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Abstract: Shared bicycle systems play a crucial role in promoting sustainable urban transportation,
addressing challenges such as traffic congestion and air pollution. Understanding the spatiotemporal
patterns of shared bike usage is essential for optimizing bike-sharing infrastructure and improving
transportation planning. In this study, we analyzed 2.4 million records of shared bicycle data to
explore the spatial distribution, interaction patterns, and flow dynamics within Beijing’s urban
central area. We found that bike distribution peaks during commuting hours, particularly in central
regions with employment centers. Complex networks are an important method for studying travel
flows. Through a spatial interaction network, we identified key streets with high node strength and
popularity, often concentrated in central areas. They experience heavy shared bicycle use during peak
hours due to their employment-centric location. Conversely, peripheral areas see increased usage in
the evenings, reflecting distinct commuting patterns. The morning exhibits higher positive central
values compared to the evening, while negative values show the opposite trend. Based on these
findings, we recommend enhancing bike infrastructure in high-density areas with bike lanes and
ample shared bikes during peak hours. Implementing mixed-use zoning policies in the central region
can reduce traffic congestion. Expanding shared bike services to peripheral regions can promote
equitable access. This research underscores the importance of considering spatial and temporal
factors in urban transportation planning. Future work should incorporate additional data sources,
explore environmental impacts, and analyze usage in different seasons and special events, further
contributing to sustainable urban mobility development.

Keywords: shared bikes; spatiotemporal dynamics; spatial distribution; spatial interaction network;
net flow ratio

1. Introduction

Urban transportation systems play a crucial role in shaping the livability and sus-
tainability of cities, and these roles are even more pronounced in larger cities with high
levels of economic development [1,2]. With the increasing challenges posed by rapid ur-
banization and population growth, cities worldwide are seeking efficient and sustainable
transportation alternatives, primarily due to the growing concerns of urban environment
pollution [3,4]. Shared bicycles have emerged as a popular mode of transportation, offering
a flexible and eco-friendly solution for short-distance trips, contributing to the development
of urban transportation systems in more environmentally conscious ways [5,6]. Shared
bicycles play a crucial role in integrating into the overall urban transportation system. To
begin, they serve as a complement to urban public transportation, offering a solution for the
last mile, thus alleviating the pressure on public transit during peak hours. These systems
have the potential to alleviate traffic congestion, reduce carbon emissions, and improve
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urban mobility [7,8]. Shared bicycles can integrate with other transportation modes such
as subways, buses, and electric scooters, enabling multimodal travel. This enhances the
convenience of urban residents’ journeys, reduces private car usage, and mitigates issues
related to traffic congestion and environmental pollution. Beijing, as the capital of China,
faces unique transportation challenges due to its immense population and complex urban
structure [9]. The city’s transportation infrastructure must accommodate the needs of
millions of residents and ensure smooth mobility within its vast territory [10,11]. In recent
years, shared bicycle systems have gained significant popularity in Beijing, providing an
affordable and convenient transportation option for both daily commuters and occasional
users. The extensive adoption of shared bicycles has raised intriguing questions regard-
ing their usage patterns, spatial distribution, and interactions with other transportation
modes [12,13].

Numerous studies conducted worldwide have extensively explored various aspects
of shared bicycle systems, shedding light on user behavior, system performance, and
spatial–temporal usage patterns [14,15]. These investigations have significantly contributed
to understanding the factors that influence shared bicycle usage. Factors such as trip dis-
tance, weather conditions, availability of docking stations, and demographic characteristics
of users have been identified as key determinants affecting the adoption and utilization of
shared bicycles [16]. For instance, studies have revealed that shorter trip distances are more
likely to be covered by shared bicycles, as they provide a convenient and time-efficient
mode of transportation for short-distance travel. Similarly, the presence of docking sta-
tions in close proximity to popular destinations significantly influences the usage patterns
of shared bicycles [17]. Furthermore, researchers have focused on analyzing the spatial
distribution of shared bicycles and identifying hotspots of high demand. Spatial analysis
plays a crucial role in understanding the spatial patterns and dynamics of shared bicycle
usage [18,19]. By employing techniques such as Geographic Information Systems (GIS)
and spatial clustering algorithms, researchers have successfully identified areas with high
demand and concentrated shared bicycle activity [20,21]. These hotspots are typically
characterized by their proximity to transportation hubs, commercial centers, educational
institutions, and residential areas, reflecting the diverse needs and preferences of users in
different locations [22,23].

