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Abstract: The color of urban streets plays a crucial role in shaping a city’s image, enhancing street
appeal, and optimizing the experience of citizens. Nevertheless, the relationship between street color
environment and residents’ perceptions has rarely been deeply discussed, and most of the existing
studies adopt qualitative methods. To accurately and effectively assess the connection between
street color environment and residents’ emotional perceptions, this paper introduces a quantitative
research framework based on multi-source data called “Color Emotion Perception with K-Means,
Adversarial Strategy, SegNet, and SVM (CEP-KASS)”. By combining K-Means unsupervised machine
learning and SegNet computer vision techniques, it captures and analyzes visual elements and
color data from Baidu Street View Images (BSVI). It then employs a human–machine adversarial
scoring model to quantify residents’ perceptions of BSVI and uses the support vector machine
regression model to predict the final perception scores. Based on these data, a Pearson correlation
analysis and visual analysis were conducted on the elements and color in the urban environment.
Subsequently, the streets were classified based on perception frequency and perception scores by
integrating multi-source data, and areas within the third ring of Xuzhou City were selected for
validating the research framework. The results demonstrate that utilizing street-view images and the
CEP-KASS framework can quantitatively analyze urban color perception and establish a connection
with residents’ emotions. In terms of color perception, red, orange, and blue all have a strong positive
correlation with the interesting score, whereas black is positively correlated with a sense of safety.
Regarding color attributes, low-saturation bright colors result in higher fun perception scores in
urban spaces; too low saturation and brightness can affect their attractiveness to residents; brightness
has an inverse relationship with the perception of safety, and adjusting brightness inversely can
improve the perceived safety experience in certain urban external spaces. The street classification
criteria based on perception frequency and perception scores proposed herein can provide references
for planners to prioritize color transformation decisions, with a priority on emulating HSHF streets
and transforming LSHF streets. When formulating color planning, suggestions for color adjustment
can be given based on the correlation study of color with visual elements and perception scores,
optimizing urban residents’ spatial perception and their emotional experiences. These findings
provide robust theoretical support for further enhancing the visual quality of streets and refining
urban color planning.

Keywords: color environment perception; deep learning; street images; urban color planning;
multi-source data; perception frequency

1. Introduction

In the contemporary quest for superior quality development, the generation of refined
urban public spaces has emerged as a subject of paramount interest for urban planners and
administrators. Serving as public arenas that foster physical activity and routine social en-
gagement among city dwellers [1], the caliber of urban streets (encompassing both tangible
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spatial quality and intangible psychological perception) constitutes a vital benchmark for
gauging a city’s habitability and its commitment to human-centered principles [2]. Inter-
disciplinary investigations have corroborated the positive influence of exceptional streets
on residents’ well-being, bolstering morale whilst effectively diminishing the prevalence
of assorted maladies [3–6]. Gaining a genuine and precise understanding of the current
quality of street spaces and residents’ emotional perception towards urban areas is of
paramount importance to government officials and urban planners. This knowledge dic-
tates how they should optimize and enhance the environment, thereby attracting a greater
influx of talents, investors, and enterprises. Such attraction, in turn, serves as a robust
catalyst for propelling urban development [7]. Streets, being the carriers of numerous
urban functions, garnered attention from the academic sector quite early on. In the 1960s,
the burgeoning phenomena of urban space segregation, quality decline, and loss of vitality
became prevalent, leading a group of pioneering individuals in urban research, including
Jane Jacobs [8] and Henri Lefebvre, to begin exploring the quality of street spaces and
their impact on society and economy. Subsequently, the dimensions of research concerning
street spaces diversified. Allan Jacobs conducted an extensive analysis of hundreds of
streets located around the world from various physical spatial perspectives including plan,
section, scale, street D/H ratio, and the degree of refinement in street furniture. Through
this meticulous examination, he summarized and identified the physical attributes inherent
to great streets [9].

The methodologies for assessing street quality have continually evolved with the
advancement of science and technology. Early street perception research relied on random
sampling [10–12], surveys, or field investigations [13]. McGinn and his colleagues con-
ducted telephone interviews to gather perceptions of the built environment from diverse
groups [14], and Sallis et al. conducted an evaluation of travel route spatial environments
via 43 questionnaires [12]. Nonetheless, these modest-scale empirical investigations, rooted
in local spaces, lack robust universality, and the protracted process data of acquisition and
challenges in quantification render them ill-suited to support more rigorous, large-scale
research on street quality. The maturation of scientific knowledge and the widespread
adoption of computer technology have engendered a novel data landscape, paving the
way for meticulous street studies. The procurement of high-resolution streetscape imagery
and the alleviation of quantification difficulties have spurred a growing body of scholars
to undertake the quantitative depiction of urban built space environmental characteris-
tics and quality using streetscape images as a foundation [15–18]. The advancement of
machine learning algorithms furnishes technical backing for more fine-grained inquiries.
Deep learning algorithms like SegNet and ResNet, in tandem with deep convolutional
neural networks and support vector machines, facilitate the efficient deep processing of
streetscape images. Multiple elemental features within images, including sky, road, build-
ings, and landscape, can be effectively identified [19–21]. With streetscape data serving as
the blueprint, researchers such as Li Xiaojian have validated the significance of streetscape
data in quantifying and mapping urban environmental features [22], prompting extensive
inquiries into green view indices and street sequences. Scholars including Yang Zhuo [18],
Long Ying [19–21], Ye Yu [20], and Zhao Qing [23] employed these data for comprehensive
quantitative examinations of street spatial quality.

The perceptual research highlighted above primarily focuses on qualitatively and
quantitatively describing the objective spatial quality from a user’s physiological stand-
point. With the advent of human-centric ideologies, studies exploring users’ subjective
psychological perceptions of space have gradually emerged. The notable psychological
experiment by experimental psychologist Treichler indicates that humans obtain 83% of per-
ceptual information through vision, compared to other sensory modalities such as hearing
and touch [24]. This substantiates that users’ perception of urban street spaces predomi-
nantly hinges on visual cues rather than auditory, olfactory, or tactile cues. The external
features of space, encompassing its shape, color, and geometric structure, significantly
impact users’ psychological perception.
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In his book The Luminous Ground [25], architect Alexander mentions that the founda-
tion of every act of construction or creation should be rooted in genuine conscious emotions
and personal experiences. Under the human-centered developmental orientation in urban
spaces, it is imperative to have designs based on the authentic emotional perceptions of
the users. In order to gauge the impact of the urban visual environment on the emotional
states of perceivers, the MIT Media Lab, in collaboration with machine learning, initiated a
project named Place Pulse, which employed numerous streetscape images to discern and
evaluate urban spatial quality across six dimensions, constructing psychological perception
maps of urban residents’ street spaces [26]. A multitude of urban perception studies have
ensued [27,28], with researchers such as Liu Liu, Zhang Fan [29], and others developing a
streetscape image perception scoring model based on deep convolutional neural networks,
analyzing the visual elements representing the characteristics of Beijing and Shanghai
from the aforementioned six dimensions. Based on a human–machine adversarial model,
Wang Lei and his colleagues [30] delineated the urban perception map of the Binjiang
District of Hangzhou City and conducted an analysis of the spatial elements affecting
residents’ perceptions based on emotion scoring. Moreover, there are researchers concen-
trated on aspects such as street vitality [31], safety [32,33], happiness [34], and even the
link between streetscape quality and geriatric depression from a medical standpoint [35].
Ann Sussman and colleagues have bridged biology with architecture and environmental
design, innovatively employing eye-tracking devices and visual attention simulation soft-
ware through a series of experiments. By capturing users’ authentic experiences, they have
unveiled the factors that render streets most conducive to walking, thereby serving human
health and well-being [36–45].

