0.10 : : : : : : 0.08 T . . . . :
Multi-scales method Multi-scales method
F=2500 N/m O  Finite element method O  Finite element method
N + Runge-Kutta + Runge-Kutta
0.08+
0.061 o]
o o 0 O
0.06 \
& £ I = \
< < 0.04 o=-500 rad/s
0.04r
0.02r
0.02¢
0.00 - - ; - - : 0.00 . ; - y y y
-20 -15 -10 -5 0 5 10 15 0 5 10 15 20 25 30 35
o/(x10%rad/s) F/(x10°N/m)
(a) (b)

Figure 8. First-mode primary resonance for wy = I/80sin 7tx /I (a) amplitude—frequency response
curve and (b) load-amplitude response curve.

Comparing Figures 3a and 7a, we can find that square nonlinearity makes the amplitude—
frequency response curve change from the hardening to the softening. This indicates
that the square nonlinearity caused by the initial curvature has a softening effect on the
amplitude—frequency response curve. When the initial curvature of the beam is small,
the amplitude—frequency response curves obtained by the Galerkin method and the finite
element method are consistent. This is because the small initial curvature has a weak
influence on square nonlinearity. In this case, two methods can be used to solve the
nonlinear dynamic response of the beams. Figures 8a and 9a show that the amplitude—
frequency response curves obtained by the Galerkin method and the finite element method
exhibit softening characteristics. However, there are quantitative differences between the
results obtained using these two methods, and these differences increase with the increase
in the initial curvature. For example, in Figure 8a, the steady—state amplitude obtained
by the Galerkin method is 0.064 m, and the steady—state amplitude obtained using the
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finite element method is 0.054 m at ¢ = —500 rad/s. The quantitative difference between
the two methods’ results is 0.01 m. In Figure 9a, the steady-state amplitude obtained by
the Galerkin method is 0.075 m, and the steady-state amplitude obtained by the finite
element method is 0.053 m at o = —500 rad/s. The quantitative difference between the two
methods’ results is 0.022 m. Figures 8b and 9b also show that the load-amplitude response
curves obtained by the two methods are different. At the same time, the calculation results
of the two methods show a saddle-node bifurcation [40], but the bifurcation points are
different. The cause is that an increase in the initial curvature leads to the augmentation
of square nonlinearity. This indicates that the softening effect of square nonlinearity is
underestimated by the Galerkin method discrete at single-model vibrations. Figure 9¢c
shows the in—plane displacement of the first modal at different times of the hinged-hinged
beam with the initial curvature wy = [/60sin 7rx/l. When the beam has such an initial
curvature, the displacements obtained by the two methods are significantly different. Due
to the influence of nonlinearity, the maximum displacement of the beam obtained by
the finite element method is shifted from the mid-span position to the left. However,
the maximum displacements obtained by the Galerkin method are still in the mid—span
position. Figure 9d shows the time history of the primary resonance of the first modal with
the initial curvature wy = [/60 sin 7rx/! during the steady-state motion. At the moment,
the displacements obtained by the two methods have noticeable quantitative differences.
The maximum displacement obtained with the Galerkin method is —0.092 m, whereas the
maximum displacement obtained with the finite element method is —0.07 m. Moreover,
since square nonlinearity causes the drift phenomenon, the vibration center of the beam is
not at the position of wy(1/2,t) = 0, as shown in Figure 9d. The above examples show that
the single-degree—of—freedom equation obtained using the Galerkin method will produce
noticeable quantitative errors if a beam has a large initial curvature. Moreover, existing
studies have shown that these errors decrease if more truncated modes are used [20].
Next, we studied the second-order modal primary resonance. We also used the multi-
ple scales method and the finite element method to solve the nonlinear response of hinged—
hinged beams with the initial curvatures wy = 1/100sin 7rx /I and wy = 1/25sin rtx /1. We
obtained the amplitude—frequency response curves and the load-amplitude response curves
of the second-order primary resonance of the beams, as shown in Figures 10 and 11a,b. These
figures represent the steady-state amplitude at 1/4 of beam length during steady—state mo-
tion. In the figure, “4” is obtained by solving Equation (5) with the Runge-Kutta method.
Figure 10a shows that the amplitude—frequency response curves obtained by the
two methods revealed hardening characteristics with a small initial curvature. However,
there are quantitative differences in the steady-state amplitude. Figure 11a shows that
the amplitude—frequency response curves obtained by the two methods demonstrate
essential differences with the increase in the initial curvature of the beam. For example, the
steady-state amplitude obtained with the Galerkin method is 0.018 m, whereas the steady—
state amplitude obtained with the finite element method is 0.047 m at o = —750 rad/s.
Significant quantitative differences exist between the steady-state amplitudes of the two
methods. Moreover, the amplitude—frequency response curves obtained by the Galerkin
method have the hardening characteristic, while the amplitude—frequency response curve
obtained with the finite element method has the softening characteristic. Figure 11b
shows that there is no amplitude jump phenomenon in the load-amplitude response curve
obtained by the Galerkin discrete method. On the contrary, the load—amplitude response
curve with the finite element method indicates an amplitude jump phenomenon. Thus,
these are qualitatively different dynamic behaviors obtained by the two methods. This
phenomenon also indicates that the Galerkin method weakens the influence of the initial
curvature and leads to erroneous results. Figure 11c shows the displacement of the second
modal with time for the hinged-hinged beam with the initial curvature wy = [/25sin wx /1.
Because the Galerkin single-mode discretization underestimates the effect of the square
nonlinearity, the computed results do not display a significant drift phenomenon. On
the contrary, the finite element method gives a significant drift phenomenon induced by
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the square nonlinearity. Figure 11d shows the time history of the second mode with the
initial curvature wy = [/25sin 71x /I under the primary resonance. In this case, there are
obvious quantitative differences between the displacements obtained by the two methods.
For example, the maximum displacement obtained by the Galerkin method is —0.03 m,
whereas the maximum displacement obtained with the finite element method is —0.058 m.
Moreover, since the drift phenomenon is caused by square nonlinearity, the vibration center
of the beam is not at the position of wy(!/4,t) = 0. The above examples show that the
Galerkin method with one modal may lead to erroneous results for nonlinear dynamic
behaviors if a beam has a large initial curvature.