However, despite the existing body of research, there remains a significant knowledge
gap in comprehensively examining the spatiotemporal dynamics of shared bicycle usage
within the central area of Beijing, particularly during peak hours of pedestrian activity [24].
The central area of Beijing encompasses the economic and administrative center of the
city, hosting a substantial population and a multitude of industrial establishments [25].
As a result, this area experiences high volumes of pedestrian traffic during peak hours,
presenting unique challenges for transportation planning and management [26,27]. In
summertime, shared bicycles serve as a pivotal urban transportation option. High tempera-
tures can cause discomfort for pedestrians or public transit commuters, but shared bicycles
swiftly move people between points, mitigating heat-related inconveniences. Shared bi-
cycles’ eco-friendly attributes are accentuated in summer, reducing urban air pollution
in contrast to temperature-induced pollution. Their cost-effectiveness is advantageous,
especially for summer travelers. Thus, shared bicycles offer both a convenient mode of
travel in extreme summer conditions and contribute significantly to advancing sustainable
urban development.

Shared bicycles have distinct peak usage times within Beijing’s transportation network
on a daily, weekly, monthly, and yearly basis. Typically, daily peaks occur during the
morning and evening rush hours, catering to residents’ commuting needs. Weekly trends
predominantly focus on workdays, with reduced usage on weekends, although there may
be a slight increase during leisure or special event periods. Monthly usage patterns are
influenced by seasons and weather, with more activity during the summer compared
to winter. Yearly peak usage times are often linked to seasons and special events, such
as increased usage during the Spring Festival. Furthermore, shared bicycles are closely
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associated with commuting time and travel duration. They reduce commuting time, making
them especially suitable for individuals working close to their destination, as cycling is
faster than walking. Simultaneously, the quick accessibility of shared bicycles reduces
waiting time and addresses the issue of parking difficulties.

From a methodological point of view, complex network analysis is a valuable approach
for studying urban transportation systems [28–30]. It provides a holistic understanding of
the dynamics and interconnections within these complex systems by representing trans-
portation infrastructure, flows, and interactions as nodes and edges. In urban transportation
research, complex network analysis has been applied to areas such as traffic flow, public
transportation systems, and shared mobility services [31,32]. It allows researchers to ex-
amine network properties and understand the resilience and robustness of urban mobility
networks. By identifying critical nodes or links, infrastructure planning can be guided to
enhance overall network performance [33]. Complex network analysis has also been used
to study traffic congestion patterns and identify influential nodes or bottlenecks. Centrality
measures help pinpoint locations where congestion accumulates and spreads, informing tar-
geted interventions to alleviate congestion and improve traffic flow efficiency [34]. In public
transportation, complex network analysis explores the structure and dynamics of transit
systems. By analyzing passenger flows and interactions between different lines or modes,
researchers gain insights into system performance and identify areas for improvement in
terms of connectivity and service quality [35,36]. Additionally, complex network analysis
has been applied to shared mobility services like bike-sharing and ride-sharing systems.
It helps understand usage patterns, spatial distributions, and the impact of factors such
as network connectivity and user behavior on system performance [28]. This knowledge
supports optimizing station placement, rebalancing strategies, and demand forecasting
for more efficient and sustainable shared mobility services. Overall, complex network
analysis offers an integrative approach to studying urban transportation systems. It cap-
tures the complex interactions and dependencies between transportation infrastructure,
flows, and users, supporting evidence-based decision-making, policy formulation, and
urban planning efforts to create efficient, sustainable, and resilient urban transportation
systems [11,37]. Previous studies have primarily utilized complex network methods to
investigate spatial interactions between different regions, with limited focus on researching
internal population flow patterns within a specific area. We employed this approach to
analyze the overall spatial flow patterns within the region.