In existing research, the perception of residents regarding the visual aesthetic quality
of urban spaces and its impact on their emotions is seldom discussed. Recognized as a
complex structure that operates across various dimensions [46], color’s effect on human
emotions is a fact well acknowledged within academia, thereby sparking discussions across
multiple disciplines. The choice of color in advertising and promotional campaign posters
can influence consumers’ perception of products or services, and might even prove more
effective than marketing slogans in generating sales [47]. In the medical realm, mounting
evidence reveals that plants of different colors can have varying impacts on emotions,
psychological and physiological well-being [48,49]. Color psychology also indicates that
color can exert varying degrees of influence on human psychological health and emotions,
which in turn relate to the quality of residents’ lives [50,51] and levels of physical and mental
health [52,53], while also affecting the degree to which users favor a certain location. People
aspire to be in environments that enhance work efficiency, and contribute to physiological
and psychological well-being, and are inclined to visit spaces that can significantly improve
their emotional states. Evans’s study also confirms that color is a key solution for enhancing
urban experiences and enjoyment [54].

In human visual perception, color is perceived foremost, with individuals typically
noticing the color of a building prior to its architectural form. Image clarity and qual-
ity have minimal influence on color, and even at lower resolutions, people can correctly
perceive colors and the object outlines they form. Thus, color, being an indispensable
component of aesthetics, occupies a significant position in the realm of spatial design.
Presently, there exists an abundance of studies concerning urban color; however, scholarly
attention appears to be more oriented towards the perception of color within indoor spaces
and related issues [55–57]. At the urban scale, pertinent research predominantly centers
around architectural color, urban color planning, and engages in both qualitative and quan-
titative inquiries into urban imagery. In Chapter 7 of Christopher Alexander’s book—The
Luminous Ground—he gives detailed instructions on how to use the most appropriate colors
in architectural creation [25]. Scholars such as Ye Yu [58], Ding Meichen [59], Jiang Bo [60],
Zhong Teng [61], and others have harnessed streetscape images and computer recognition
technology to execute large-scale quantitative analyses and evaluations of urban and archi-
tectural colors. Zhu Xiaoyu and her colleagues [62] have fine-tuned the investigation of



Buildings 2023, 13, 2649 4 of 25

color luminosity and chromaticity, drawing upon the extraction of buildings’ dominant
colors, thereby offering a constructive reference for urban color planning. Danaci and col-
leagues embarked from the perspective of color perception, analyzing the attitude changes
of subjects towards three major streets in Antalya before and after painting. Consequently,
they discerned the impact of the color of architectural facades on urban aesthetics [63].

Although color is an inherent feature of every object’s surface, there remains a gap in
empirical studies investigating the impact of color in urban external spaces on residents’
emotional perceptions, with little deep exploration into the dimensions of color composi-
tion. Although some studies have ventured into employing street-level imagery data to
quantitatively evaluate the relationship between urban street environments and residents’
psychological well-being in major urban regions, the majority of these case studies are
based in cities across North America and Europe, with a noticeable paucity of such research
conducted in Asian cities.

The existing body of research has amply demonstrated the feasibility of urban spa-
tial perception prediction based on subjective human perception and machine learning.
Hence, utilizing street-view imagery along with the CEP-KASS framework outlined in
this document, we strive to establish a connection between color and emotion, evaluating
the relationship between the street environments within the core urban area of Xuzhou
and residents’ emotions from the angle of color perception. Our research homes in on the
following questions: How can one accurately delineate the predominant colors of urban
streets across a broad scope? Do the environmental traits and compositional elements of
various streets, together with their respective colors, impact residents’ emotional percep-
tion of the space? What sort of influence do the color characteristics of urban spaces exert
on residents’ emotions? Additionally, the study identifies priority areas for urban color
planning and renewal based on multi-dimensional data (including spatial syntax, POI, and
mobile signaling data), an imperative for second-tier cities like Xuzhou. The findings herein
could significantly guide the progression of urban renewal projects and the distribution
of related construction funds. This investigation extends the current body of research,
filling a void concerning residents’ color perception within urban settings and, from the
perspective of color planning, holds practical significance for urban planners aimed at
fostering urban environments conducive to enhancing mental well-being. This perspective
enables planners to better sculpt urban spaces from the users’ viewpoint.

2. Methods

As illustrated in Figure 1, we have structured the CEP-KASS framework into three
segments: (1) Acquisition of diverse foundational data. (2) Establishment and training of
the integrated model. (3) Data analysis and visualization. The primary segment is focused
on procuring the foundational data necessary for the models and methodologies. This
encompasses BSVI data, POI (points of interest) data, mobile signaling data, accessibility
data, road grid data, and perceptual score data. The second segment aims to transform this
foundational data into analyzable data via an integrated model. This involves extracting
visual elements and color data from BSVI data using the SegNet model and K-Means,
deriving perceptual score data via adversarial human–machine models and SVM, and
determining the perceptual frequency of streets using POI data, mobile signaling data,
and road accessibility data. The final segment delves into the analysis and visualization of
the data resulting from model training, encompassing the examination of color data and
perception scores, the analysis of street color environments, and the segmentation of streets
based on perception frequency and perception ratings, aiming to ascertain the construction
sequencing within the city. Through these analytical endeavors, a nuanced understanding
of how color dynamics interact with resident perceptions is anticipated, which in turn, is
instrumental in guiding phased developmental initiatives within the urban landscape.
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Figure 1. Research framework of the present study.

2.1. Semantic Segmentation of BSVI

The study employs the MIT ADE20K dataset and the SegNet model for semantic
segmentation. This dataset comprises over 150 object categories, such as streets, buildings,
and trees, along with over 20,000 images featuring pixel-level semantic labels. It is widely
utilized in computer vision research and has been proven to deliver commendable perfor-
mance in semantic segmentation tasks. The visual element labels produced post-semantic
segmentation serve as data for subsequent investigations.