From the above discussion, we can find that the square nonlinear terms lead to different
results with the two methods. Therefore, when nonlinear vibrations are analyzed for the
structures without the initial curvature (e.g., strings, straight beams, and plates), one can
use the Galerkin method to accurately obtain the dynamic behaviors of the structures. If
the structures have initial curvature (e.g., buckled beam, shallow arch, sagged cable, and
suspension bridges), the single-mode discretization obtained by the Galerkin method may
lead to erroneous results. In these cases, the finite element method may be more suitable.
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Figure 9. First-mode primary resonance for wy = [/60sin 7tx /I (a) amplitude—frequency response
curve, (b) load-amplitude response curve, (c) in—plane displacement of the first-mode solution at
different instants, and (d) time history diagram.



Buildings 2023, 13, 2645

13 of 15

0.07 . . 0.06 —
Multi-scales method Multi-scales method
O Finite element method O Finite element method
0.06F + Runge-Kutta 0.05F + Runge-Kutta (o) 1
o
@)
0.05f
0.04f o ]
0.041 .
£ £ 0.03} .
S 0.03} S o=500 rad/s
0.021 © 1
0.021
0.01} 0.01r 1
0.00 : : : : : y 0.00 ! : : y y y y
-10 -5 0 5 10 15 20 25 0 5 10 15 20 25 30 35 40
of(x10%rad/s) o/(x10%rad/s)
(@) (b)
Figure 10. Second-mode primary resonance for wy = [/100sin7x/I (a) amplitude—frequency
response curve and (b) load—amplitude response curve.
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Figure 11. Second-mode primary resonance for wy = [/25sin7rx/I (a) amplitude-frequency re-
sponse curve, (b) load—amplitude response curve, (c) in—plane displacements of the second mode at
different instants, and (d) time history diagram.
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5. Conclusions

In the present study, we used the Galerkin method to obtain discrete equations, and
the approximate analytical solutions for these discrete equations were obtained by the
multiple scales method. Then, the full-scale accurate calculations of hinged-hinged beams
were carried out using the finite element method. By comparing the results of these two
methods, the following conclusions can be drawn.

(1) If abeam does not have initial curvature, the amplitude—frequency response curves
and the load-amplitude response curves calculated by the two methods are consistent.
Therefore, one can use the Galerkin method to obtain the dynamic behaviors of
straight beams accurately.

(2) The initial curvature brings out a quadratic nonlinear term, and it has a softening
effect on the amplitude—frequency response curve.

(3) The mechanical behaviors of beams may change from hardening nonlinear behavior
to softening nonlinear behavior with the increase in the initial curvature.

(4) The square nonlinear terms drift the vibration’s center of the beams with the initial
curvatures.

(5) The Galerkin method may lead to a quantitative mistake at the single-mode discretiza-
tion because the method underestimates the softening effect of the initial curvature.
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