Three problems are proposed and resolved in this paper. What are the network
characteristics and interaction patterns of shared bicycles in urban areas? What are the
travel patterns of shared bicycles during peak periods in the city? How do the travel
patterns during morning and evening peak periods differ? To address these issues, this
study attempts to (i) construct a spatial interaction network of shared bicycles in urban
areas and investigate the interaction patterns using various network statistical indicators;
(ii) develop an interaction model based on shared bicycle data during peak periods in
the city to examine the travel characteristics; (iii) compare and analyze the travel patterns
during morning and evening peak periods.

This paper is structured as follows: The second part presents the research area and
data sources, as well as the principles employed for network construction and the selection
of indicators for the network model. In the third part, the network structure and the
analysis of network indicators are discussed. The fourth part comprises the conclusions
drawn from the study and a detailed discussion of the findings.

2. Materials and Methods
2.1. Research Data

The central area of Beijing, comprising Dongcheng District, Xicheng District, Haidian
District, Fengtai District, Shijingshan District, and Chaoyang District, is situated in the
central part of the city. This area is densely populated, accounting for approximately 60%
of the total population of Beijing, and accommodates nearly 70% of its industrial establish-
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ments. Due to its central location and economic significance, the central area experiences
high volumes of pedestrian traffic, particularly during peak hours. Furthermore, shared bi-
cycles are extensively utilized within this region, contributing to the overall transportation
landscape. For the purpose of this study, the research scope focuses on the intersection of
the operational area of shared bicycles with the central area of the capital. By examining
this specific region, we can gain valuable insights into the dynamics of shared bike usage
in an area of high pedestrian activity and economic concentration. The selected study area
encompasses over 90% of the central area of the capital, ensuring comprehensive coverage
for the analysis.

To illustrate the location of the study area within Beijing, Figure 1 presents a visual
representation. It highlights the spatial extent of the central area of the capital and its
intersection with the operational area of shared bicycles. This depiction aids in understand-
ing the geographical context of the study and provides a clear reference for subsequent
analyses. In summary, the central area of the capital, situated in the central part of Beijing,
serves as the focal point of this study. Its significance lies in its high population density,
concentration of industrial establishments, and the substantial usage of shared bicycles.
By investigating the region where the central area intersects with the operational area of
shared bicycles, we aim to uncover valuable insights into the spatiotemporal dynamics
of shared bike usage in an area characterized by heavy pedestrian traffic and economic
activity. The location of the study area within Beijing is visually represented in Figure 1.
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Figure 1. Research scope map.

The shared bicycle data utilized in this research are derived from collaborative data
with enterprises. This dataset comprises shared bicycle location data within the central
area of the capital. We continuously gathered location data for all shared bicycles within
the study area throughout the data collection period. Each data entry includes attributes
such as bicycle ID, time, and latitude–longitude coordinates, totaling 2.4 million records.
Taking into account the impact of the COVID-19 pandemic, data collection was conducted
during the morning peak hours (6:00–9:00) and evening peak hours (17:00–20:00) in July
2021. During this period, the pandemic situation in Beijing was relatively optimistic, with
minimal impact on travel. Consequently, residents were more inclined to use shared
bicycles for commuting.

The collected data underwent preprocessing, beginning with data screening. Records
associated with abnormal weather conditions, such as precipitation or high temperatures,
were excluded. Subsequently, the data format was transformed from CSV to Shapefile for
spatial intersection processing with administrative division data. This conversion facilitated
spatial analysis and integration with administrative boundary information.
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For the analysis of the spatial distribution and changes in shared bicycles before and
after the entire commuting period, the study focused on examining the spatial distribution
changes of shared bicycles during the morning and evening peak hours. The starting
times of 6:00 and 17:00 were defined as the beginning of the morning and evening peak
hours, respectively, while the ending times of 9:00 and 20:00 were defined as the end of
the morning and evening peak hours, respectively. The data corresponding to the starting
and ending times were associated with bicycle IDs and spatially intersected with the street
administrative divisions, allowing the identification of the streets where each bicycle started
and ended, thus generating street-level origin–destination (OD) trajectories.