SegNet is a neural network based on an encoder–decoder architecture (Figure 2),
proficient in handling street-view images through pixel-wise semantic segmentation [64].
The encoder captures high-dimensional semantic features through convolution and max-
pooling, and the decoder utilizes max-pooling indices to execute nonlinear upsampling,
eliminating the need to learn upsampling. Subsequently, it generates dense feature maps to
preserve high-frequency details in images via convolution operations, and then employs
a SoftMax classifier to predict the category of each pixel [65], thus achieving image seg-
mentation. Within SegNet, ResNet50 serves as the backbone network for feature extraction,
pinpointing intricate image features, such as edges, corners, and textures, facilitating a
more precise segmentation.
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2.2. Human–Machine Adversarial Model and SVM for Score Prediction
2.2.1. Human–Machine Adversarial Model Framework

In recent years, numerous scholars have conducted extensive research related to urban
perception [26,27,60,65] based on the six emotional perceptions (beauty, boredom, depres-
sion, liveliness, wealth, and safety) of the Place Pulse project [66]. Upon referencing the
human–machine adversarial model proposed by Yao [67], and aligning it with the objec-
tives of this study, we fine-tuned the six emotional perceptions from the Place Pulse project
and transitioned them to the study of color perception in urban streets. Specifically, we de-
lineated human color perception into five pairs of dimensions, namely: boring–interesting,
danger–safe, depressing–lively, poverty–wealthy, and ugly–beautiful, quantifying the per-
ception within a measurement range of 0–100. These five pairs of dimensions serve as a
refinement and adjustment of the original six emotional perceptions, aligning more closely
with our goal to study the perception of urban street color and emotional responses in a
relatively objective manner. For instance, when testers are prompted to evaluate an image
on the aspect of “beauty” in color perception, they might provide ratings based on their
subjective aesthetic standards. However, when requested to assess the image from the
“ugly–beautiful” dimension, testers would consider not only the level of aesthetic appeal
during perception but also the degree of ugliness, thereby achieving a more comprehensive
and objective rating. Consequently, in the delineation of emotional perception dimensions
concerning color, we adhered to the dimensions employed by predecessors in urban per-
ception studies and incorporated antonymous prompt words to form a pair of emotional
perception dimensions. The pair depressing–lively can constitute antonymous prompt
words in the realm of color emotional perception, and hence, is amalgamated into a single
pair of dimensions.

We recruited 30 volunteers acquainted with the research area to evaluate the color
environment of streets using the human–machine adversarial model. The model framework
is demonstrated in Figure 3.
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Each volunteer was tasked with subjectively scoring between 400–2000 street-view
images for each emotional dimension. The number of images to be scored depended on the
difference between the model-recommended score and the expected human score. Scoring
ceased when the score difference for 10 consecutive images stayed within a 5-point range.
To ensure a minimum data volume, each volunteer was required to rate at least 400 images.
Starting from the 50th street-view image, the model recommended a score for the particular
perception dimension based on the volunteer’s previous ratings. Volunteers could either
accept this score or provide their own rating.

2.2.2. Support Vector Machine (SVM) for Score Prediction

After performing semantic segmentation on street images and obtaining the per-
centage of visual elements for each image, Yao [67] utilized a random forest within the
human–machine adversarial model framework for predicting perception scores. In contrast,
our study selected the support vector machine model, which exhibited a smaller MSE value,
to handle the regression problem and predict the relationship between BSVIs data and
perception scores, as shown in Table 1.

Table 1. Comparison of random forest and support vector machine prediction.

Model MSE R-Squared MAE

Random Forest 0.39800338 0.533016048 0.356644
Support Vector Machine 0.218820329 0.832713167 0.250849

The support vector machine (SVM) model employs a radial basis function kernel (RBF
kernel) for multi-output regression. The relevant mathematical formulas are as follows:

RBF kernel = K(x, x,) = exp

(
−‖x− x,‖2

2σ2

)
(1)

where x and x′ represent two data points, and σ is the width parameter of the kernel.
The optimization problem for SVM is:

‖ω‖2 + C∑n
i=1 ξi (2)

Subject to yi

(
ωT ϕ(xi) + b

)
≥ 1− ξi,ξi ≥ 0 (3)

where ω symbolizes the weight vector; b signifies the bias term; εi represents the slack
variable; C indicates the penalty parameter (regularization parameter); n refers to the
number of training samples; yi corresponds to the target value; and ϕ(xi) constitutes the
function mapping data point xi to a high-dimensional feature space.

This SVM is used for regression problems, meaning its optimization objectives and
constraints slightly differ from those of the SVM used for classification. In the regression
context, the SVM attempts to find a function that minimizes the error between predicted
and actual values while maintaining the function’s smoothness. The top 15% of street-view
images with the highest predicted scores for each color perception dimension are filtered
out, and the proportions of visual elements within these images are weighted and averaged.

2.3. K-Means Clustering and Colour Segmentation

The study employs the K-Means clustering method to extract the primary environmen-
tal colors from BSVIs. K-Means clustering is an unsupervised machine learning algorithm
widely applied in image segmentation and color quantization. It groups similar colors
together and identifies the primary colors in an image. The basic steps and associated
mathematical formulas for the K-Means algorithm are as follows:

(1) Choose K data points as the initial cluster centers (in this study, each pixel in BSVIs).
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(2) For each data point xi, find the closest cluster center µj and assign it to that cluster.

C(i) = arg minj
∥∥xi − µj

∥∥2 (4)

(3) For each cluster, compute the mean of all its data points and set it as the new
cluster center.

uj =
1∣∣Cj
∣∣∑i∈Cj

xi (5)

(4) Convergence criteria: If the cluster centers do not change significantly, or a pre-
defined number of iterations is reached, the algorithm terminates. Otherwise, return to
step 2. The objective function to minimize the variance within each cluster is as follows:

J = ∑K
j=1 ∑i∈Cj

∥∥xi − µj
∥∥2 (6)

After extracting the RGB color data from BSVIs using K-Means clustering, the data are
stored. These data are then converted from RGB to HSV format. During the conversion,
referencing OpenCV standards [68], the H, S, V values are mapped to ranges [0,180],
[0,255], and [0,255] respectively. Following this, the color data are categorized based on
the criteria in Table 2. For a more detailed trisection of the luminance and saturation of the
colors, “low” corresponds to 1, “medium” corresponds to 2, and “high” corresponds to 3
(e.g., Gray_V2_S1 indicates medium luminance and low-saturation gray).

Table 2. HSV format color division table in OpenCV.

Black Gray White Red Orange Yellow Green Cyan Blue Purple

Hmin 0 0 0 0 156 11 26 35 78 100 125
Hmax 180 180 180 10 180 25 34 77 99 124 155
Smin 0 0 0 43 43 43 43 43 43 43
Smax 255 43 30 255 255 255 255 255 255 255
Vmin 0 46 221 46 46 46 46 46 46 46
Vmax 46 220 255 255 255 255 255 255 255 255

3. Case Study
3.1. Research Area

To validate the feasibility and universality of the proposed CEP-KASS framework,
we selected the area within the third ring of Xuzhou city, Jiangsu province, China as
the case study for this research. As shown in Figure 4, Xuzhou, which is recognized
as a second-tier city, is located in the northwest of Jiangsu Province and is an essential
railway transportation hub in eastern China. Previous studies have predominantly chosen
well-developed first-tier cities with rich street-view image data as subjects, to affirm the
feasibility of utilizing street-view imagery for urban research. However, as per recent data
statistics, first-tier cities in China represent merely 3% of the total count of cities, suggesting
that by validating the proposed methodological framework in second- and third-tier cities,
it could be better propagated to a more extensive array of cities. Concurrently, the less-
explored second- and third-tier cities harbor about 64% of China’s populace. Under the
human-centric development paradigm, conducting research on the living environment
health of these residents is highly meaningful and could fill the current research void
concerning second- and third-tier cities. By extending the scope of study to cities like
Xuzhou, this research endeavor not only broadens the applicability and relevance of the
CEP-KASS framework but also contributes to a more inclusive understanding of urban
color perception and emotional responses across diverse urban settings, thereby reflecting
a more comprehensive picture of urban living environments across China.
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cation of Xuzhou within Jiangsu Province, (c) administrative districts of Xuzhou, highlighting inner
ring area.

Fortunately, with the enhancement of street-view image data, the feasibility of street-
view-based research has been extended to more non-first-tier cities. Compared to smaller-
scale cities, second- and third-tier cities, with their ample street-view images and suitable
urban size, emerge as optimal choices for case studies. Hence, on fulfilling the aforemen-
tioned conditions, selecting a city with a rich historical and cultural heritage, which has
also undergone modernization, over a city solely characterized by modern development,
can yield more scientifically accurate conclusions in color environment perception research.
Furthermore, such a selection can unveil a greater spectrum of traditional colors, thereby
augmenting the robustness of the models within the CEP-KASS framework. This nuanced
approach not only enriches the dataset with a diverse range of color palettes reflective of
both traditional and modern urban aesthetics but also potentially fosters a more compre-
hensive understanding of how historical and contemporary urban color schemes influence
emotional perceptions amongst urban dwellers. With a history of more than 2000 years,
Xuzhou has its unique urban cultural context and derived urban color tone. After under-
going modern construction, the city possesses a wealth of BSVI data. These conditions
are favorable for carrying out research on street color environment and perception, and
therefore, upon validating the methodological framework, it can be extended to other
second- and third-tier cities.

3.2. Data Collection

The core data used in the CEP-KASS framework include: (1) road data, (2) BSVI data,
(3) perception score data, and (4) multivariate data: POI data, mobile signaling data.

The first type of data are used to draw street maps, set street-view collection points,
and measure street accessibility. The second type are for extracting street color data and
visual element data and drawing street color environmental maps. The third type serve the
study of the relationship between street color environment and perception. The fourth type
are used to determine the frequency of street environment perceptions for overlay analysis.
Below are the specific data types and preprocessing methods.
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3.2.1. Road Data

Using OpenStreetMap (OSM) to collect street network data for the research area and
importing them into ArcGIS, a street-view collection point is generated every 50 m, totaling
31,527 collection points. After merging, simplifying, and topologizing the road network,
spatial syntax is used to quantify urban street accessibility. Building upon previous studies
on the walking distance of urban residents in China [69], a daily walking distance of 500 m
was chosen as the accessibility radius.

3.2.2. BSVI Data

Urban science research is increasingly using street-view images that offer a human-
centric observational perspective to analyze street and urban environment quality [70,71].
The BSVI data for this study were collected by using Python to call the Baidu API to search
for street-view images in the research area. Specific collection parameters were set as:
vertical angle (pitch) of 20◦ and field of view (fov) width of 90◦. After data cleansing, a total
of 108,940 valid street-view images were obtained, with each image set to a resolution of
600 × 480 pixels. Subsequent Python code was used to stitch images from four directions
at each collection point, resulting in a 360◦ panoramic image that showcases the color
environment of the street where the collection point is located. The detailed street-view
collection point settings and collection examples are shown in Figure 5 shows the road
network in the inner ring area.
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3.2.3. Perception Score Data

Perception data obtained from the human–machine adversarial model was cleaned to
remove invalid data. A total of 70% of the data was used for training the support vector
machine (SVM) model, and the remaining 30% served as test data for model validation.
The end result was an adversarial dataset. The accuracy of urban perception prediction
trained by the SVM is presented in Table 3.
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Table 3. Training accuracy of the urban perception estimation via random forest.

Id AVG ERROR AVG REL ERROR RMSE ERROR

boring-interesting 4.339131 0.1302978 5.5866173
danger-safe 0.93914809 1.71797068 3.48520264

depressing-lively 2.04480372 4.0972208 3.66556723
poverty-wealthy 1.19977789 2.21740059 2.1561907

ugly-beautiful 1.27134892 2.218427464 2.79643624

3.2.4. Multivariate Data Perception Score Data

(1) POI Data: Using Python, data were scraped for 36,709 points of interest (POI) within
the research area and categorized into seven types: dining, shopping and consumption,
tourist attractions, daily life services, entertainment, healthcare, and fitness. Detailed
classifications and data can be found in Table 4.

Table 4. POI detailed classifications and data.

First-Class Second-Class Count First-Class Second-Class Count

Entertainment

Theater 5

Services

Agency 712
Vacation and Retirement 31 Public Toilet 543

Chess and Card Room 39 Lottery Outlet 320
Amusement Park 22 Photography and Printing Shop 268

Cinema 17 Bathhouse & Massage Parlor 602
Internet Cafe 65 Laundry 123
Bars & KTVs 83 Logistics Point 650

Others 133 Others 1791

Healthcare

Veterinary Hospital 73

Shopping

Telecommunications Office 205
Pharmacy 741 Beauty & Hair Salon 1865

Specialist Hospital 240 Post Office 49
Emergency Center 10 Convenience Store 1337

Disease Prevention Center 8 Home & Building Materials Store 3262
General Hospital 314 Electronics & Digital Store 839

Clinic 295 Market 1471
Others 505 Stationery & Sports Supplies Store 348

Tourist Attractions

Park 48

Sports & Fitness

Commercial Street & Mall 118
Zoo & Botanical Garden 4 Flower, Bird, Fish & Insect Market 237

Religious Building 43 Supermarket 326
Plaza 43 Fitness Center 135

Scenic Spot 37 Ice & Snow Sports Venue 2
Aquarium 4 Comprehensive Sports Hall 13

Memorial Hall 9 Ball Sports Venue 115
Others 260 Others 7659

3.3. Model Training and Optimization
3.3.1. Model Ensembling

Stacking is an ensemble technique where the output of the first-layer models is used
as input for the second-layer model (meta-model). Within the CEP-KASS framework, to
ensure that the information extracted from the multivariate foundational data is accurately
utilized for subsequent data analysis and visualization, we adopted the stacking ensemble
modeling technique. As illustrated in Figure 1, the core of the CEP-KASS framework
is the establishment and training of an integrated model. The purpose of the ensemble
model is to combine predictions from multiple models, thus enhancing the overall model’s
accuracy and robustness. In the first layer, the SegNet model, K-Means, human–machine
adversarial model, and SVM model were integrated, ensuring the information extracted
from various data sources can be accurately transformed into data usable for analysis by
the second-layer meta-model.