After filtering out abnormal data, a challenge emerged: the remaining data often had
discontinuous dates. To facilitate rigorous experimental validation, our study required
a continuous dataset spanning several consecutive working days. Therefore, data from
6 July, 7 July, and 8 July 2021 were meticulously chosen due to being representative of
typical working days. These specific dates provided the necessary continuous data over a
three-day period, free from irregularities, and reflective of regular daily resident mobility
patterns. The list of experimental data used in this study is presented in Table 1. The
administrative division data for the central area of the capital can be downloaded from the
OpenStreetMap website (https://www.openstreetmap.org/, (accessed on 1 August 2021)).
Please note that Table 1 and the provided website link are for illustrative purposes and
should be replaced with the actual references and data sources used in the research.

Table 1. List of experimental data.

Data Name Data Format Data Collection Time Data Size Field Name Field Explanation

Bicycle sharing data CSV
6 July, 7 July and

8 July, 2021 2.4 million records

TIME Data collection time
BICYCLE_ID Bicycle ID number
LATITUDE Latitude/◦

LONGITUDE Longitude/◦

Administrative
district data

Shapefile April 2021 122
FID Street serial number

SHAPE Element type
NAME Street name

2.2. Research Methods
2.2.1. Construction Method of Spatial Interaction Network for Shared Bicycle System

In the realm of complex systems, various interaction relationships found in the real
world can be effectively organized and analyzed using complex network theory [34].
Complex networks serve as highly abstract representations of these intricate systems, where
individual entities are abstracted as nodes, and the relationships between these entities
are depicted as edges in the network [35]. When a network consists of a large number
of nodes and edges, it is referred to as a complex network, exhibiting two fundamental
characteristics: small-worldness and scale-free property [38].

In the context of urban areas, streets play a crucial role as an important spatial scale
for analysis, especially when considering administrative divisions. Exploring the charac-
teristics of streets within urban settings directly supports the decision-making processes
at the neighborhood level [39,40]. Consequently, when constructing a spatial interaction
network for shared bicycles in urban areas, the first step involves abstracting streets as
network nodes based on the principles of complex network theory. The travel behavior
between streets is then captured as directed edges in the network, with each edge’s weight
representing the volume of bicycle usage. Through the establishment of a travel relationship
matrix among streets within the central area of the city, the construction of the network is
successfully accomplished. By leveraging the framework of complex network theory, this
approach enables a comprehensive understanding of the interplay between streets and the
dynamics of shared bicycle usage. Relevant metrics from complex network theory can be
utilized to quantify the flow characteristics between streets. Quantifying and visualizing
spatial interactions form the basis of a spatial interaction network. The resulting spatial

https://www.openstreetmap.org/
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interaction network provides a powerful tool for examining the patterns and characteristics
of shared bicycle systems within urban areas.

2.2.2. Network Analysis Methods

In the field of complex network theory, there exists a range of metrics and methods
concerning nodes, edges, and network construction. Given that the network constructed
in this paper is a directed weighted network, the network’s edges possess two distinct
attributes: direction and weight. Although complex network theory offers a range of net-
work statistical metrics, the number of metrics suitable for assessing directed and weighted
spatial interaction networks is limited. These metrics should be capable of considering the
network’s overall characteristics while allowing for a qualitative or quantitative evaluation
and analysis of edge direction and magnitude. Consequently, this study opted to employ
three metrics, namely network density, node strength, and degree centrality. These three
metrics enable a comprehensive analysis of the network from various perspectives. Net-
work density assesses the connectivity density within the network, while node strength
evaluates the capacity of nodes to absorb or emit traffic. Degree centrality, on the other
hand, provides insights into the flow of traffic into and out of nodes. Utilizing the three
mentioned indicators allows for research from different perspectives, including the overall
network, node mobility, and attraction of traffic. This enables a comprehensive analysis of
spatial interaction networks’ interaction patterns.

Network density is used to reflect the degree of connectivity between nodes, where
nodes in this study represent streets [11,30]. A higher value of node strength indicates a
stronger relationship and a greater level of mutual influence between nodes. The calculation
formula is shown in Equation (1), where D represents the network density, k denotes the
number of nodes (i.e., streets), and d represents the number of edges in the network.

D =
2d

k(k− 1)
(1)

Node strength is defined as the sum of the weights of all edges connected to that node,
which reflects the magnitude of travel associated with the street. The calculation formula is
shown in Equation (2), where Si represents the node strength of node i, Ni denotes the set
of nodes connected to node i, and Wij represents the weight of the edge connecting nodes
i and j.