3.3.2. Model Training

For the first layer of stacking, a bagging strategy was adopted to train multiple models
in parallel and combine their predictions, reducing the variance of the final ensemble model.
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The final fine-tuned SegNet model achieved a mean Intersection over Union (mIoU) of
42.14, a pixel accuracy of 80.13%, and an overall score of 61.44. Table 5 elaborately displays
the structure and parameter quantity of the SegNet model.

Table 5. The structure and parameter quantity of the SegNet model.

Framework Layer Type Output Shape Neuronal Parameters

Input Input Layer (None, 600, 480, 3) 0
Encoder Conv2D (None, 300, 240, 64) 9408

Batch Normalization (None, 300, 240, 64) 128
Activation (None, 300, 240, 64) 0

MaxPooling2D (None, 150, 120, 64) 0
Residual Block 1 (3 Bottleneck layers) (None, 150, 120, 256) 57,728
Residual Block 2 (4 Bottleneck layers) (None, 75, 60, 512) 246,784
Residual Block 3 (6 Bottleneck layers) (None, 38, 30, 1024) 985,088
Residual Block 4 (3 Bottleneck layers) (None, 19, 15, 2048) 3,936,256

Decoder ZeroPadding2D (None, 21, 17, 2048) 0
Conv2D (None, 19, 15, 1024) 18,874,368

Batch Normalization (None, 19, 15, 1024) 2048
UpSampling2D (None, 38, 30, 1024) 0
ZeroPadding2D (None, 40, 32, 1024) 0

. . .
Batch Normalization (None, 150, 120, 64) 128

Output SoftMax (None, 150, 120, 64) 0

To ensure the generalization capability of the model and prevent overfitting, multiple
optimization strategies were adopted. We identified a suitable value by decaying the
learning rate and periodically adjusting it, helping the model avoid local minima and
converge towards global minima. Dropout regularization was employed during training,
randomly discarding a portion of neurons to enhance model robustness. Additionally,
weight regularization was introduced: L1 regularization adds sparsity to the model by
penalizing large weight values, thereby minimizing the influence of unnecessary features.
L2 regularization smoothens the model, aiding in preventing overfitting. Early stopping
was employed when the validation set performance no longer improved or began to decline,
ensuring the model was not overtrained. The final training parameters of the SegNet model
are presented in Table 6. SVM, a model that consistently performs well in various scenarios,
adopted a radial basis kernel function (kernel = ‘rbf’) in the first layer of stacking and set a
penalty parameter C = 1 to control model complexity. Furthermore, based on experience
and preliminary observation of the data, the kernel width parameter was chosen as the
default. Default parameters were used for training the K-Means and human–machine
adversarial models. Table 6 shows the training parameters of the SegNet model.

Table 6. The final training parameters of the SegNet model.

Parametric Class Parameter Name Parameter Value

Basic Information Save Directory (Checkpoints) ade20k-resnet50dilated-ppm_deepsup
Dataset Directory ./data/
Training Data List ./data/training.odgt

Validation Data List ./data/validation.odgt
Number of Classes 150

Multi-scale Image Sizes (300, 375, 450, 525, 600)
Maximum Image Size 1000

Padding Constant 8
Segmentation Label Downsampling Rate 8

Random Horizontal Flip True
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Table 6. Cont.

Parametric Class Parameter Name Parameter Value

model parameter Encoder Architecture resnet50dilated
Decoder Architecture ppm_deepsup

Encoder Weights None
Decoder Weights None

FC Dimension 2048
training parameter Batch Size per GPU 2

Total Training Epochs 20
Start Epoch 0

Iterations per Epoch 5000
Optimizer SGD

Encoder Learning Rate 0.02
Decoder Learning Rate 0.02
Learning Rate Decay 0.9

β1 0.9
Weight Decay 1 × 10−4

Deep Supervision Scale 0.4
Fixed BN False

Working Threads 16
Display Iteration 20

Random Seed 304
verification parameter Validation Batch Size 1

Visualize False
Checkpoint epoch_20.pth

test parameter Testing Batch Size 1
Testing Checkpoint epoch_20.pth

The second-layer model also adopted a bagging strategy for training. To comprehen-
sively consider the frequency at which streets are perceived, spatial syntax analysis of street
accessibility was conducted, population distribution heat maps were drafted using mobile
signaling data, and the distribution of POIs around each street was analyzed. The per-
ception frequency of streets was categorized into high frequency, medium frequency, and
low frequency. High-frequency perception streets meet the criteria of being in the top 20%
for accessibility, top 50% for population heat intensity, and having points of interest (POI)
distribution around the collection points. On the other hand, low-frequency perception
streets fall into the bottom 20% for accessibility, bottom 50% for population density, and
lack POI distribution around the collection points. All other streets are categorized as
medium-frequency perception streets. Based on the scores of color perception in street
environments, a further subdivision was conducted using the top 15% and bottom 15%
as thresholds to identify streets that serve as commendable references in color perception
for urban renewal, and those that necessitate priority in color transformation (Figure 6).
Ultimately, recommendations for color transformation were provided through an overall
analysis of urban color.
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4. Results and Discussion
4.1. Color and Visual Elements Correlation Analysis

In the CEP-KASS framework, the SegNet model, commonly used for street scene
semantic segmentation, was applied on the MIT ADE20K dataset to semantically segment
the concatenated BSVI. This provided visual element data, listing the top 12 visual elements
by area percentage in BSVI, as seen in Table 7.

Table 7. The ten most influential visual components on the perception of street quality.

Id Name MAX MEAN MIN S.D.

1 wall 0.7307057 0.0237795 0.0000000 0.0511351
2 buildings 0.8714818 0.1977174 0.0000000 0.1456620
3 sky 0.5292231 0.2505424 0.0000000 0.1032600
4 tree 0.6095720 0.0908402 0.0000000 0.0795896
5 road 0.4840634 0.2572149 0.0000000 0.1002214
6 grass 0.2632717 0.0068113 0.0000000 0.0178306
7 pavement 0.4404583 0.0511663 0.0000000 0.0575252
8 person 0.1743264 0.0028947 0.0000000 0.0060110
9 ground 0.4887387 0.0110523 0.0000000 0.0323347

10 mountain 0.2454444 0.0008777 0.0000000 0.0047413
11 plant 0.2970955 0.0237628 0.0000000 0.0344765
12 car 0.3044488 0.0340501 0.0000000 0.0384764

Colors were extracted using K-Means and then categorized as per Table 1. A Pearson
correlation was used to study the relationship between different colors and visual elements,
thereby elucidating the relationships between various colors and visual elements within the
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urban streets of the study area. The results of which are shown in Table 8 with significance
annotations. Given the diversity and complexity of colors constituting the visual elements,
the findings only indicate a correlation between specific colors and some visual elements,
but they aid urban planners and designers in understanding the primary color compositions
of visual elements within the street environment. Based on correlation values: below 0.3
is considered almost no correlation, 0.3–0.5 is weak, 0.5–0.7 is moderate, and above 0.7 is
strong. The positivity or negativity of the correlation is indicated by the positive or negative
value, with different levels of significance marked by * in the table. The study unveils,
at various levels of confidence, the correlation within the street environment of the inner
ring in Xuzhou. We note that Gray_S1_V2 strongly correlates with walls and pavements,
Black_S3_V1 moderately correlates with roads, pavements, and grounds, and Green_S2_V2
has a strong correlation with trees and plants.

Table 8. Pearson’s correlation between different colors and visual elements.

Color Name Wall Sky Tree Road Grass Pavement Person Ground Mountain Plant Car

Orange_S2_V2 0.13 −0.32 *** 0.16 −0.26 ** 0.17 * −0.03 −0.08 0.25 ** −0.10 0.21 * 0.02
Orange_S3_V2 0.14 −0.23 0.01 0.17 0.16 0.27 −0.18 −0.10 −0.02 0.37 −0.06

Gray_S1_V2 0.80 * 0.03 −0.16 *** 0.13 *** −0.09 * 0.95 ** 0.09 ** 0.35 * −0.03 −0.11 ** 0.03
White_S1_V3 0.04 0.14 ** −0.09 * 0.05 0.01 −0.09 0.06 −0.04 −0.02 −0.04 −0.05
Black_S1_V1 −0.24 0.29 * −0.06 0.12 0.06 −0.34 * −0.03 0.05 0.18 −0.16 −0.23
Black_S2_V1 −0.10 −0.17 −0.36 *** 0.03 −0.10 −0.02 0.11 −0.11 0.09 −0.17 −0.04
Black_S3_V1 −0.13 −0.01 −0.09 0.55 *** −0.04 0.62 ** −0.08 0.56 * −0.04 0.04 −0.06
Red_S2_V2 −0.09 −0.15 −0.02 −0.05 −0.07 0.05 0.05 −0.08 −0.03 −0.10 0.15
Red_S3_V2 0.09 −0.42 0.06 0.50 0.83 −0.81 0.68 −0.37 −0.38 −0.25 0.32

Yellow_S2_V2 0.63 −0.91 0.39 −0.06 −0.31 0.20 −0.44 −0.22 −1.00 *** 0.02 −0.74
Green_S2_V2 −0.02 −0.27 0.85 * 0.58 −0.20 −0.59 −0.43 −0.17 −0.04 0.82 * −0.56
Purple_S2_V2 0.58 0.59 −0.95 −0.95 0.50 −0.58 −0.94 −1.00 * 0.50 −1.00 *** 0.72
Blue_S2_V2 −0.08 −0.38 −0.14 −0.02 −0.19 0.32 0.11 −0.04 −0.51 ** −0.29 0.02
Blue_S2_V3 0.16 −0.30 0.55 *** −0.26 −0.04 0.22 −0.06 −0.14 *** 0.01 −0.24 −0.17
Blue_S3_V2 0.64 −0.43 0.39 −0.90 * −0.05 −0.11 0.35 0.44 0.13 −0.11 −0.77
Blue_S3_V3 0.41 −0.32 0.39 −0.83 *** 0.11 −0.16 *** 0.05 −0.06 0.47 * −0.56 ** 0.00

* indicates significance at the p < 0.05 level, ** indicates significance at the p < 0.05 level, *** indicates significance
at the p < 0.05 level.

4.2. Color and Perception Score Correlation Analysis

CEP-KASS correlated color data with scores from five perception dimensions using
Pearson correlation, visualizing results in a table. Red indicates positive correlation, blue
indicates negative, with color intensity representing correlation strength. After marking
significance, the results are presented in Table 9. Planners and designers can refer to Table 8
for guidance on how to control specific colors and their associated attributes in the color
renewal and planning of urban street environments. By modulating these color attributes,
it is possible to regulate perceptions related to residents’ emotions, thereby ameliorating the
emotional variations residents experience during their daily commutes due to the influence
of urban colors.

The table reveals relationships between the street color environment in the inner circle
of Xuzhou and the five perception scores:

In terms of specific color selection:

(1) Black_s3_v1 strongly and positively correlates with the beautiful score and safe score
but negatively correlates with the wealthy score, all significant at p < 0.005. In Table 7,
roads, pavements, and grounds are primarily associated with Black_s3_v1.

(2) Red_s1_v3, orange_s2_v2, and blue_s1_v2 all strongly and positively correlate with
the interesting score, whereas green_s1_v1 negatively correlates. This suggests that
vibrant colors with medium-to-low saturation can capture attention, having a strong
correlation with the interesting score. Existing studies have also demonstrated that
colors with higher saturation may have a negative impact on emotions.

(3) As for green, Green_s1_v1 and green_s1_v2 show a strong positive correlation with
the lively score in visual perception, with green_s1_v1 also positively correlating with
the wealthy score. In Table 7, trees, grass, and plants are mainly associated with these
green shades. These conclusions corroborate with previous studies. But the strong
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negative correlation between green_s1_v1 and the interesting score suggests that, for
the color green, excessively low saturation and brightness levels may diminish its
appeal to the residents.

Within the specific attributes of color, the study also discovered that vivid colors with
medium-low saturation and brightness negatively correlate with the beautiful score.

Table 9. Pearson’s correlation of color data with perceptual dimensions.

Beautiful Score Interesting Score Lively Score Safe Score Wealthy Score

Black_S1_V1 0.099 −0.091 −0.037 0.172 −0.11
Black_S2_V1 0.091 −0.14 0.022 −0.052 −0.025
Black_S3_V1 0.98 *** 0.5 −0.5 0.98 *** −0.98 ***
White_S1_V3 0.074 −0.128 ** 0.057 0.032 −0.116 **
Gray_S1_V1 0.101 −0.014 −0.005 0.129 −0.151 *
Gray_S1_V2 0.079 * −0.058 0.109 * 0.141 ** −0.03
Gray_S1_V3 −0.05 −0.06 0.125 0.11 −0.169
Red_S1_V1 0.199 0.01 −0.071 0.106 −0.103
Red_S1_V2 0.242 −0.226 −0.335 ** −0.012 0.086
Red_S1_V3 −0.362 0.726 * 0.481 0.409 −0.119

Orange_S1_V1 −0.163 0.309 0.348 * −0.05 0.02
Orange_S1_V2 −0.229 0.102 0.16 −0.027 0.428 ***
Orange_S1_V3 0.042 0.005 0.201 −0.244 0.135
Orange_S2_V1 −0.469 0.049 −0.105 −0.295 −0.284
Orange_S2_V2 −0.98 *** 0.98 *** −0.945 ** −0.866 −0.189
Yellow_S1_V1 −0.784 * −0.3 0.464 0.000 0.464
Green_S1_V1 0.3 −0.881 *** 0.95 *** 0.27 0.956 ***
Green_S1_V2 −0.98 *** 0.327 0.98 *** 0.866 −0.655
Blue_S1_V1 −0.004 0.135 −0.085 0.56 * −0.313
Blue_S1_V2 −0.0004 0.135 −0.085 0.56 −0.313
Blue_S1_V3 −0.037 0.753 * 0.37 0.201 0.403 ***
Blue_S2_V3 0.00 0.000 0.000 0.00 0.00

Purple_S1_V1 −0.98 *** −0.189 0.945 ** 0.98 *** 0.693

* indicates significance at the p < 0.05 level, ** indicates significance at the p < 0.05 level, *** indicates significance
at the p < 0.05 level.