Si = ∑
j∈Ni

Wij (2)

In a directed network, node strength can be divided into in-strength and out-strength
based on the direction of edges, allowing the calculation of net flow ratio (NFR). The
calculation is described in Equations (3)–(5), where Sin(i) and Sout(i) represent the in-
strength and out-strength of node i, respectively, νin represents the set of nodes that flow
towards node i, Wij represents the edge weight, νout represents the set of nodes to which
node i flows, and NFR represents the net flow ratio. When the NFR is greater than zero,
it indicates that the in-strength of the node is greater than the out-strength, indicating an
increase in prominence, and vice versa [29].

Sin(i) = ∑ j∈νin Wij (3)

Sout(i) = ∑ j∈νoutWij (4)

NFR =
Sin(i)− Sout(i)
Sin(i) + Sout(i)

(5)

Centrality is one of the indicators used to study the state and function of networks,
reflecting the status of nodes in the network. The higher the centrality of a node, the greater
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its influence on the network. Degree centrality normalizes the node degree and is used for
comparisons between networks at different scales. It represents the proportion of other
nodes connected to a specific node and is an important indicator for reflecting network
centrality. The calculation formula for degree centrality is shown in Equation (6), where
CD(v) represents the degree centrality of node v, deg(v) represents the degree of the node,
and N represents the total number of nodes.

CD(v) =
deg(v)
N − 1

(6)

In directed networks, degree centrality can be categorized based on the direction of
edges. Using out-degree centrality and in-degree centrality, the capabilities of nodes to send
and receive traffic can be represented. The calculations are shown in Equations (7)–(10),
where CO,i and CI,i represent the out-degree centrality and in-degree centrality of a node,
respectively. Wij represents the flow from node i to j, and N is the total number of nodes.
The Insurplus and Outsurplus metrics are defined to measure the ability of nodes to attract
and export traffic in a directed network, with traffic tending to leave nodes with larger
Outsurplus values and flow towards nodes with larger Insurplus values.

CO,i =
N

∑
j=1,j 6=1

Wij

N − 1
(7)

CI,i =
N

∑
j=1,j 6=1

Wij

N − 1
(8)

Insurplus = CI,i − CO,i (9)

Outsurplus = CO,i − CI,i (10)

2.2.3. Technical Approach

The technical approach of this study is illustrated in Figure 2. In the proposed method-
ology, the first step involves extracting the operational range of shared bikes from the
shared bike data. This is achieved by identifying the boundaries within which the bikes
operate. The operational scope is then overlapped with the urban administrative boundary
data, enabling the identification of the specific area of interest for this study. Next, street
units are selected as the network nodes. These street units are extracted from the study
area and serve as the fundamental components of the spatial interaction network. By
representing each street unit as a node, the network can capture the spatial relationships
and interactions between different streets.

To construct the spatial interaction network, the shared bike trajectory data are sub-
jected to two essential preprocessing steps: outlier data cleansing and format conversion.
Outliers, which may arise due to various factors, are removed from the trajectory data
to ensure the accuracy and reliability of subsequent analyses. Additionally, the data are
converted into a suitable format that facilitates the construction of the network. The OD
trajectories are then extracted from the preprocessed shared bike data. Each OD trajectory
represents the movement between two locations within the study area. These trajectories
are used as the edges of the spatial interaction network, connecting the corresponding
street units.

With the network structure established, a range of network statistical indicators are
applied to analyze the spatial interaction patterns within the urban street network. These
indicators provide insights into various aspects of the network, such as node connectivity,
traffic flow, and centrality measures. By examining these network characteristics, a compre-
hensive understanding of the spatial interactions facilitated by shared bikes in the urban
environment can be obtained.
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3. Results
3.1. Spatial Distribution of Shared Bikes