4.3. Division of Streets Based on Perception Scores and Perception Frequency

The study of urban street environment color perception can provide urban planners
and designers with design and planning support from the perspective of resident percep-
tion, identifying streets worth referencing in urban renewal and color transformation, and
those that need to be prioritized for remodeling. To achieve this goal, it is necessary to
categorize the streets, assuming what the color perception score of each street and the
perception frequency is. Through the perception scores, the top 15% of streets are defined
as threshold, and the bottom 15% of streets are defined as threshold, based on multiple
data to determine the perception frequency of different streets. According to Equation (7),
streets are divided into five types: 1© High Score High Frequency Perception (HSHF);
2©High Score Low Frequency Perception (HSLF); 3© Low Score High Frequency Perception

(LSHF); 4© Low Score Low Frequency Perception (LSLF); 5© Others.

f (x) =



HSHF, i f C > Ctop and F > FS

HSHF, i f C > Ctop and F ≤ FS

LSHF, i f C < Clow and F > FS

LSLF, i f C < Clow and F ≤ FS

Others, otherwise

(7)

HSHF (High Score High Frequency Perception) streets can serve as good references and
models for the color environment of urban streets, requiring no re-planning in subsequent
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urban color transformations. We suggest designating these streets as urban color nodes
and reference samples for the color transformation of other streets.

For HSLF (High Score Low Frequency Perception) streets, urban planners can compare
them with HSHF streets to explore the differences in color environment between these two
types of streets. However, due to the significant difference in perception frequency, certain
factors such as high accessibility and points of interest (POIs) that can attract pedestrian
traffic should be considered. If necessary, color adjustments can be made to enhance their
appeal and guide pedestrians towards these streets. Any color transformation in this regard
should primarily aim to increase street appeal and the frequency of pedestrian perception.

LSHF (Low Score High Frequency Perception) streets are frequently perceived during
daily commutes, but the color perception score experience by pedestrians is subpar, thus
having a high priority in color transformation and regulation. Optimizing the color envi-
ronment of these streets can better exploit their functionality. Improvements can be made
by referencing the characteristics of high-score streets.

LSLF (Low Score Low Frequency Perception) streets score low in color perception and
also have a lower perception frequency, possibly due to their remote location or weaker
functionality, which results in fewer visits by residents and pedestrians. When considering
color transformation and regulation, these streets should be given lower priority.

Streets categorized as ‘Others’ have moderate scores and perception frequency in
terms of color perception. Planners and designers should conduct detailed onsite inspec-
tions and analyses to determine the necessity of transformation and should reference the
characteristics and experiences of HSHF streets in their decision-making process.

Figure 6 displays the division of HSHF (High Score High Frequency Perception) and
LSHF (Low Score High Frequency Perception) streets under the poverty–wealthy dimension.
Following this logic and visualizing the color perception and perception frequency for the
remaining four dimensions, we obtained Figure 7. The study discovered that within the
inner ring of Xuzhou, streets with high perception frequency and high accessibility tend
to score higher in the danger–safe dimension of color environment perception. Previous
research also confirms that street accessibility often plays a critical role in creating places
and enhancing the quality of life, providing a set of urban street space quality measurement
standards based on accessibility (Ye et al., 2019).

Additionally, streets scoring higher in color environment perception across the five
dimensions often have urban nodes nearby. This conclusion is more evident in the
overlay analysis of color environment perception and perception frequency in the ugly–
beautiful dimension, corroborating that the aesthetic quality of street spaces around urban
nodes is higher. Overlaying the depressing–lively score, boring–interesting score, and
poverty–wealthy score dimensions with high-frequency perception streets revealed a con-
tinuous distribution of high-score points. Among these, the boring–interesting score
dimension demonstrates a clustered distribution along the riverside areas. It is advisable
for urban planners to prioritize referencing the color environment of these streets when
shaping the city’s image and planning for color transformations.

Low perception scores in street environments overlap considerably in the ugly–
beautiful score and depressing–lively score dimensions, with most overlaps occurring
in the city center and western city regions. These areas largely comprise older urban dis-
tricts with narrow streets, necessitating color transformations and adjustments to enhance
the commuting experience for residents.
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4.4. Street Color Environment Analysis
4.4.1. Analysis of H, S, V Relationships

Scatter plots illustrating the relationships among H, S, V (hue, saturation, value) were
constructed for the colors of the streets in the study area prior to converting them to the H,
S, V range in OpenCV, resulting in Figure 8. In the V-H plot, there is an absence of data
in the high-value range for the yellow-green-cyan colors. Cross-referencing with Table 7
reveals that the primary visual elements providing such colors in the city are vegetation,
which finds it challenging to achieve high values in color representation. In the S-V plot,
high saturation colors predominantly occupy the low-value range, and in the S-H plot, they
are primarily situated in the red range. This demonstrates that the high saturation colors in
street scenes are chiefly composed of reds with high saturation and low value.
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As saturation diminishes, the primary composition of medium saturation colors
transitions to orange, where, as analyzed in Table 8, medium-saturation and medium-value
orange holds the strongest positive correlation with the boring–interesting score. The colors
manifesting as deep red, brownish-red, brown, and even brownish deep wooden hues in
the street scenes of the study area are mainly derived from red soil, tree trunks, traditional
Chinese wooden structures, and buildings adorned with traditional wooden color themes.
The “Historical Records” document that the soil in Xuzhou is red, sticky, and fertile, and
current geological studies corroborate the presence of a substantial amount of red soil in
Xuzhou. This suggests that the deep wooden hues of traditional architecture and the local
red soil colors continue to pique visual interest. Nonetheless, the medium-saturation and
medium-value orange, while augmenting the perception on the interesting score dimension,
causes a decrement in perception scores on the lively score and beautiful score dimensions.
This might be attributed to the fact that modern constructions employing these colors do
not utilize mud and wood materials, but rather opt for stone veneer or concrete plaster
exterior walls. The extensive color facades adversely affect the lively score and beautiful
score dimensions.

As saturation further recedes, medium-saturation colors now also encompass cyan,
blue, and purple. These three colors, predominantly reflected in the glass and curtain walls
of modern edifices in street scenes, do not exhibit any correlation with any perceptual
dimensions in the correlation analysis. During the color renovation of urban street envi-
ronments, planners can ascertain the relationship between colors and varying perceptual
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dimensions through the analyses in Table 8 and Figure 8, based on the perceptual dimen-
sions necessitating optimization, thereby ameliorating color perception experience through
color modulation.