We used kernel density estimation (KDE) to calculate and visualize the spatial dis-
tribution of shared bicycle data. Data from three working days in July, specifically July
6th, July 7th, and July 8th, were aggregated at four specific time points: 6:00 AM, 9:00 AM,
5:00 PM, and 8:00 PM. The calculation and visualization of kernel density values are shown
in Figure 3. From the range of kernel density values, it is apparent that the KDE values at
9:00 AM and 5:00 PM are higher than those at 6:00 AM and 8:00 PM. Since kernel density
reflects the density of data distribution in spatial dimensions, the analysis suggests that
the spatial distribution of shared bikes is more concentrated at 9:00 AM and 5:00 PM. This
indicates that in the morning, bicycle trip destinations are spatially concentrated, whereas
in the evening, bicycle trip origins are more clustered. Considering that shared bicycles
are commonly used as commuting tools during weekday peak hours, this observation has
implications. On one hand, it suggests that the employment areas in the core of Beijing, as
compared to residential areas, have a more concentrated geographical distribution. On the
other hand, by comparing the kernel density value ranges between 6:00 AM and 8:00 PM
and between 9:00 AM and 5:00 PM, we found that shared bicycle usage is higher and more
concentrated in the morning than in the evening. This indicates that more people opt for
shared bicycles as a mode of transportation in the morning and switch to other modes in
the evening. This could be attributed to the morning trips being primarily for commuting,
which are more concentrated. In the evening, trip purposes become more diverse, leading
to a variety of transportation modes being used.
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3.2. Analysis of Spatial Interaction Network for Shared Bikes
3.2.1. Spatial Distribution of Shared Bikes

In this study, we adopted the principles of complex network theory to construct a
spatial interaction network for shared bikes. The network was established by considering
streets as nodes and representing the interactions between streets as directed edges. The
weight of each edge was determined by the volume of shared bike usage, reflecting the
intensity of interaction between streets. To build the network, we created a travel matrix
that captures the travel relationships among streets within the urban central area. The
network construction, analysis, and visualization were performed using the network library
in Python, in conjunction with ArcGIS software. The resulting spatial interaction network is
visualized in Figure 4, where the width of the lines corresponds to the magnitude of the flow
between streets. In this case, the use of the early period means 6:00–9:00 and the use of the
night period means 17:00–20:00. This visualization allows us to visually assess the patterns
and dynamics of shared bicycle movements within the study area. Thicker lines indicate
higher flow volumes, indicating streets with greater usage and stronger connections with
other streets. To further analyze the characteristics of the spatial interaction network, we
calculate the network density for each network. Network density quantifies the level
of connectivity within a network by measuring the proportion of existing connections
compared to the total number of possible connections.

Table 2 presents the network density values for the spatial interaction networks under
investigation. Higher network density values indicate a denser network with stronger
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interconnectivity between streets, implying a higher potential for shared bicycle flow and
interactions among streets.
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Table 2. Network basic attribute statistics.

Time Period
Network Density

July 6 July 7 July 8

6:00–9:00 0.1661699 0.1715215 0.1764666
17:00–20:00 0.1793117 0.1650673 0.1791085

Upon examining the network density values presented in Table 2 and analyzing the
spatial structure of the network depicted in Figure 4, it becomes evident that interactions
between streets that are geographically distant from each other are relatively infrequent.
Most of the interaction activities occur between adjacent streets, such as the substantial
pedestrian flow observed daily between the Hua Xiang District Office and Xin Cun Street.
This observation indicates that shared bicycles are primarily used for short-distance trips
between neighboring streets, especially during weekdays. This finding is consistent with
previous research results.

Furthermore, the visualization results also show that edges with higher flow volumes
are primarily distributed on the periphery of the study area, while the central area of the
study region exhibits fewer high-flow interactions. The reason for this travel pattern may
be attributed to the distinct characteristics of the peripheral areas of Beijing’s core region,
where the boundaries between employment and residential zones are more pronounced.
In contrast, the central area of Beijing’s core region is characterized by a more complex
mix of attributes, often resulting from historical or cultural factors. Employment units and
residential communities are intermixed spatially in this central area. Such spatial attributes
often lead to a certain degree of road congestion within the region.

3.2.2. Spatial Characteristics Analysis

Figure 5 illustrates the visualization and analysis of node strength within the spatial
interaction network. In this analysis, dot size corresponds to the node strength, offering
insights into the relative significance of various streets. Upon examining the figure, it
becomes evident that streets with higher node strength can be categorized into two distinct
groups. The first category encompasses streets with more substantial weighted edges. These
streets, including Dougezhuang District Office, Pingfang District Office, Huaxiang District
Office, Lugouqiao Street, Hujialou Street, and Xincun Street, boast a greater number of
significant connections with other streets. Their node strength is primarily influenced by the
presence of these strong connections, signifying their role in facilitating interactions within
the network. The second category comprises streets with a higher degree of interaction with
numerous other streets. Streets like Wanshou Road Street, Liulitun Street, and Yangfangdian
Street fall into this category, characterized by their popularity and extensive connections to
other streets within the network.

Based on the findings above, two recommendations can be made. Firstly, there is a need
to enhance the infrastructure of important streets. Streets with higher node strength, such as
Dougezhuang District Office, Pingfang District Office, Huaxiang District Office, Lugouqiao
Street, Hujialou Street, and Xincun Street, play a crucial role in facilitating interactions
within the network. Therefore, urban planners and policymakers should consider investing
in bicycle infrastructure in these areas, including dedicated bike lanes and parking facilities.
Ensuring an adequate supply of shared bikes during peak commuting hours is also vital.
On the other hand, there is a need to expand the shared bike services. Streets with higher
node strength, such as Wanshou Road Street, Liulitun Street, and Yangfangdian Street,
stand out due to their popularity and extensive connections to other streets within the
network. To promote equitable access to sustainable transportation modes, expanding
shared bike services to neighboring areas could be considered, making these services more
accessible to a broader range of people.
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The analysis of the spatial interaction network involves calculating the net flow ratio
(NFR) based on the in-degrees and out-degrees of nodes. Figure 6 presents the visualization
and analysis of the NFR, with dot size representing the magnitude of the NFR value.
Positive NFR values are depicted in red, while negative values are depicted in green. Upon
examining the figure, distinct patterns emerge during the early time period. Streets with
NFR values greater than zero, indicating an increasing flow of shared bicycles, are primarily
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concentrated in the central area of the study region. Notable examples include Jinrong
Street and Chongwenmenwai Street. These streets exhibit higher levels of activity and are
characterized by a higher influx of shared bicycle usage during peak hours. Conversely,
streets with NFR values less than zero, indicating a decreasing flow of shared bicycles, are
primarily located near the periphery of the study region. This category includes streets such
as Lugouqiao Street, Fangzhuang District Office, Huaxiang District Office, and Shibalidian
District Office. The reduced NFR values in these areas suggest a lower demand for shared
bicycles during the same time period.
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During the late time period, there is a reversal in the spatial distribution of activity
within the study region. Central streets, which previously showed higher levels of activity,
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now exhibit decreased activity. Conversely, peripheral streets show increased activity,
suggesting a higher demand for shared bicycles during this period. These observations are
consistent with weekday commuting patterns when shared bicycles are frequently used
for transportation to and from work. The central streets in the central district are more
likely to be associated with employment areas, whereas the periphery mainly consists of
residential areas.

The traffic flow on streets during the early time period corresponds to the flow in
the opposite direction during the late time period. This phenomenon can be attributed
to the temporal variations in travel patterns and the changing dynamics of shared bi-
cycle usage. Moreover, the relationship between Insurplus and Outsurplus, as defined
by Equations (9) and (10), indicates that they are opposite to each other. Leveraging this
understanding, the present study focuses on comparing the Insurplus values during the
early time period with the Outsurplus values during the late time period, as depicted in
Figure 7. The findings consistently demonstrate that streets with positive Insurplus values
exhibit a higher Insurplus during the early time period compared to the Outsurplus during
the late time period. Conversely, for streets with negative Insurplus values, the opposite
trend is observed. On one hand, they indicate that for the same street, the demand for
shared bikes is generally higher during the early time period than during the late time
period. This suggests a temporal preference for shared bicycle usage, potentially influenced
by factors such as work commutes and daily activity patterns.
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On the other hand, the results also indicate that streets with higher centrality in the
network tend to experience a significant influx of shared bicycle usage during the early
hours, followed by an efflux during the later part of the day. This observed pattern can be
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attributed to the distribution of employment centers and residential areas within the study
region. Streets with greater centrality, often situated in the central area, typically function
as primary employment hubs where commuters gather during peak hours, resulting in a
heightened inflow of shared bicycle usage. Conversely, during the late hours, the outflow
of shared bicycles from these central streets may be influenced by various factors, such as
commuters returning home or engaging in recreational activities in peripheral areas.