4.4.2. Analysis of Street Color Attributes

The research area was divided into grids of 300 m× 300 m, and then the color with the
highest frequency of occurrence in each grid was calculated to fill the grid. After extracting
the corresponding brightness and saturation of the color, it was visualized on the map as
shown in Figure 9. From the distribution of brightness, it can be seen that the brightness is
lower in the city center, the western urban area, and near the main roads, which is related
to the large proportion of asphalt roads in the visual field in these places. In the saturation
distribution map, there are exposed red soils along the east coast of Yunlong Lake and at
Jiuli Mountain, whereas other places with high saturation have buildings with deep woody
colors, such as the Qianlong Palace, being an ancient building, and the Wenchang Campus
of China’s University of Mining and Technology, being a modern building with a large area
decorated in these colors.
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Figure 10 shows a hotspot analysis of the distribution of brightness and saturation in
urban spaces to intuitively display the areas of extreme value aggregation of saturation and
brightness within the research area. Based on this, the relationship between the areas of
extreme value aggregation of brightness, saturation, and emotional perception in the city
is explored.
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For the areas of interest, in conjunction with perceptual scores, Table 8 can be used to
quickly determine the kind of color regulation required within each grid area. Furthermore,
by considering the frequency of perception, the priority levels for color transformation and
regulation can be established, and specific regulation schemes can be determined based on
the correlation between color and perception. Figure 11 exemplifies this with an analysis of
hot and cold spots in terms of brightness, where streets with the highest 15% and lowest
15% perceptual scores have significant overlap with the extreme value clusters, with the
exception of the poverty–wealthy dimension. Specifically, points with a higher interesting
score align to some extent with areas of higher brightness, suggesting that a continuous
distribution of high-brightness colors can engage the interest of residents; points with a
lower beautiful score and lively score overlap with areas of lower value, indicating that
regulating value can improve color perception in these dimensions; points with a higher
safe score overlap with areas of lower value, whereas points with lower scores overlap with
areas of higher value, proving an inverse relationship between value and the perception
of safety. Hence, by inversely regulating value, the perceptual experience in the safety
dimension of some specific urban external spaces can be improved.

Buildings 2023, 13, x FOR PEER REVIEW 23 of 27 
 

  

(a): depressing–lively and value (b): boring–interesting and value 

  
(c): dangerous–safe and value (d): ugly–beautiful and value 

Figure 11. Anomaly clustering and perception score superposition analysis. 

4.5. Limitations and Future Research 

Although this study explores color perception in urban street environments, there 

are some shortcomings that warrant further discussion in future work. Firstly, this study 

selected a single research area and employed the proposed CEP-KASS framework to in-

vestigate color perception in urban street environments. In reality, as long as there is a 

sufficient amount of street-view image data and the city reaches a certain scale, this 

framework can be applied to different cities, and by comparing multiple cities of the 

same level, more universal color rules can be elucidated. Additionally, this study did not 

provide multi-level explanations for the formation of the perceptual results of street en-

vironment colors. Future research could consider incorporating eye-tracking and visual 

attention simulation experiments, capturing participants’ eye movement paths precisely 

when observing urban scenes, and predicting and simulating people’s attention distri-

Figure 11. Anomaly clustering and perception score superposition analysis.



Buildings 2023, 13, 2649 22 of 25

4.5. Limitations and Future Research

Although this study explores color perception in urban street environments, there
are some shortcomings that warrant further discussion in future work. Firstly, this study
selected a single research area and employed the proposed CEP-KASS framework to
investigate color perception in urban street environments. In reality, as long as there is
a sufficient amount of street-view image data and the city reaches a certain scale, this
framework can be applied to different cities, and by comparing multiple cities of the
same level, more universal color rules can be elucidated. Additionally, this study did
not provide multi-level explanations for the formation of the perceptual results of street
environment colors. Future research could consider incorporating eye-tracking and visual
attention simulation experiments, capturing participants’ eye movement paths precisely
when observing urban scenes, and predicting and simulating people’s attention distribution
while viewing urban scenes. This would reveal which spaces within the urban scene are
noticed first when color environments impact perception, aiding researchers in the fields of
urban science and anthropology to more intuitively understand the formation of perceptual
outcomes caused by which visual elements and corresponding colors. Moving forward,
we will consider more factors, increase the sample of cities, and combine some intuitive
experiments to discuss urban street color planning.

5. Conclusions

The color environment of urban streets plays a significant role in optimizing residents’
daily travel perception experience. We should rationally plan the urban street color en-
vironment to enhance residents’ travel color perception experience and build a city color
environment centered on human perception.

Previous research rarely studied street environment color from the perspective of
urban color environment perception. To fill this research gap, we proposed a methodologi-
cal framework named CEP-KASS and validated it using an area within the third ring of
Xuzhou as the study subject. First, visual elements and color data of streets were extracted
from BSVI. The model we used for segmentation was a fine-tuned SegNet model, achieving
42.14 in mIoU, 80.13% in pixel accuracy, and 61.44 in overall score.

Then, after obtaining the color environment perception score data through the ad-
versarial model, we used the support vector machine to predict the perception scores of
all streets. Its MSE and R square reached 0.2188 and 0.8327, respectively, showing good
predictive results. Finally, by integrating road accessibility, population heatmaps, and POI
distribution, we determined the perception frequency of streets. Combining this with color
environment perception scores, we categorized streets into five types: HSHF, HSLF, LSHF,
LSLF, and Others. Urban planners are advised to prioritize referencing HSHF streets and
renovating LSHF streets when shaping the city’s image and planning its colors.

Furthermore, the study classified the street color environment extracted from BSVI
and studied the relationship between color and visual elements as well as color and its
related attributes with perception scores through Pearson correlation analysis and applied
the conclusions to street environment color analysis. For instance, medium saturation and
luminance of the color orange, while enhancing the perception score in the interesting
score dimension also affected perception scores in the lively score and beautiful score
dimensions. Therefore, color regulation can be employed to optimize residents’ emotions.
After analyzing the perception scores of streets, combined with the classification rules of
streets, it is feasible to determine whether color regulation is needed, and relevant color
control suggestions can be provided based on the correlation study of color with visual
elements and perception scores.

In summary, we selected the often-overlooked color aspect in urban design, applied the
CEP-KASS framework to conduct research on color with visual elements, and perception
scores, providing theoretical support for urban color planning from a resident-centric
perspective on color perception. The five classification criteria for streets offer a reference
for prioritizing color renovation, and the hot and cold spot analysis of street color elements



Buildings 2023, 13, 2649 23 of 25

helps ascertain how luminance and saturation affect residents’ perceptions. This contributes
to the practical application of color perception conclusions and provides scientific color
renovation suggestions based on the actual situations of streets, optimizing urban residents’
spatial perception and emotional experience within a city.
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