4. Discussion and Conclusions

In this study, we applied complex network theory to construct and analyze a spatial
interaction network of shared bicycles in the central urban area of Beijing. Our analysis
focused on understanding the spatial interaction patterns of shared bicycle usage and
their variations. We conducted an analysis of the spatial interaction characteristics of
intra-regional traffic flow, providing valuable insights for urban planning and achievable
transportation development. Several key findings have emerged from our investigation.

Regarding the spatial distribution of shared bikes, we employed kernel density es-
timation to visualize the concentration of bike usage during different time periods. Our
results indicated that bike distribution was more concentrated during peak commuting
hours, with destinations being more centralized in the early time period and origins be-
ing more centralized in the late time period. This suggests that shared bikes serve as a
popular commuting option during weekdays, with employment areas exhibiting a higher
concentration in the central region compared to residential areas.

Additionally, through the construction of a spatial interaction network, we conducted
an analysis of the network structure and pinpointed key streets characterized by higher
node strength and popularity. These streets can be categorized into two groups: those
with substantial edge weights, signifying significant bicycle usage, and those engaged in
interactions with a greater number of other streets, rendering them more favored within
the network. In the network, streets with elevated node strength are typically situated
in the central region, playing pivotal roles in fostering interactions within the network.
These central streets generally bear a heavier load of shared bicycle usage during peak
hours, which is associated with their positioning as employment hubs. In contrast, streets in
peripheral areas undergo increased usage during the evening, reflecting distinct commuting
patterns, with central areas being more employment-oriented and periphery areas primarily
residential. Furthermore, the usage of shared bicycles exhibits pronounced variations across
different time periods. There is a higher demand in the morning, likely influenced by work
commutes and daily activity patterns. Conversely, during the evening, substantial outflows
signify diverse travel needs, potentially influenced by factors such as commuters returning
home or engaging in recreational activities in peripheral regions.

Based on the conclusions drawn above, given the concentration of shared bicycle
usage during the morning peak hours, urban planners should consider enhancing bicycle
infrastructure in areas with high employment and residential density. This may involve
the addition of bike lanes, parking facilities, and ensuring an adequate supply of shared
bicycles during peak commuting hours. Considering the complex mix of employment
and residential areas within the central area of Beijing, urban planning policies should be
implemented to encourage mixed-use zoning, thereby reducing traffic congestion. This
can be achieved by promoting the development of mixed-use buildings, which can help
reduce the need for long-distance commuting. Given the higher concentration of shared
bicycles in peripheral areas, city authorities may contemplate expanding shared bicycle
services to neighboring regions, promoting more equitable access to this sustainable mode
of transportation. In conclusion, our study contributes to a deeper understanding of the
spatiotemporal dynamics of shared bike usage in the urban central area. The findings
emphasize the importance of considering both spatial and temporal factors in planning bike-
sharing systems and urban transportation strategies. The insights gained from this research
can inform policymakers and urban planners in optimizing the allocation of resources,
improving transportation infrastructure, and promoting sustainable urban mobility.
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There are certain limitations to this study. Firstly, the data used in this research were
limited to just three days in the summer (6 July, 7 July, and 8 July 2021). Secondly, the
variety of network indicators used in this study could be further expanded. Future research
directions can build upon this study to further explore and address several aspects. Firstly,
incorporating additional data sources, such as weather conditions and demographic in-
formation, could provide a more comprehensive understanding of the factors influencing
shared bike usage patterns. Secondly, investigating the impact of bike-sharing systems
on traffic congestion, air quality, and public health would contribute to a broader assess-
ment of the benefits and challenges associated with promoting sustainable urban mobility.
Additionally, exploring the spatiotemporal dynamics of shared bikes in different seasons
and during special events or holidays could provide insights into the adaptability and re-
silience of bike-sharing systems. Lastly, integrating advanced analytical techniques, such as
machine learning and predictive modeling, could enhance the accuracy of predicting bike
usage demand and support more efficient resource allocation. By addressing these research
directions, we can continue to advance our understanding of shared bike systems and
contribute to the development of sustainable and efficient urban transportation networks.
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